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Abstract

The purpose of this paper is twofold. First, a distributed param-

eter model for a dynamic elastic system consisting of a thin plate

to which a thin beam is rigidly and orthogonally attached to the
edge of the plate shall be developed, assuming that the centerline

of the beam is coplanar with the middle plane of the plate (in the

equilibrium state). Second, it is proved that the dynamical system
obtained is exactly controllable by means of controls applied along

an appropriate portion of the edge of the plate that excludes the

junction region between the plate and beam .
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1 Introduction

The purpose of this paper is twofold. First, we shall develop a distributed

parameter model for a dynamic elastic system consisting of a thin plate

to which a thin beam is rigidly and orthogonally attached to the edge of

the plate. In this model it is assumed that the centerline of the beam

is coplanar with the middle plane of the plate (in the equilibrium state).

Second, it will be proved that the dynamical system obtained is exactly

controllable by means of controls applied along an appropriate portion of

the edge of the plate that excludes the junction region between the plate

and beam.
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With regard to modelling of junctions between elastic bodies let us

mention in particular the Ciarlet-Dystunder approach that starts from the

equations of 3-d elasticity for a body that is \thin" in one or more of its

dimensions. Using either asymptotic expansions in the appropriate param-

eters or working directly from the variational equation for the 3-d body,

the junction conditions are obtained in the limit as the small parameters

go to zero; see the monographs of Ciarlet [1] and Le Dret [10] where this

method is systematically used to obtain junction conditions for a variety

of multi-body systems. When this approach is applied to bodies of di�er-

ent dimensions it is usually required that the lower dimensional body be

embedded in some manner into the higher dimensional one. Therefore, in

the context of a plate-beam con�guration in which the centerline of the

beam is coplanar with the middle plane of the plate, in the limit problem

the junction region appears as a slit in the middle surface of the plate (see

Gruais [3]). This geometry presents particular di�culties in the context

of exact controllability because of the poor regularity properties of solu-

tions of the uncontrolled problem in the neighborhood of the slit. This

lack of regularity does not allow for the application of multiplier methods

commonly used to derive the necessary observability estimates, since such

techniques can be justi�ed only if it is known a priori that the solutions

are essentially classical. In contrast, in the framework presented below the

junction region appears as a part of the boundary of the middle surface of

the plate. The junction conditions are obtained from the very natural re-

quirements that the interface between the (three dimensional) plate and the

(three dimensional) beam be 
at and that the displacements of the plate

match those of the beam along that interface, followed by linearizations of

the displacements of the plate about its mid-plane and the displacements

of the beam about its centerline.

Modelling of an elastic plate-beam junction is discussed in the next

section. The conditions arising from the requirement of continuity of dis-

placements at the interface will be referred to as geometric junction con-

ditions. These restrictions on the motion at the junction of course have

speci�c implications for the balance laws of linear and angular momentum

at the junction. The latter may, and will, be deduced from Hamilton's

Principle, once the particular structures of the kinetic and strain energies

are speci�ed, and they turn out to be nonlocal.

In Sections 3 through 5 we study exact controllability of our plate-

beam model. It is proved that such a system is exactly controllable (in

an appropriate function space) by means of controls acting in either the

geometric or mechanical boundary conditions along a certain portion of

the edge of the plate that excludes the junction region. Let us remark

that the methods employed below could also be used without essential

new di�culties to treat more general con�gurations such as a plate with
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several beams attached to the edge of the plate, or even a plate to which

is attached a network of rigidly joined beams (cf. [6]). We note also that

exact controllability of a plate-beam distributed parameter model, but one

of a completely di�erent character than that considered below, has been

established by Puel and Zuazua [15]. The reader is also referred to the

paper [14], which motivated the present study, where exact controllability

of a model of an elastic string connected to an elastic membrane (or, more

generally, to an n-dimensional body modelled as an n-dimensional wave

equation) is proved.

2 Modelling of a Plate-beam Junction

2.1 Geometric junction conditions

We begin by considering a thin plate of uniform thickness h. Points within

the plate will be denoted by coordinates (x; y; z) with respect to the natural

i; j;k basis for IR3. It is assumed that the plate has a middle surface

midway between its faces which, when the plate is in equilibrium, occupies

a bounded, connected region 
 of the plane z = 0. Let �(x) denote the

unit exterior normal vector to � := @
 at x and � (x) be the positively

oriented unit tangent vector at x, whenever these vectors exist.

Let e1; e2; e3 be a �xed orthonormal basis in IR3, x0 2 IR3, and let

! be a bounded, simply connected closed set in IR2 such that 0 2 int(!)

and which is doubly symmetric with respect to the origin, i.e., (�; �) 2 !

implies that (��; �) 2 ! and (�;��) 2 !. The undeformed beam, in its

reference con�guration, occupies the region

fx0 + �e1 + �e2 + �e3j 0 � � � `; (�; �) 2 !g:

The centerline of the beam is x0 + �e1, 0 � � � `, and the cross-section at

x0 + �e1 is de�ned to be

A = f�e2 + �e3j (�; �) 2 !g:

We impose the following assumptions:

(A1) x0 2 � and � (x0) exists.

(A2) e1 = �(x0), e2 = � (x0), e3 = k.

(A3)

! = f(�; �)j j�j <
�

2
; j�j <

h

2
g:

(A4) Set

J� = fx0 + �� (x0)j j�j <
�

2
g:

Then J� � �.
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The region J�� (�h=2; h=2) is the junction region. The above assump-

tions mean that the junction region is 
at, that the beam is prismatic and

its centerline is orthogonal to � at x0 and lies in the xy-plane. In terms of

the ei basis, the junction region is given by

x0 + �e2 + �e3; j�j <
�

2
; j�j <

h

2

and we may think of the beam as being \glued" to the plate along the

junction region. The assumption (A3) that the cross section ! of the beam

be rectangular is unessential. At the cost of a slightly more complicated

formalism, we may just as easily consider beams with doubly symmetric

(with respect to the origin in IR2) cross sections.

We denote by R(x; y; z) the position vector to the deformed position of

the material particle in the plate which is located at (x; y; z) when the plate

is in equilibrium, and by W(x; y) the displacement vector of the material

particle which occupies position (x; y; 0) in the mid-plane in equilibrium.

