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Abstract

This paper extends and establishes (necessity and/or su�ciency)
relations between recent conditions for the existence of average cost

optimal stationary policies for Markov control processes with Borel

state space and possibly unbounded costs and non-compact control
constraint sets. All of these conditions are variants of the so-called

\vanishing discount factor" approach.

Key words: (discrete time) Markov control processes, average cost, discounted

cost, stochastic dynamic programming, stationary optimal policies

AMS Subject Classi�cations: 93E20, 90C40

1 Introduction

This paper deals with discrete-time Markov control processes (MCPs) with
Borel state and control spaces, allowing unbounded one-stage costs and
non-compact control constraint sets. The main objective is to extend to
the latter context, and to establish|necessity and/or su�ciency|relations
between recent conditions for the existence of average cost (AC) optimal
stationary policies. All of these conditions are variants of the so-called
vanishing-discount-factor approach, which even though it goes back to the
1960s|see e.g. [1,4,5,6,11,12,13] for earlier references|it has been used in
the case of unbounded costs only in the last few years. Actually, as can be
seen in the above references, most of the literature on the AC problem is
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concentrated on MCPs for which (i) the state space is a denumerable set,
and/or (ii) the control constraint sets are compact , and/or (iii) the one-
stage costs are bounded , conditions that exclude of course important control
problems, such as the \linear regulator" (or linear-quadratic systems; see
Example 2.5), for which none of (i), (ii), (iii) holds. These conditions are
not required in this paper; we propose instead a setting|see Assumptions
2.3 and 2.30|that includes virtually all the AC control problems that ap-
pear in applications.

The weakest average-optimality condition we consider here|see C1 in
x3|is an extension to Borel spaces of a condition used by Sennott [13]
for MCPs with a denumerable state space and �nite control sets. In x3
we show that C1, together with appropriate (semi-) continuity and (inf-)
compactness assumptions, implies the existence of AC-optimal policies. In
x4 we consider two conditions, C2 and C3 (previously used in [6,12] and
[5,11] respectively), each of which is shown to be su�cient for C1. In our
general Borel space context we have been unable to show that C1 implies
either C2 or C3 (see Remark 6.1). However, in x5 it is shown that a suitable
extension C10 (resp. C100) of C1 does imply C3 (resp. C2). Also in x5 we
show that a strengthened version C20 of C2 (resp. C30 of C3) implies C3
(resp. C2). Schematically, in addition to obvious relations (such as C100

=) C10 =) C1, C20 =) C2, and C30 =) C3) we show that

C20

C10

C100

C30

C3

C2

C1
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@@R
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���?

This diagram summarizes our main results, which|as already men-
tioned|are developed in xx3, 4, 5. In x2 we introduce the Markov control
processes we are concerned with.

2 Markov Control Processes

Notation. Given a Borel space X (i.e., a Borel subset of a complete
and separable metric space) its Borel sigma-algebra is denoted by B(X).
\Measurable" always means \Borel measurable". M (X)+ denotes the set
of real-valued nonnegative measurable functions on X, and L(X)+ is the
subset of lower semi-continuous (l.s.c.) functions. Recall that if X and Y

are Borel spaces, then a stochastic kernel on X given Y is a function, say
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AVERAGE OPTIMALITY IN MARKOV CONTROL PROCESSES

P (�j�), such that P (�jy) is a probability measure on X for every y 2 Y , and
P (Bj�) is a measurable function on Y for every B 2 B(X).

Markov control models. The basic{discrete-time, time-homogeneous{
Markov control model (X;A;Q; c) consists of the state space X, the control
(or action) set A, the transition law Q, and the cost-per-stage function c.
Both X and A are assumed to be Borel spaces. To each state x 2 X we
associate a nonempty measurable subset A(x) of A, whose elements are the
admissible control actions when the system is in state x. The set

K := f(x; a)jx 2 X; a 2 A(x)g

of admissible state-action pairs is assumed to be a measurable subset of
the Cartesian product of X and A. The transition law Q(Bjx; a), where
B 2 B(X) and (x; a) 2 K is a stochastic kernel on X given K . The cost-
per-stage c is a nonnegative measurable function on K, i.e. c 2M (K)+.