Similarly, r(�; �; �) will mean the position vector to the deformed position

of the particle originally at position x0 + �e1 + �e2 + �e3 of the beam in

equilibrium, and w(�) the displacement vector of the point x0+ �e1 of the

centerline. We now proceed along the lines of [7]. Let i; j;k denote the

natural basis for IR3. Assume that we may write

R(x; y; z) = R(x; y; 0) + zRz(x; y; 0) +O(z2)

= xi+ yj +W(x; y) + zRz(x; y; 0) + O(z2);

r(�; �; �) = r(�; 0; 0)+ �r�(�; 0; 0) + �r�(�; 0; 0) + O(�2 + �2)

= x0 + �e1 +w(�) + �r�(�; 0; 0) + �r�(�; 0; 0) + O(�2 + �2);

whereRz(x; y; 0); r�(�; 0; 0); r�(�; 0; 0) satisfy the following assumptions (the

subscripts denote di�erentiation).

(A5) There is an orthogonal matrixO1(�) with detO1(�) = 1 such that

r�(�; 0; 0) = O1(�)e2; r�(�; 0; 0) = O1(�)e3:

(A6) There is an orthogonal matrixO2(x; y) with detO2(x; y) = 1 such

that

Rz(x; y; 0) = O2(x; y)k:

Assumption (A5) means that cross-sections of the beam move rigidly, while

(A6) is the hypothesis of Reissner-Mindlin plate theory that �laments of the

plate orthogonal to the mid-plane in the equilibrium con�guration su�er

no strain under deformation.
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Since every orthogonal matrix of determinant unity is the exponential

of a skew-symmetric matrix, we have

O1 = expS1 � I + S1; O2 = expS2 � I + S2;

S1 =

0
@ 0 � 3  2
 3 0 � 1
� 2  1 0

1
A ; S2 =

0
@ 0 ��3 �2
�3 0 ��1
��2 �1 0

1
A :

It follows that

R(x; y; z) � (xi+ yj + zk) +W(x; y) + z(�2(x; y)i� �1(x; y)j))

= (xi+ yj + zk) +W(x; y) + z�(x; y);

where � = �2i� �1j, and, similarly,

r(�; �; �) � x0+ �e1+�e2+ �e3+w(�)+�( 1e3� 3e1)+ �( 2e1� 1e2):

Thus the respective displacement vectors of the points (x; y; z) and x0 +

�e1+�e2+ �e3 within the plate and beam, respectively, are approximately

given by

W(x; y) + z�(x; y)

and

w(�) + �( 1(�)e3 �  3(�)e1) + �( 2(�)e1 �  1(�)e2):

The \angles"  i; �i have the following interpretations:  1 is a torsional

rotation about the e1 axis,  2 and  3 are rotations about the e2 and e3
axes, respectively, corresponding to the bending of the beam in the e1e3
and e1e2 planes, respectively. Similarly, �1 and �2 are the rotation angles

about the i and j axes, respectively, associated with the bending of the

plate.

Remark 2.1 Assumption (A5), which requires that cross-sections of the

beammove rigidly, is not entirely consistent with the introduction of torsion

since the latter may introduce cross-sectional warping. The inclusion of

warping e�ects would result in the addition of a term �(�; �) 1(�)e1 to the

last expression for the approximate displacements of the beam, where the

function �(�; �) is the related to the Saint-Venant warping function of the

cross-section; see [5]. However, warping is considered negligible if the beam

is thin and the torsional rotation is small, which is the situation considered

below.

We now de�ne the geometric junction conditions. Consider a point

x0 + �� (x0) + zk within the junction region. We require that

W(x0 + �� ) + z�(x0 + �� )

= w(0) + �( 1(0)e3 �  3(0)e1) + z( 2(0)e1 �  1(0)e2);

j�j <
�

2
; jzj <

h

2
; (2.1)
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where � = � (x0), that is

W(x0 + �� ) = w(0) + �( 1(0)e3 �  3(0)e1);

�(x0 + �� ) =  2(0)e1 �  1(0)e2; j�j <
�
2 :

)
(2.2)

Conditions (2.2) are of rigid type. They are linearizations of the require-

ment that the displacements of the plate and beam match throughout the

junction region.

Write

w = ue1 + ve2 + we3; W = U i+ V j+Wk := U+Wk:

Then (2.2) may be written

� �U(x0 + �� ) = u(0)� � 3(0);

� �U(x0 + �� ) = v(0);

W (x0 + �� ) = w(0) + � 1(0);

�(x0 + �� ) =  (0); j�j <
�

2
;

9>>>>>>=
>>>>>>;

(2.3)

where  =  2e1 �  1e2 =  2�(x0) �  1� (x0). Note that in (2.3) the

quantities W;�; w;  1;  2 related to transverse motion are not coupled to

the quantities U; u; v;  3 related to in-plane motion.

2.2 Dynamic conditions

The geometric junction conditions related to transverse motion are

W (x0 + �� ) = w(0) + � 1(0);

�(x0 + �� ) =  (0); j�j <
�

2
:

9=
; (2.4)

The dynamic conditions will be obtained from Hamilton's Principle:

�

Z T

0

[K(t)� S(t) +W(t)] dt = 0; (2.5)

where K and S represent the kinetic and strain energies, respectively, of the

plate-beam system, W is the work done on the system by external forces

and � denotes the �rst variation with respect to the class of admissible

displacements. The latter must obey, in particular, the geometric junction

conditions (2.4). They must, in addition, satisfy any other geometric re-

strictions that are imposed on the motion. Since W;�; w;  1;  2 are not

coupled to the quantities U; u; v;  3 in the geometric junction conditions,
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they will likewise not be coupled to them in the dynamic conditions, at

least under the further geometric restrictions which we may impose be-

low. Therefore, in considering (2.5) we need only take into account those

portions of K, P and W that are connected to the transverse motion.

We assume that 
 has a Lipschitz continuous boundary � = �N[�D[J,

where �N , �D and J are relatively open in � and mutually disjoint. The

part �D corresponds to Dirichlet (geometric) boundary conditions

W = 0; � = 0 on �D; (2.6)

while �N corresponds to Neumann (mechanical) boundary conditions. We

further assume that J is connected and that J� � J . The part J�J� may

be either free, or it will be geometrically restricted in the following manner.

Since @J� = x0 � (�=2)� (x0), the set J � J� may be uniquely partitioned

into two disjoint, connected sets J�0 such that

x0 �
�

2
� (x0) 2 J

�

0 :

Let �i; i = 0; 1; be C10 (J) functions such that �i = 1 on J�. It is required

that

W = �0[w(0)�
�

2
 1(0)];

� = �1 (0); on J�0 :

9=
; (2.7)

These conditions require that the displacement W and rotations � along

J change smoothly from their values on J� to zero, and give prescribed

pro�les to these quantities along J�0 . We refer to Puel-Zuazua [14], where

a similar boundary condition is introduced in a string-membrane problem

in a neighborhood of the point where the string meets the membrane. Note

that (2.4) and (2.7) may be combined to read

W (x) = �0(x)[w(0) + �(x) 1(0)];

�(x) = �1(x) (0); x 2 J;

)
(2.8)

where the continuous, piecewise linear function � is given by

�(x) =

(
� if x = x0 + �� (x0) 2 J�;

��=2 if x 2 J�0 :

Thus the geometric conditions which the admissible displacements must

obey are (2.4) and (2.6) when J � J� is free, or (2.6) and (2.8) otherwise.

We write

K = KP +KB; S = SP + SB ; W =WP +WB ;
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where KP and KB are the kinetic energies of the plate and beam, respec-

tively, and similarly for SP ;SB and WP ;WB. We assume that the plate

and beam are homogeneous and elastically isotropic. Implicit in our as-

sumptions and in the approximations of the last section is that the energy

of the plate is that associated with Reissner-Mindlin plate theory, while

KB and SB are given by (see [5] or [7, Appendix])

KB =
1

2

Z `

0

(�2j _wj
2 + I�j _ 2j

2 + Ij _ 1j
2) d�; (2.9)

where _= @=@t, �2 is the mass of the beam per unit of reference length,

I� = �2
�2

12
; I� = �2

�2

12
; I = I� + I� ;

and

SB =
1

2

Z `

0

(GM j 01j
2 + E2M� j 

0

2j
2 +K2jw

0 +  2j
2)) d�; (2.10)

where E2 is Young's modulus of the beam, K2 is its shear modulus in

bending in the e1e3 plane, G is its modulus of torsional rigidity and

M� = A
�2

12
; M� = A

�2

12
; M =M� +M� ;

A = �� denoting the cross-sectional area.

The kinetic energy of a Reissner-Mindlin plate is (see, e.g., [8, Chapter

1])

KP =
1

2

Z



�
�1j _W j2 + Ihj _�j

2
�
d
; (2.11)

where and �1 is the mass density of the plate per unit of reference area and

Ih = �1h
2=12. To express the strain energy SP we introduce (following

Tucsnak [17]) the following notation. Let A denote the set of two by two

symmetric matrices, and C : A 7! A be the second order tensor de�ned by

C["] =
E1h

3

12(1� �21)
[�1("11 + "22)I + (1� �1)"]; 8" 2 A;

where I is the identity in A, E1 is Young's modulus of the plate and �1 2

(0; 1) is Poisson's ratio. For any function u : IR2 7! IR2 with @ui=@xj 2

L2(
), set

"(u) =
1

2
(ru+ (ru)�) =

1

2
(@ui=@xj + @uj=@xi):
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Then SP may be expressed as

SP =
1

2

Z



[(C["(�)]; "(�)) +K1jrW + �j2] d
;

where for "; � 2 A, (�; ") =
P
�ij"ij and K2 is the shear modulus of the

plate.

To obtain the work done on the plate-beam system the applied forces

have to be speci�ed. Let F̂P (x; y; z) be a distributed body force act-

ing on the plate and f̂P (x; y; z) be an edge force distributed along �N �

(�h=2; h=2). The work done on the plate by these forces is approximately

Z h=2

�h=2

Z



F̂P � (W + z�) d
dz +

Z h=2

�h=2

Z
�N

f̂P � (W + z�) d�dz:

Consider the resultant forces

FP (x; y) =

Z h=2

�h=2

F̂P dz; fP (x; y) =

Z h=2

�h=2

f̂P dz;

and moments

MP (x; y) =

Z h=2

�h=2

zF̂P dz; mP (x; y) =

Z h=2

�h=2

zf̂P dz:

The portion of the work done on the plate related to its transverse motion

may then be written (see, e.g., [8])

WP =

Z



(F1W +M1 ��) d
+

Z
�N

(f1W +m1 ��) d�: (2.12)

where

F1(x; y) = k �FP (x; y); f1(x; y) = k � fP (x; y);

M1 = (i �MP )i+ (j �MP )j; m1 = (i �mP )i+ (j �mP )j:

Similarly, let F̂B(�; �; �) be a distributed body force acting on the beam

and f̂B(�; �) be a force distributed over the cross-section at � = `. The work

done on the beam by these forces is approximately

Z `

0

Z
!

F̂B � (w(�) + �( 1(�)e3 �  3(�)e1) + �( 2(�)e1 �  1(�)e2)) d!d`

+

Z
!

f̂B � (w(`) + �( 1(`)e3 �  3(`)e1) + �( 2(`)e1 �  1(`)e2)) d!:

9
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Consider the resultant forces

FB(�) =

Z
!

F̂B d!; fB =

Z
!

f̂B d!;

and set

M21(�) =

Z
!

(�e2 � F̂B � �e3 � F̂B) d!; M22(�) =

Z
!

�e1 � F̂B d!;

m21 =

Z
!

(�e2 � f̂B � �e3 � f̂B) d!; m22 =

Z
!

�e1 � f̂B d!:

The quantity M21 is a twisting moment around e1, M22 is a bending mo-

ment about e2 and similarly for m21 and m22. Then the portion of the

work done on the beam related its transverse motion is

WB =

Z `

0

[F2w +M2 � ( 1e1 +  2e2)] d�

+ f2w(`) +m2 � ( 1e1 +  2e2)(`); (2.13)

where

F2 = k �FB; f2 = k � fB ;

M2 =M21e1 +M22e2; m2 = m21e1 +m22e2:

We are now in the position to calculate (2.5), where the variation is

taken with respect to displacements satisfying (2.4) and (2.6) if J � J�
is free, or (2.6) and (2.8) otherwise. We discuss only the latter situation,

since this is the one which will be considered in subsequent sections. In the

calculation we utilize the identityZ



(C["(u)]; "(v)) d
 = �

Z



v � (divC["(u)]) d


+

Z
�

v � (C["(u)]�) d�: (2.14)

The following equations of motion and boundary conditions are obtained.