We assume throughout that K contains the graph of a measurable map
from X to A, which guarantees that the set, �, of policies (de�ned below)
is nonempty.

Let F be the set of all measurable functions f : X ! A such that
f(x) 2 A(x) for all x 2 X.

For each t = 0; 1; : : :; de�ne the space of admissible histories up to time
t by H0 := X and

Ht := K
t �X = K �Ht�1; t = 1; 2; : : :

An element of Ht is a vector, or history, ht of the form

ht := (x0; a0; : : : ; xt�1; at�1; xt)

where (xn; an) 2 K for n = 0; 1; : : : ; t� 1, and xt 2 X.

De�nition 2.1 (a) A control policy is a sequence � = f�tg such that, for
each t = 0; 1; : : : ; �t is a stochastic kernel on A given Ht, and which satis�es
the constraint �t(A(xt)jht) = 1 for all ht 2 Ht. The set of all policies is
denoted by �. (b) A control policy � = f�tg is said to be a stationary

policy if there exists a function f 2 F such that �t(�jht) is concentrated at
f(xt) for all t = 0; 1; : : :; in this case, we identify � with f 2 F, and refer
to F as the set of stationary policies.

Performance criteria. We shall denote by P �
x the induced probabil-

ity measure when using the policy �, given the initial state x0 = x (see

3



R. MONTES{DE{OCA AND O. HERN�ANDEZ{LERMA

e.g. Hinderer [9] page 80 for the construction of P �
x). the corresponding

expectation operator is denoted by E�
x.

For any policy � 2 � and initial state x 2 X, let

J(�; x) := lim sup
n

(n + 1)�1
nX
t=0

E�
x[c(xt; at)] (2.1)

be the long-run expected average cost, and

V�(�; x) := E�
x

"
+1X
t=0

�tc(xt; at)

#
(2.2)

the �-discounted expected total cost, where � 2 (0; 1) is the so-called
discount factor. The functions

J(x) := inf
�
J(�; x); and V�(x) := inf

�
V�(�; x); x 2 X; (2.3)

are the optimal average cost and the optimal �-discounted cost, respec-
tively, when the initial state is x. A policy � 2 � is said to be average cost
optimal (or AC-optimal) if J(x) = J(�; x) for all x 2 X, and similarly for
the �-discounted case.

To state one of our main hypotheses (Assumption 2.3(a) below) we
require the following de�nition.

De�nition 2.2. A real-valued function v on K is said to be inf-compact

on K if the set fa 2 A(x)jv(x; a) � rg is compact for every x 2 X and
r 2 R.

To guarantee the existence of \measurable minimizers", we need appro-
priate (semi-) continuity and compactness conditions on the components
of the control model (X;A;Q; c). Here we will make the following assump-
tions.

Assumption 2.3

(a) c(x; a) is lower semicontinuous (l.s.c.) and inf-compact on K;

(b) The transition law Q is strongly continuous, i.e. the function

v0(x; a) :=

Z
v(y)Q(dyjx; a) is a bounded and continuous function

in (x; a) 2 K for each measurable and bounded function v on X;

(c) The multifunction x ! A(x) is upper semicontinuous, i.e. for any
open set G � A, the set fxjA(x) � Gg is open in X.
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Assumption 2.3' (a) Assumptions 2.3(a) and 2.3(c) hold;
(b) the transition law Q is weakly continuous, i.e. the function v0 in As-
sumption 2.3(b) is continuous and bounded on K whenever v is continuous
and bounded on X.

Remark 2.4 Obviously, Assumption 2.3 implies Assumption 2:30. As-
sumption 2:30(b) is easily seen to be equivalent to: v0 is l.s.c. and bounded
from below on K whenever v is l.s.c. and bounded from below on X.

The following example illustrates Assumption 2.3.

Example 2.5 Additive-noise systems with quadratic costs. Consider the
stochastic system

xt+1 = F (xt; at) + "t; t = 0; 1; : : : (2.4)

with quadratic cost

c(x; a) = x0qx+ a0ra (\prime" denotes transpose)

where, say, X = R
n; A(�) = A = R

m, and F : X �A! X is a continuous
function; q and r are given symmetric, positive de�nite matrices. This
example includes of course the linear-quadratic (or LQ) case in which F is of
the form F (x; a) = 
x+�a, where 
 and � are given matrices. We suppose
that the random disturbances "t are i.i.d. (independent and identically
distributed) random variables with a continuous density. In this example,
Assumptions 2.3(a) and 2.3(c) trivially hold, and Assumption 2.3(b) is a
consequence of Sche��e's Theorem (see, e.g., Hern�andez{Lerma [4] p. 125).

To conclude this section we state four lemmas that summarize impor-
tant facts to be used in later sections. Each of these lemmas is provided
with references for its proof.

Lemma 2.6 ([5] Lemma 2.3). If Assumption 2.3 holds, and u 2M (X)+,
then the function u de�ned as

u(x) := inf
a2A(x)

�
c(x; a) +

Z
u(y)Q(dyjx; a)

�
; x 2 X (2.5)

is measurable, and there exists f 2 F such that

u(x) = c(x; f(x)) +

Z
u(y)Q(dyjx; f(x)) 8x: (2.6)

Lemma 2.6' ([7] Lemma 2.7(b)). If Assumption 2.3' holds, and u 2
L(X)+ , then the function u de�ned in Lemma 2.6 is l.s.c., and there exists

a stationary policy f 2 F such that (2.6) holds.
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Lemma 2.7 (cf. [1,6,11]). For any policy � 2 �,

lim sup
�"1

(1� �)V�(�; x) � J(�; x); x 2 X:

Lemma 2.8 ([7] Theorem 4.2) Suppose that Assumption 2.3 (or 2.3')

holds, and let � 2 (0; 1) be an arbitrary but �xed discount factor. If

V�(x) < +1 for every x 2 X;

then V� is the (pointwise) minimal function in L(X)+ that satis�es the

Dynamic Programming equation, i.e.

V�(x) = min
a2A(x)

�
c(x; a) + �

Z
V�(y)Q(dyjx; a)

�
; x 2 X: (2.7)

Moreover, there exists a stationary policy f� 2 F such that f�(x) 2 A(x)
minimizes the r.h.s. (right-hand side) of (2.7) for all x 2 X, i.e.

V�(x) = c(x; f�(x)) + �

Z
V�(y)Q(dyjx; f�(x)) 8x 2 X (2.8)

and f� is �-discount optimal.

3 The Optimality Condition C1

In this section we give conditions that ensure the existence of AC-optimal
policies.

Let V�(�) be the optimal �-discounted cost and let x 2 X be an arbi-
trary, but �xed state. De�ne

h�(x) := V�(x)� V�(x); x 2 X; � 2 (0; 1): (3.1)

Condition 1 (C1). There exist nonnegative constants N and M , a non-
negative (not necessarily measurable) function b on X, and �0 2 (0; 1) such
that

(a) V�(x) < +1 for every x 2 X and � 2 (0; 1);

(b) (1� �)V�(x) �M 8� 2 [�0; 1);

(c) �N � h�(x) � b(x); for every x 2 X and � 2 [�0; 1).

It is convenient to explicitly include the requirement (a) in C1, as done
by Sennott [13], but in fact, as noted by O. Vega{Amaya (private commu-
nication), it is redundant, i.e. (a) can be deduced from (b) and (c).

6



AVERAGE OPTIMALITY IN MARKOV CONTROL PROCESSES

Example 3.1. For the LQ system in Example 2.5, with n = m = 1,
suppose 
 � � 6= 0, both q and r are positive, and the disturbances "t have
zero mean and �nite variance �2 > 0. Under these hypotheses we have the
following well-known results (see e.g. [2] or [5]):

V�(x) = k(�)x2 +
k(�)��2

1� �
8x 2 R; � 2 (0; 1); (3.2)

where k(�) is the unique positive solution to the equation

k =
�
1� �k�2(r + �k�2)�1

�
�k
2 + q; (3.3)

and k(�) ! k� as � " 1, where k� is the unique positive solution of the
equation obtained from (3.3) when � " 1.