Equations of motion of the plate:

�1 �W �K1 div(rW + �) = F1;

Ih ��� divC["(�)] +K1(rW +�) =M1:

)
(2.15)

Boundary conditions along �N :

K1(rW + �) � � = f1;

C["(�)]� =m1:

)
(2.16)
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Equations of motion of the beam:

�2 �w �K2(w
0 +  2)

0 = F2;

I� � 2 �E2M� 
00
2 +K2(w

0 +  2) =M22;

I � 1 �GM 001 =M21:

9>>=
>>; (2.17)

Boundary conditions at � = `:

K2(w
0 +  2)(`) = f2;

E2M� 
0
2(`) = m22;

GM 01(`) = m21:

9>>=
>>; (2.18)

In addition, we obtain the variational junction condition

0 =

Z
J

h
�̂ � (C["(�)]�) +K1Ŵ (rW + �) � �

i
d�

� GM 01(0) ̂1(0)�E2M� 
0

2(0) ̂2(0)�K2(w
0 +  2)(0)ŵ(0) (2.19)

for all test functions Ŵ ; �̂; ŵ;  ̂ which satisfy (2.8), where  ̂ =  ̂2e1� ̂1e2.

We may deduce from (2.19) the following junction conditions.

Dynamic junction conditions:

GM 01(0) =

Z
J

fK1��0� � (rW +�)

��1e2 � (C["(�)]�)gd�;

E2M� 
0

2(0) =

Z
J

�1e1 � (C["(�)]�) d�;

K2(w
0 +  2)(0) = K1

Z
J

�0� � (rW + �) d� on J ;

9>>>>>>>>>>=
>>>>>>>>>>;

(2.20)

in which it should be recalled that e1 = �(x0), e2 = � (x0).

If desired, one may in the same manner obtain the equations of mo-

tion and boundary and junction conditions for the components U; u; v;  3
related to in-plane motion of the plate-beam system.

3 Controllability

In this section exact controllability of the plate-beam system will be stud-

ied. Only controllability of the subsystem forW;�; w; will be considered;

11



JOHN E. LAGNESE

however, a similar analysis could be carried out on the subsystem forU; u; v

and  3. Controls are to be applied through the boundary conditions of the

plate only. Two cases will be considered: (i) controls are applied through

Dirichlet boundary conditions and there are no mechanical boundary con-

ditions, or (ii) controls are applied through the mechanical boundary con-

ditions on �N . The latter situation is more interesting than the former

from a physical point of view, but is technically more complex.

Without loss of generality, we may assume that all distributed forces

and moments vanish, as do those at the free end of the beam. (Once

the reachable set of the homogeneous problem is identi�ed, that of the

inhomogeneous problem is also known.) The system to be considered may

then be written

�1 �W �K1 div(rW +�) = 0;

Ih ��� divC["(�)] +K1(rW +�) = 0;

)
(3.1)

�2 �w �K2(w
0 +  2)

0 = 0;

I� � 2 � E2M� 
00
2 +K2(w

0 +  2) = 0;

I � 1 � GM 001 = 0;

9>>=
>>; (3.2)

K2(w
0 +  2)(`) = E2M� 

0

2(`) = GM 01(`) = 0; (3.3)

W = 0; � = 0 on �0 := �D; (3.4)

W = �0[w(0) + � 1(0)]; � = �1 (0) on J ; (3.5)

GM 01(0) =

Z
J

fK1��0� � (rW +�)

��1e2 � (C["(�)]�)gd�;

E2M� 
0

2(0) =

Z
J

�1e1 � (C["(�)]�) d�;

K2(w
0 +  2)(0) = K1

Z
J

�0� � (rW + �) d� on J ;

9>>>>>>>>>>=
>>>>>>>>>>;

(3.6)

When controls are applied in the Dirichlet boundary conditions, the re-

maining boundary conditions are

W = f; � =m on �1 := �� �0 � J; (3.7)

12
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where f andm = m1i+m2j are the controls. When the controls are in the

mechanical boundary conditions the remaining boundary conditions are

K1(rW +�) � � = f; C(["(�)]� =m on �1 := �N : (3.8)

To complete the description of the system, initial conditions are speci�ed:

W = W 0; _W =W 1; � = �0; _� = �1;

w = w0; _w = w1;  i =  0i ;
_ i =  1i at t = 0, i = 1; 2:

)
(3.9)

3.1 Description of results

The region 
 is open, bounded and connected with a Lipschitz boundary

� = �0 [ �1 [ J consisting of a �nite number of smooth arcs. The sets

�0; �1 and J are relatively open in � and mutually disjoint, J is connected

and �1 \ J = ;.

For s � 0 we set

Hs(
) := Hs(
; [i])
M

Hs(
; [j])
M

Hs(
; [k]);

Hs(0; `) = Hs(0; `; [e1])
M

Hs(0; `; [e2])
M

Hs(0; `; [e3]);

where [e] denotes the linear span of the vector e. Let

� = �2i� �1j+Wk := �+Wk 2 H0(
)

and

	 =  2e1 �  1e2 +we3 :=  +we3 2 H
0(0; `):

We de�ne the norms

k�kH0(
) =

�Z



�
�1jW j2 + Ihj�j

2
�
d


�1=2
;

k	kH0(0;`) =

"Z `

0

(�2jwj
2 + I�j 2j

2 + Ij 1j
2) d�

#1=2
;

and we set

H = H0(
) �H0(0; `)

with its natural product topology. For s > 0 the norms on Hs(
) and

Hs(0; `) are those induced by the corresponding Hs spaces with their stan-

dard norms.