C1(a) evidently holds. Now, taking x = 0 in (3.2), we obtain

(1� �)V�(0) = k(�)��2 8� 2 (0; 1); (3.4)

and
h�(x) = k(�)x2 8x 2 X; � 2 (0; 1): (3.5)

Let " > 0 be arbitrary but �xed. Choose �0 2 (0; 1) such that

k(�) � k� + " 8� 2 [�0; 1)

Hence, de�ning M := (k� + ")�2 and b(x) := (k� + ")x2 we conclude that
for all � 2 [�0; 1) and x 2 X,

(1� �)V�(0) �M; and 0 � h�(x) � b(x):

Therefore C1(b) and C1(c) hold.

Lemma 3.2 Under C1, there exists a constant j� � 0 and a sequence of

discount factors �n " 1 such that

lim
n!+1

(1� �n)V�n (x) = j� 8x 2 X: (3.6)

Proof: Let x be the �xed state in (3.1), and let j� be a limit point of
(1� �)V�(x) as � " 1. Let �n " 1 be such that

lim
n!+1

(1� �n)V�n(x) = j�: (3.7)

Now, for every x 2 X, (3.1) together with C1 and (3.7) yields

j(1� �n)V�n(x) � j�j � (1� �n)jh�n(x)j

+j(1� �n)V�n(x)� j�j

� (1� �n)maxfN; b(x)g+ j(1� �n)V�n(x) � j�j

! 0 as n! +1
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This proves the lemma. 2

We present next the main result in this section.

Theorem 3.3 Suppose that Assumption 2.3 and C1 hold. Let j� be the

constant obtained in Lemma 3.2. Then:

(a) There exists a measurable function h on X such that �N � h(�) � b(�)
and

j� + h(x) � min
a2A(x)

�
c(x; a) +

Z
h(y)Q(dyjx; a)

�
8x; (3.8)

(b) There exists a stationary policy f� 2 F such that

j� + h(x) � c(x; f�(x)) +

Z
h(y)Q(dyjx; f�(x)) 8x; (3.9)

(c) f� is AC-optimal, and J(f�; x) = j� 8x:

Proof: (a) Let f�ng; �n " 1, be as obtained in Lemma 3.2, and let h�
be as in (3.1). De�ne h : X ! R as

h(x) := lim inf
n!+1

h�n(x) (3.10)

= lim
n!+1

Hn(x); x 2 X;

where Hn(x) := inf
k�n

h�k(x) " h(x) as n! +1. Let x 2 X be an arbitrary

state. Then, by (3.1) and Lemma 2.8, for each n there exists an 2 A(x)
such that

(1� �n)V�n (x) + h�n(x)

= c(x; an) + �n

Z
h�n(y)Q(dyjx; an) 8n: (3.11)

On the other hand, from (3.7) and (3.10), for any given " > 0 there exists
an integer n(") and a subsequence f�nig of f�ng such that

j� + h(x) + " � (1� �ni)V�n
i

(x) + h�n
i

(x) 8ni � n(") (3.12)

Thus, combining (3.11) and (3.12) we get

j� + h(x) + "
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� c(x; ani) + �ni

Z
h�n

i

(y)Q(dyjx; ani)

� c(x; ani) + �ni

Z
Hni(y)Q(dyjx; ani) 8ni � n(") (3.13)

Adding �ni �N on both sides of (3.13), and using that �ni < 1, we have

j� + (h(x) +N ) + "

� c(x; ani) + �ni

Z
(Hni(y) + N )Q(dyjx; ani) 8ni � n("): (3.14)

Now, for i = 1; 2; : : :, de�ne Di(x) as the set of all a 2 A(x) for which
(3.14) holds, i.e.