Let 
 be a nonempty, relatively open subset of �� J , and consider the

set

H1

 (
) = f� 2 H1(
)j� = 0 on 
g:

13
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For � 2 H1

(
) we set

k�kH1

(
)

=

�Z



�
(C["(�)]; "(�)) +K1jrW +�j2

�
d


�1=2

:

According to Korn's Lemma, k�kH1

(
)

de�nes a norm on H1

(
) equivalent

to that induced by H1(
). We further introduce

V
 = f(�;	)j� 2 H1

(
); 	 2 H1(0; `) and � = �	(0) on Jg;

where � is a 3 by 3 matrix which with respect to the e1; e2; e3 basis is given

by

� =

0
@�1 0 0

0 �1 0

0 ��0� �0

1
A :

Note that the condition � = �	(0) just expresses the geometric condition

(3.5). We de�ne a norm on V
 by setting

k(�;	)kV
 =
n
k�k2

H1

 (
)

+

(Z `

0

(GM j 01j
2 +E2M� j 

0

2j
2 +K2jw

0 +  2j
2) d�

)1=2

:

The Hilbert space V
 is dense in H with compact injection, so that if H is

identi�ed with its dual space we have the compact embeddings V
 � H �

V 0
 , where V
0

 denotes the dual of V
 .

We denote by (�0;	0), (�1;	1) the initial data (3.9), i.e.,

�0 = �0 +W 0k; �1 = �1 +W 1k;

	0 =  0 + w0e3; 	1 =  1 + w1e3:

We also set

f = m1i+m2j+ fk

and

U = L2(�1; [i])
M

L2(�1; [j])
M

L2(�1; [k]):

The next two theorems concern the well-posedness of the control problem.

Theorem 3.1 (Well-posedness of Dirichlet control problem.) Let 
 = ��

J and suppose that

(�0;	0) 2 H; (�1;	1) 2 V 0
 ; f 2 L2(0; T ;U ):

Then (3.1){(3.7), (3.9) has a unique solution

(�;	) 2 C([0; T ];H)\C1([0; T ];V 0
):

14
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Theorem 3.2 (Well-posedness of Neumann control problem.) Assume

that �0 6= ; and that

(�0;	0) 2 H; (�1;	1) 2 V 0�0 ; f 2 L2(0; T ;U ):

Then (3.1){(3.6), (3.8), (3.9) has a unique solution

(�;	) 2 C([0; T ];H)\C1([0; T ];V 0�0):

Remark 3.1 The assumption in Theorem 3.2 that �0 6= ; is unessen-

tial, but if �0 = ; we need to replace the norm on V by (k(�;	)k2V +R

 j�j

2d
)1=2.

Suppose that �0 = �1 = 0 and 	0 =	1 = 0. For T > 0 set

RT = f((�(T );	(T )); ( _�(T ); _	(T )))j f 2 L2(0; T ;U )g:

In order to say something useful about RT we shall need to impose geomet-

ric restrictions on �. We therefore assume that there is a point x̂0 2 IR2

such that

(x � x̂0) � � � 0 for x 2 �0; (x � x̂0) � � < 0 for x 2 J: (3.10)

Set

�+1 = fx 2 �1j (x� x̂0) � � > 0g; ��1 = fx 2 �1j (x� x̂0) � � � 0g:

When the controls act in the Dirichlet boundary conditions, one may as-

sume without loss of generality that �+1 = �1 or, to say the same thing,

that the controls f are supported in �+1 , which amounts to rede�ning �0
to be �0 [ ��1 . However, when the controls act in the Neumann boundary

conditions the explicit assumption

(x � x̂0) � � � 0 on �1 (3.11)

is needed.

Theorem 3.3 (Dirichlet boundary control.) Assume that (3.10) holds and

let 
 = � � J . Then there is a time T0 > 0 such that RT = H � V 0
 for

T > T0.

Theorem 3.4 (Neumann boundary control.) Assume that (3.10) and (3.11)

hold, that �0 6= ; and that �0 and �1 either do not intersect or else in-

tersect in a strictly convex corner. Then there is a time T0 > 0 such that

V�0 �H � RT for T > T0.

15
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Remark 3.2 One may eliminate the geometric condition (3.11) in Theo-

rem 3.4 but at the expense of enlarging the control space and working in a

weaker state space. For example, if one admits controls in the space

(H1(0; T ;U+))
0
M

L2(0; T ;H�1(��1 )); (3.12)

then one may prove that H � V 0�0 � RT for T large enough, without

assumption (3.11). In (3.12),

U+ = L2(�+1 ; [i])
M

L2(�+1 ; [j])
M

L2(�+1 ; [k]);

H�1(��1 ) = H�1(��1 ; [i])
M

H�1(��1 ; [j])
M

H�1(��1 ; [k]):

The proofs of Theorems 3.1{3.4 are given in Section 5. In the next

subsection the observability estimates needed to prove Theorems 3.3 and

3.4 are presented.

3.2 Observability estimates

We consider the problem

�1 �Z �K1 div(rZ + ') = 0;

Ih �' � divC["(')] +K1(rZ + ') = 0;

)
(3.13)

�2�z �K2(z
0 + �2)

0 = 0;

I���2 �E2M��
00
2 +K2(z

0 + �2) = 0;

I ��1 � GM�001 = 0;

9>>=
>>; (3.14)

K2(z
0 + �2)(`) = E2M��

0

2(`) = GM�01(`) = 0; (3.15)

Z = 0; ' = 0 on �0; (3.16)

Z = �0[z(0) + ��1(0)]; ' = �1�(0) on J; (3.17)

where � = �2e1 � �1e2;

GM�01(0) =

Z
J

fK1��0� � (rZ + ')

��1e2 � (C["(')]�)gd�;

E2M��
0

2(0) =

Z
J

�1e1 � (C["(')]�) d�;

K2(z
0 + �2)(0) = K1

Z
J

�0� � (rZ +') d� on J ;

9>>>>>>>>>>=
>>>>>>>>>>;

(3.18)
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and either

Z = 0; ' = 0 on �1 := � � �0 � J; (3.19)

or

K1(rZ + ') � � = 0; C(["(')]� = 0 on �1: (3.20)

The initial conditions are

Z = Z0; _Z = Z1; ' = '0; _' = '1;

z = z0; _z = z1; � = �0; _� = �1 at t = 0:
c

)
(3.21)

As in the last section, we de�ne

� = '+ Zk; � = � + ze3;

and �0;�1;�0;�1 with obvious connotations.