Di(x) := fa 2 A(x)jc(x; a) + �ni

Z
(Hni(y) + N )Q(dyjx; a)

� j� + (h(x) + N ) + "g

Let r := j� + (h(x) + N ) + ", and Ar(x) := fa 2 A(x)jc(x; a) � rg: Note
that, from Assumption 2.3 (a){(b), together with Hni(�) + N � 0, we
deduce that Di(x) is a closed subset of Ar(x), which is compact. Hence,
Di(x) is compact. Moreover, ani 2 Di(x), and since �ni � (Hni(�) + N ) "
(h(�)+N ), the Di(x) form a non-increasing sequence of nonempty compact
sets converging to the nonempty compact set

D(x) := fa 2 A(x)jc(x; a) +

Z
(h(y) + N )Q(dyjx; a)

� j� + (h(x) +N ) + "g:

Consequently, there exists a subsequence of fnig|which we denote by fnig
again to avoid complicating the notation|and a control ax 2 D(x) such
that ani ! ax as i!1. Now, let L > n(") be an arbitrary integer. From

(3.14), we get
j� + (h(x) +N ) + "

� c(x; ani) + �ni

Z
(HL(y) + N )Q(dyjx; ani) 8ni > L: (3.15)

Thus, letting i! +1, Assumption 2.3(a){(b) yields

j� + (h(x) +N ) + " � c(x; ax) +

Z
(HL(y) + N )Q(dyjx; ax)

which in turn, letting L! +1, yields

j� + (h(x) +N ) + " � c(x; ax) +

Z
(h(y) +N )Q(dyjx; ax):
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Hence,

j� + h(x) + " � c(x; ax) +

Z
h(y)Q(dyjx; ax)

� min
a2A(x)

�
c(x; a) +

Z
h(y)Q(dyjx; a)

�
;

and, since " was arbitrary, we conclude (3.8).

(b) Taking u(�) := h(�) + N � 0 in Lemma 2.6, we guarantee the
existence of f� 2 F such that

min
a2A(x)

�
c(x; a) +

Z
(h(y) + N )Q(dyjx; a)

�

= c(x; f�(x)) +

Z
(h(y) + N )Q(dyjx; f�(x)) 8x:

Finally, in the latter equality drop the constant N and then use (3.8) to
obtain (3.9).

(c) This is a well-known consequence of (3.9) and h(�) � �N ; see e.g.
[5,6,11,12]. This completes the proof of Theorem 3.3. 2

In the next two sections we present su�cient conditions for C1, to
complete the diagram in Section 1.

4 Su�cient Conditions for C1

We will now introduce two conditions, C2 and C3, each of which implies
C1, which yields the right-hand half of the diagram in the Introduction.

Condition 2 (C2). [6,12]. There exists a constant N � 0, a function

b 2M (X)+, a number �0 2 (0; 1); and a stationary policy bf 2 F such that

(a) V�(x) < +1 for every x 2 X and � 2 (0; 1);

(b) h�(x) � �N for every x 2 X and � 2 [�0; 1);

(c) h�(x) � b(x), and
R
b(y)Q(dyjx; bf (x)) < +1 for every x 2 X and

� 2 [�0; 1).

De�ne m� := inf
x
V�(x), and g�(x) := V�(x) � m� for x 2 X and

� 2 (0; 1):

10
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Condition 3 (C3). [5,11]. (a) There is a policy b� and an initial state bx
such that J(b�; bx) < +1;
(b) There exists � 2 [0; 1) such that sup

�<�<1

g�(x) < +1 for every x 2 X.

For an extension of C3 to semi-Markov models see Vega{Amaya [14].

Theorem 4.1. Under Assumption 2.3 (or 2:30), each of the conditions

C2 and C3 implies C1.

Proof: Suppose that C2 holds. Evidently, C1(a) and C1(c) hold. Now,
from (2.7) and (3.1) we have, for any � 2 (0; 1);

(1 � �)V�(x) = V�(x)� �V�(x)

� c(x; bf(x)) + �

Z
V�(y)Q(dyjx; bf(x))� �V�(x)

= c(x; bf(x)) + �

Z
h�(y)Q(dyjx; bf (x))

� c(x; bf(x)) + Z
b(y)Q(dyjx; bf(x)) [by C2(c)]:

This yields C1(b) with M := c(x; bf(x)) + R
b(y)Q(dyjx; bf (x)). Therefore

C1 holds.
Suppose now that C3 holds, and let x := bx. Using C3(a) and Lemma

2.7 it is easily shown that ([5,11])

0 � gL � gU � j < +1; (4.1)

where

j := inf
x2X

inf
�2�

J(�; x);

gL := lim inf
�"1

(1� �)m�;

gU := lim sup
�"1

(1� �)m�:

Next, we show that m� < +1 8� 2 (0; 1). Indeed, if there exists �1 2
(0; 1) such that m�1 = +1, then m� = +1 8� � �1, since the mapping
�! m�, � 2 (0; 1), is nondecreasing (recall that c � 0). Hence,

lim sup
�"1

(1 � �)m� = +1;

which contradicts (4.1). Therefore, m� < +1 8� 2 (0; 1): In turn, the
latter yields

V�(x) = (V�(x)�m�) +m�

11
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= g�(x) +m�

� sup
�<�<1

g�(x) +m�

< +1 [by C3(b)];

i.e. V�(x) < +1 for every x 2 X and � 2 (�; 1). Hence, since V�(x) is
increasing in �, we have V�(x) <1 8 � 2 (0; 1); so that C1(a) holds.

Notice that from C3(a) and Lemma 2.7, we also obtain

lim sup
�"1

(1� �)V�(x) � J(x) < +1:

Therefore, there exist constants M = M (x) > 0 and � = �(x) such that

0 � (1� �)V�(x) �M 8� 2 [�; 1):

This yields C1(b) with �0 := �. Finally, de�ning

N := sup
�<�<1

g�(x) and b(x) := sup
�<�<1

g�(x) x 2 X;

and using that h�(�) � g�(�), we obtain

�N � h�(x) � b(x) 8x 2 X and � 2 (�; 1):

Hence, C1(c) holds for arbitrary �0 2 (�; 1); thus C1(c) and (b) both hold
with �0 := max(�; �). This completes the proof that C3 implies C1. 2

5 Further Results

In this section we consider two special results. The �rst one is related to the
case in which Assumption 2.3(b) in Theorem 3.3 is replaced by the weaker
Assumption 2:30(b). In the second result, we give conditions to establish
additional relations between C1, C2 and C3, which yield the left-hand
half of the diagram in the Introduction; the right-hand half was already
obtained in Theorem 4.1.

First, let us consider the following theorem:

Theorem 5.1 We suppose Assumption 2:30 and C1. Let j� � 0 and

f�ng; �n " 1, be as obtained in Lemma 3.2. Then, the conclusions of

Theorem 3.3 hold if in addition one of the following conditions (i), (ii) is

satis�ed.

(i) Hn(�) := inf
m�n

h�m(�) is l.s.c.;

(ii) X is a convex subset of a normed and locally compact space, and h�n(�)
is a continuous and convex function.

12
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Example 5.2. Both conditions (i) and (ii) in Theorem 5.1 are satis�ed
by the LQ system in Example 3.1. In fact, from (3.5),

h�n(x) = k(�n)x
2; n = 1; 2; : : :; x 2 X;

so that, evidently, condition (ii) holds. Furthermore,

Hn(x) = ( inf
m�n

k(�m))x
2; n = 1; 2; : : :; x 2 X;

which trivially is l.s.c. Hence, condition (i) is satis�ed.

Remark 5.3. (a) If h�n(�) in (ii) is convex, then it is continuous if X is
an open set. Su�cient conditions for V�(�)|hence h�(�)|to be convex are
given e.g. in [8] and references therein.

(b) Condition (ii) in Theorem 5.1 has been used by Fern�andez-
Gaucherand, Marcus and Arapostathis [3] to obtain a solution of the aver-
age cost optimality equation, which results when equality holds in (3.8).

Proof of Theorem 5.1. In both cases (i) and (ii), it su�ces to prove
that there is a measurable function h on X such that j� and h satisfy the
inequality (3.8), for then the conclusion (b) in Theorem 3.3 follows from
Lemma 2.60, and conclusion (c) is a consequence of (3.9).

Case (i). Exactly as in the proof of (a) in Theorem 3.3, we can obtain
the inequality (3.15), i.e.

j� + (h(x) +N ) + "

� c(x; ani) + �ni

Z
(HL(y) + N )Q(dyjx; ani) 8ni > L;

where h(�) and HL(�) are as in (3.10), and ani ! ax 2 A(x) as i ! +1.
Now, letting i ! +1 in the latter inequality, Assumption 2:30 (see the
Remark 2.4) and condition (i) yields

j� + (h(x) +N ) + "

� c(x; ax) +

Z
(HL(y) + N )Q(dyjx; ax)

Now we conclude (3.8) as in the proof of Theorem 3.3(a).