The Dirichlet initial-boundary value problem (3.13){(3.19), (3.21) and

the Neumann problem (3.13){(3.18), (3.20) (3.21) have simple variational

formulations. Let

�̂ = '̂+ Ẑk; �̂ = �̂ + ẑe3;

and assume that

(�̂; �̂) 2 V
 where 
 =

(
� � J for Dirichlet BC on �1;

�0 for Neumann BC on �1:

We multiply the two equations in (3.13) by Ẑ; '̂, respectively, add the

products and integrate over 
. Similarly, multiply the three equations in

(3.14) by ẑ; �̂2 and �̂1, respectively, add the products and integrate over

(0; `). By adding the integrals over 
 and over (0; `) and then carrying

out appropriate integrations by parts, utilizing (2.14), we obtain (this is

implicit in the manner in which we derived the system in the �rst place)

(( ��; ��); (�̂; �̂))H + ((�;�); (�̂; �̂))V
 = 0; 8(�̂; �̂) 2 V
 ;

or

( ��; ��) + A(�;�) = 0 in V 0
 ; (3.22)

where A is the Riesz isomorphism of V
 onto V 0
 . We may now apply

standard variational or semigroup theory to conclude that the initial value

problem for (3.22) has a unique solution with the following regularity:

((�0;�0); (�1;�1)) 2W =) ((�;�); ( _�; _�)) 2 C([0;1);W );

17
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where W stands for any one of H � V 0
 , V
 �H or DA � V
 and where

DA = f(�̂; �̂) 2 V
 jA(�̂; �̂) 2 Hg; k(�̂; �̂)kDA
= kA(�̂; �̂)kH :

Moreover, the solution is given by a unitary group in all cases:

k((�(t);�(t)); ( _�(t); _�(t)))kW = k((�0;�0); (�1;�1))kW ; t > 0:

Remark 3.3 It may be veri�ed through integrations by parts that

DA � f(�;�)j (�;�) 2 (H2(
)�H2(0; `)) \ V
 ;

(�;�) satisfy the dynamic junction and boundary conditionsg:

The injection of H2(
) �H2(0; `) into DA is continuous and

(A(�;�); (�̂; �̂))H = �

Z



f[divC["(')]�K1(rZ + ')] � '̂

+K1 div(rZ +')Ẑg d
�

Z `

0

fGM�001 �̂1

� [E2M��
00

2 �K2(z
0 + �2)]�̂2 +K2(z

0 + �2)
0ẑg d
:

On the other hand, it follows from results of Nicaise [13] that under the

stated assumptions on the region 
, an element (�;�) 2 DA has the

following spatial regularity:

� 2 Hs(
); 8s < s0; s � 2; for some s0 > 3=2; (3.23)

in the case of Dirichlet conditions on �1, and also in the case of Neumann

conditions on �1 provided �0 and �1 either have an empty intersection or

else intersect in a strictly convex corner. If �0 and �1 meet in a nonconvex

corner, (3.23) holds for all s < s0, s < 3=2, for some s0 > 5=4. Since

dim(
) = 2, it follows from a Sobolev imbedding theorem that

� 2 C�(
; [i])
M

C�(
; [j])
M

C�(
; [k])

all � 2 (0; s � 1] [2, Theorem 1.4.5.2]. With regard to �, we have � 2

H2(0; `). The injection of DA into Hs(
)�H2(0; `) is continuous.

The main results of this section are the following a priori estimates.

Proposition 3.1 Let the hypotheses of Theorem 3.3 hold and suppose that

(�0;�0) 2 DA; (�1;�1) 2 V
 :

18
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There is a constant T0 such that if T > T0, the solution of (3.13){(3.19),

(3.21) satis�es

k((�0;�0); (�1;�1))k2V
�H

� C(T )

Z
�1

(r � �)

"
jC["(')]�j2 +K1

����@Z@�
����
2
#
d�;

where r = x � x̂0 and �1 = �1 � (0; T ).

Proposition 3.2 Let the hypotheses of Theorem 3.4 be satis�ed and sup-

pose that

(�0;�0) 2 DA; (�1;�1) 2 V�0 :

There is a constant T0 such that if T > T0, the solution of (3.13){(3.18),

(3.20), (3.21) satis�es

k((�0;�0); (�1;�1))k2V�0�H
� C(T )

Z
�1

(r � �)j _�j2 d�:

The following is an immediate consequence of Proposition 3.2, using

the idea of \weakening the norm" (see, Lions [12]).

Corollary 3.1 Let the hypotheses of Theorem 3.4 be satis�ed and suppose

that

(�0;�0) 2 V�0 ; (�1;�1) 2 H:

There is a constant T0 such that if T > T0, the solution of (3.13){(3.18),

(3.20), (3.21) satis�es

k((�0;�0); (�1;�1))k2H�V 0
�0

� C(T )

Z
�1

(r � �)j�j2 d�:

4 Proofs of Propositions 3.1 and 3.2

Our starting point for the proofs of both propositions is an identity from

[4, Lemma 3.3.1] that may be stated as follows.

Lemma 4.1 Let � = '+Zk and assume that � satis�es (3.23) for some

s > 3=2. ThenZ



f(r'r) � [divC["(')]�K1(rZ + ')]

+K1(r � rZ) div(rZ + ')g d
 = K1

Z



(rZ + ') �' d


�
1

2

Z
�

(r � �)
�
(C["(')]; "(')) +K1jrZ +'j2

	
d�

+

Z
�

f(r'r) � (C["(')]�) +K1(r � rZ)(rZ +') � �g d�: (4.1)
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Remark 4.1 If s � 2, the integral on the left may be interpreted (on a

term-by-term basis) in the duality between H2�s
0 (
) and Hs�2(
) since,

for s > 3=2, Hs�1(
) � H2�s(
) = H2�s
0 (
). All of the other integrals in

(4.1) are well-de�ned. The constant K1 in (4.1) is arbitrary, but we shall

shortly use this identity with � a solution of (3.13).

Later on we shall also need the following identity which, whenK1 = 0, is

a generalization of Lemma 4.1 from the radial vector �eld r to an arbitrary

vector �eld h.

Lemma 4.2 Let h be any W 1;1 vector �eld in 
 and ' = '1i+'2j, where

'i 2 H
s(
) for some s > 3=2. Then

Z



(r'h) � divC["(')] d
 = �
1

2

Z
�

(h � �)(C["(')]; "(')) d�

+

Z
�

(r'h) �C["(')]� d��

Z



Q(r') d
; (4.2)

where Q(r') is a quadratic form in 'i;j := @'i=@xj given by

Q(r') =
D1

2
f[('21;1� '22;2) +

1

2
(1� �1)('

2
2;1 � '21;2)](h1;1 � h2;2)

+ h1;2['1;1((1 + �1)'2;1 + (1� �1)'1;2) + 2'2;2'2;1]

+ h2;1['2;2((1 + �1)'1;2 + (1� �1)'2;1) + 2'1;1'1;2]g;

where D1 = E1h
3=12(1� �21).

Proof: From Green's formula (2.14) we have

Z



(r'h) � divC["(') d
 = �

Z
�

(h � �)(C["(')]; "(r'h)) d�

+

Z



(r'h) �C["(')]� d�;

so to prove (4.2) we need to calculate (C["(')]; "(r'h)). We have

(C["(')]; "(r'h)) = D1f'1;1(r'1 � h);1 + '2;2(r'2 � h);2

+ �1['1;1(r'2 � h);1 + '2;2(r'1 � h);2]

+
1

2
(1� �1)('1;2 + '2;1)[(r'1 � h);2 + (r'2 �h);1]g:
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A lengthy, but straightforward, calculation shows that the right side of the

last equality may be written

D1

2
divfh[('21;1+'

2
2;2)+2�1'1;1'2;2+

1

2
(1��1)('1;2+'2;1)

2]g+Q(r')

=
D1

2
divfh[("211 + "222 + 2�1"11"22 + 2(1� �)"212]g+ Q(r')

=
1

2
divfh(C["(')]; "('))g +Q(r');

from which Lemma 4.2 follows.

We need to rewrite the integrals over � in (4.1) in forms more suitable

for proving Propositions 3.1 and 3.2. We have on �

(r'r) � (C["(')]�)

= (r � �)
@'

@�
� (C["(')]�) + (r � � )

@'

@�
� (C["(')]�) (4.3)

and

@'

@xj
= �j

@'

@�
+ �j

@'

@�
; (4.4)

where � = (�1; �2), � = (�1; �2) = (��2; �1). Write C["(')]� in terms of

normal and tangential components:

C["(')]� = C�(')� + C� (')� :

It may be veri�ed from (4.4), after some calculation, that

C�(') = D1

�
� �

@'

@�
+ �1� �

@'

@�

�
; (4.5)

C� (') =
(1� �1)D1

2

�
� �

@'

@�
+ � �

@'

@�

�
; (4.6)

where D1 = E1h
3=12(1��21) is the 
exural rigidity of the plate. Therefore

@'

@�
=

�
� �

@'

@�

�
� +

�
� �

@'

@�

�
�

=
1

D1

�
C�(')� +

2

1� �1
C� (')�

�
� �1� �

@'

@�
� � � �

@'

@�
� :

Insertion of this expression into (4.3) yields

(r'r) � (C["(')]�) = (r � �)

�
1

D1

�
jC�(')j

2 +
2

1� �1
jC� (')j

2

�

�

�
�1� �

@'

@�
� + � �

@'

@�
�

�
� (C["(')]�)

�
+ (r � � )

@'

@�
� (C["(')]�):
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Another rather lengthy calculation show that on �

(C["(')]; "(')) =
1

D1

�
jC�(')j

2 +
2

1� �1
jC� (')j

2

�

+D1(1� �21)

����� � @'@�
����
2

: (4.7)

In addition,

(r � rZ)(rZ +') � � = (r � �)[j(rZ + ') � �j2 � � �'(rZ +') � �]

+ (r � � )
@Z

@�
(rZ + ') � �;

jrZ + 'j2 = j(rZ +') � �j2 + j(rZ + ') � � j2:

Therefore

�
1

2

Z
�

(r � �)
�
(C["(')]; "(')) +K1jrZ + 'j2

	
d�

+

Z
�

f(r'r) � (C["(')]�) +K1(r � rZ)(rZ + ') � �g d�

=
1

2

Z
�

(r � �)

�
1

D1

�
jC�(')j

2 +
2

1� �1
jC� (')j

2

�

+ K1

����@Z@� +' � �

����
2
)
d�

�

Z
�

(r � �)

(
D1(1� �21)

2

����� � @'@�
����
2

+
K1

2

����@Z@� + ' � �

����
2

+ K1(' � �)(rZ + ') � �

+

�
�1� �

@'

@�
� + � �

@'

@�
�

�
� (C["(')]�)

�
d�

+

Z
�

(r � � )

�
@'

@�
� (C["(')]�) +K1

@Z

@�
(rZ +') � �

�
d�: (4.8)

This last expression will eventually be used in the right side of (4.1)

Two other simple identities that will be needed areZ



' � [divC["(')]�K1(rZ +')] d�

= �

Z



[(C["(')]; "(')) +K1' � (rZ +')] d�

+

Z
�

' � (C["(')]�) d�; (4.9)
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andZ



Z div(rZ +') d
 = �

Z



rZ � (rZ + ') d


+

Z
�

Z(rZ +') � � d�: (4.10)

Now suppose that � is a solution of (3.13) with regularity

� 2 C([0; T ];Hs(
)) \C1([0; T ];Hs�1(
)); s > 3=2: (4.11)

We integrate the left side of (4.1) with respect to t from 0 to T . ThusZ T

0

Z



(r'r) � fdivC["(')]�K1(rZ + ')

+ K1(r � rZ) div(rZ + ')g d
dt

=

Z T

0

Z



n
Ih(r'r) � �' + �1(r � rZ) �Z

o
d
dt

= �1(t)j
T
0 �

Z T

0

Z



n
Ih(r _'r) � _'+ �1(r � r _Z) _Z

o
d
dt;

where

�1(t) =

Z



[Ih(r'r) � _'+ �1(r � rZ) _Z] d
:

One has Z



(r _'r) � _' d
 =
1

2

Z



[div(rj _'j2) � 2j _'j2] d


=
1

2

Z
�

(r � �)j _'j2d��

Z



j _'j2d


and, similarly,Z



(r � r _Z) _Z d
 =
1

2

Z
�

(r � �)j _Zj2d��

Z



j _Zj2d
:

ThereforeZ
Q

(r'r) � fdivC["(')]�K1(rZ + ')