13
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Case (ii). Under condition (ii), Fern�andez-Gaucherand, Marcus and Ara-
postathis [3] have shown the existence of a subsequence of f�ng, which for
simplicity we denote again as �n, with �n " 1, and a continuous function
h : X ! R such that

h�n(x)! h(x) 8x; (5.1)

the convergence being uniform on compact subsets of X. On the other
hand, since X is separable and locally compact, there exists a sequence of
open sets Gl; l = 1; 2; : : : which have a compact closure Gl and Gl " X

(see, e.g. Royden (1988) page 169, problem 48). Let x be the given state
in (3.1), and let x 2 X be an arbitrary, �xed, state. Choose Gl such that
x 2 Gl and notice that x 2 GL 8 L � l. Let " > 0 be given. By (3.6) and
(5.1) on Gl, there exists T > 0 such that

(1� �n)V�n (x) � j� + " 8n � T; and (5:2a)

h(y) � " � h�n(y) � h(y) + " 8n � T; y 2 Gl: (5:2b)

Since x 2 Gl, (5.2a) and (5.2b) yield

j� + h(x) + 2" � (1� �n)V�n (x) + h�n(x) 8n � T: (5.3)

But, from (2.8), for each n there exists an 2 A(x) such that

(1� �n)V�n (x) + h�n(x)

= c(x; an) + �n

Z
h�n(y)Q(dyjx; an) 8n � T: (5.4)

Hence, from (5.3) and (5.4):

j� + h(x) + 2"

� c(x; an) + �n

Z
h�n(y)Q(dyjx; an) 8n � T:

Adding �n �N on both sides of the latter inequality and using that �n < 1,
we have

j� + (h(x) +N ) + 2"

� c(x; an) + �n

Z
(h�n(y) +N )Q(dyjx; an) 8n � T: (5.5)

Thus, from (5.2b) and using that h(�) + N � 0, we get

j� + (h(x) +N ) + 3"

� c(x; an) + �n

Z
IGl

(y)(h(y) +N )Q(dyjx; an) 8n � T; (5.6)

14
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where IGl
stands for the indicator function of Gl. Now, let

Bn(x) := fa 2 A(x)jc(x; a) + �n

Z
IGl

(y)(h(y) + N )Q(dyjx; a)

� j� + (h(x) + N ) + 3"g;

n = 1; 2; : : :. As in the proof of (a) in Theorem 3.3, we obtain that for each
n, Bn(x) is nonempty and compact. Moreover, Bn(x) # B(x), where

B(x) := fa 2 A(x)jc(x; a) +

Z
IGl

(y)(h(y) +N )Q(dyjx; a)

� j� + (h(x) + N ) + 3"g;

and B(x) is nonempty. Hence, there exists a subsequence fanig of fang
and ax 2 B(x) such that ani ! ax as i ! +1. Consider (5.6) with
n = ni. Letting i! +1, using that IGl

(�)(h(�)+N ) is l.s.c., together with
Assumption 2:30 we conclude

j� + (h(x) +N ) + 3"

� c(x; ax) +

Z
IGl

(y)(h(y) + N )Q(dyjx; ax): (5.7)

Now, letting successively l ! +1 and "! 0 in (5.7), we get

j� + (h(x) + N )

� c(x; ax) +

Z
(h(y) +N )Q(dyjx; ax):

From this inequality we may obtain (3.8) for the arbitrarily chosen x 2 Gl

as in the proof of Theorem 3.3(a). Since Gl " X, this proves the case (ii).
2

We now turn our attention to the left-hand half on the diagram in x1,
which requires strengthened versions of C1, C2 and C3. First consider the
following conditions (B) and (C), in which x 2 X is the �xed state in (3.1).

Condition (B). There exist T > 0 and �0 2 (0; 1) such that V�(x) �
m� � T 8� 2 (�0; 1). (Recall that m� := inf

x
V�(x):)

Condition (C). There exist a number � 2 (0; 1), a nonnegative measur-
able function ' on X, and a �-discount optimal policy f� 2 F such that, for

all x 2 X; sup
�<�<1

h�(x) � h�(x) + '(x), and

Z
'(y)Q(dyjx; f�(x)) < +1:

Now, consider:

15
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Condition 1' (C10): C1 and (B) hold.

Condition 1" (C100): C1 and both (B) and (C) hold.

Condition 2' (C20): C2 and both (B) and (C) hold.

Condition 3' (C30): C3 and (C) hold.

Example 5.4. The LQ system in Example 3.1 satis�es (B) and (C).
Indeed, (B) trivially holds, since taking x = 0, we have V�(0) = m� =
k(�)��2

1�� ; therefore, V�(0) � m� = 0. Now, to verify (C), let �0 be as in
Example 3.1, so that

k(�) � k� + " 8� 2 [�0; 1);

hence, sup
�0<�<1

k(�) < +1. Choose � 2 (�0; 1) such that

sup
�0<�<1

k(�) � k(�) + 1:

Therefore,
sup

�<�<1

k(�) � k(�) + 1:

Multiply by x2 on both sides of the latter inequality to obtain

sup
�<�<1

(k(�)x2) � k(�)x2 + x2;

i.e., from (3.5), and letting '(x) := x2,

sup
�<�<1

h�(x) � h�(x) + '(x):

Finally, since E("t) = 0 and E("2t ) = �2 < +1,Z
y2Q(dyjx; f�) = (
x + �f�(x))

2 + �2;

which is �nite for every x 2 X. Hence, (C) holds.

Theorem 5.5. Suppose Assumption 2.3. Then:

(a) C10 implies C3;

(b) C20 implies C3;

(c) C30 implies C2;

(d) C100 implies C2.

16
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Proof: (a) Under Assumption 2.3 and C10, Theorem 3.3 holds; hence,

there exists an AC-optimal policy f�. Then, taking b� = f�, we obtain
C3(a). Now, from C1 and (B)

g�(x) := V�(x)�m�

= (V�(x) � V�(x)) + (V�(x)�m�)

� h�(x) + T [by (B)]

� b(x) + T

8� 2 (�0; 1). This implies C3(b), which completes the proof of part (a).

(b) We omit this proof since it is very similar to the proof of (a).

(c) Suppose that C30 holds. As in the proof of Theorem 4.1, we have
that C2(a) and C2(b) hold. Now, notice that by (C) and Lemma 2.8, the
function sup

�<�<1
(h�(x)+N ) is �nite and l.s.c.; in particular, it is measurable.

Furthermore, by (C) again,Z
sup

�<�<1

(h�(y) + N )Q(dyjx; f�(x))

�

Z
(h�(y) + N )Q(dyjx; f�(x)) +

Z
'(y)Q(dyjx; f�(x)) 8x: (5.8)

Since the r.h.s. of (5.8) is �nite for every x, de�ning b(x) := sup
�<�<1

(h�(x)+

N ) and bf := f�, we obtain C2(c) for arbitrary �0 2 (�; 1). This completes
the proof of part (c).

(d) If C100 holds, then, by (a), C30 holds. Thus, by (c), C2 follows.

This completes the proof of the Theorem 5.5. 2

6 Concluding Remarks

We have presented in this paper several conditions that ensure the existence
of AC-optimal stationary policies, the basic idea being to show that there
is a constant j� and a function h(�) that satisfy the \optimality inequality"
(3.8). On the other hand, as already noted in Remark 5.3(b), under suitable
assumptions it is possible to obtain the \optimality equation", in which
equality holds in (3.8). This is an important fact, because it allows to
use the value iteration (or successive approximations) algorithm [1,2,4] to
approximate the optimal AC cost. Thus it would be of interest to verify if
one can obtain the optimality equation under C1, C2 or C3. Research in
this direction is in progress.

17
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Remark 6.1 After submitting this paper, we could prove that, under
Assumption 2.3, C1 implies C3, which combined with Theorem 4.1 (C3)
C1) yields that C1 and C3 are in fact equivalent . This has also been noted
(without proof) by Sennott [13] for MCPs with countable state space and
�nite control sets.
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