+ K1(r � rZ) div(rZ +')g dQ

= �1(t)j
T
0 +

Z
Q

h
�1j _Zj

2 + Ihj _'j
2
i
dQ

�
1

2

Z
�

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�; (4.12)
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where Q = 
 � (0; T ) and � = � � (0; T ). Substitute (4.12) into the left

side of (4.1) and (4.8) into the right side of (4.1) (after integrating (4.1) in

t). We obtain

�1(t)j
T
0 +

Z
Q

h
�1j _Zj

2 + Ihj _'j
2
i
dQ�K1

Z
Q

(rZ + ') �' dQ

=
1

2

Z
�

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�

+
1

2

Z
�

(r � �)

�
1

D1

�
jC�(')j

2 +
2

1� �1
jC� (')j

2

�

+ K1

����@Z@� +' � �

����
2
)
d�

�

Z
�

(r � �)

(
D1(1� �21)

2

����� � @'@�
����
2

+
K1

2

����@Z@� +' � �

����
2

+ K1(' � �)(rZ + ') � �

+

�
�1� �

@'

@�
� + � �

@'

@�
�

�
� (C["(')]�)

�
d�

+

Z
�

(r � � )

�
@'

@�
� (C["(')]�) +K1

@Z

@�
(rZ +') � �

�
d�: (4.13)

One also hasZ
Q

' � [div(C["(')])�K1(rZ + ')] dQ = �2(t)j
T
0 � Ih

Z
Q

j _'j2dQ;

K1

Z
Q

Z div(rZ + ') dQ = �3(t)j
T
0 � �1

Z
Q

j _Zj2dQ;

where

�2(t) = Ih

Z



' � _' d
; �3(t) = �1

Z



Z _Z d
:

Use of the last two relations in (4.9) and (4.10) yields

�2(t)j
T
0 +

Z
Q

[(C["(')]; "('))� Ihj _'j
2] dQ

+K1

Z
Q

' � (rZ +') dQ =

Z
�

' � (C["(')]�) d�; (4.14)

and

�3(t)j
T
0 � �1

Z
Q

j _Zj2dQ+K1

Z
Q

rZ � (rZ +') dQ

= K1

Z
�

Z(rZ +') � � d�; (4.15)
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respectively.

Let 0 < � < 1. Multiply (4.14) and (4.15) by 1�� and by �, respectively,

and then add the product to (4.13). We obtain the following expression,

where � = �1 + (1� �)�2 + ��3:

�(t)jT0 +

Z
Q

f(1� �)�1j _Zj
2 + �Ihj _'j

2 + (1� �)(C["(')]; "('))

+ �K1(jrZj
2 � j'j2)gdQ

=
1

2

Z
�

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�

+
1

2

Z
�

(r � �)

�
1

D1

�
jC�(')j

2 +
2

1� �1
jC� (')j

2

�

+K1

����@Z@� +' � �

����
2
)
d�

�

Z
�

(r � �)

(
D1(1� �21)

2

����� � @'@�
����
2

+
K1

2

����@Z@� + ' � �

����
2

+ K1(' � �)(rZ + ') � �

+

�
�1� �

@'

@�
� + � �

@'

@�
�

�
� (C["(')]�)

�
d�

+

Z
�

(r � � )

�
@'

@�
� (C["(')]�) +K1

@Z

@�
(rZ + ') � �

�
d�

+

Z
�

f�K1Z(rZ + ') � � + (1� �)' � (C["(')]�)g d�

:=I�0
+ I�1

+ I�J ;

where I�0
; I�1

and I�J denote integrals over �0 := �0 � (0; T ), �1 :=

�1 � (0; T ) and �J := J � (0; T ), respectively. If � satis�es (3.16), then

I�0
=

1

2

Z
�0

(r � �)

(
1

D1

�
jC�(')j

2 +
2

1� �1
jC� (')j

2

�
+K1

����@Z@�
����
2
)
d�:

When � satis�es the Dirichlet boundary conditions (3.19) on �1, then

I�1
=

1

2

Z
�1

(r � �)

(
1

D1

�
jC�(')j

2 +
2

1� �1
jC� (')j

2

�
+K1

����@Z@�
����
2
)
d�:
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while if � satis�es the Neumann boundary conditions (3.20) on �1, then

I�1
=

1

2

Z
�1

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�

�
1

2

Z
�1

(r � �)

(
D1(1 � �21)

����� � @'@�
����
2

+K1

����@Z@� +' � �

����
2
)
d�:

As a consequence, we obtain the following estimates.

(1) If � has regularity (4.11) and satis�es (3.13), (3.16) and (3.19), and if

the geometric conditions (3.10) are satis�ed, then

�(t)jT0 +

Z
Q

f(1� �)�1j _Zj
2 + �Ihj _'j

2 + (1� �)(C["(')]; "('))

+ �K1(jrZj
2 � j'j2)gdQ

�
1

2

Z
�1

(r � �)

�
1

D1

�
jC�(')j

2 +
2

1� �1
jC� (')j

2

�

+K1

����@Z@�
����
2
)
d�+ I�J : (4.16)

(2) If � has regularity (4.11) and satis�es (3.13), (3.16) and (3.20), and if

the geometric conditions (3.10) are satis�ed, then

�(t)jT0 +

Z
Q

f(1� �)�1j _Zj
2 + �Ihj _'j

2 + (1� �)(C["(')]; "('))

+ �K1(jrZj
2 � j'j2)gdQ

�
1

2

Z
�1

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�

�
1

2

Z
�1

(r � �)

(
D1(1� �21)

����� � @'@�
����
2

+ K1

����@Z@� +' � �

����
2
)
d�+ I�J : (4.17)

We proceed to estimate further in (4.16) and (4.17). One has

jrZj2 � j'j2 �
1

2
jrZ +'j2 � 2j'j2

and, since �0 6= ;, by Korn's LemmaZ



j'j2d
 � C(
)

Z



(C["(')]; "(')) d
:
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We choose and �x � < 1 so that 2�K1C(
) = (1 � �)=2. We then obtain

the estimateZ
Q

f(1� �)�1j _Zj
2 + �Ihj _'j

2 + (1� �)(C["(')]; "('))

+ �K1(jrZj
2 � j'j2)gdQ

�c0

Z
Q

f�1j _Zj
2 + Ihj _'j

2 + (C["(')]; "(')) +K1jrZ +'j2gdQ

=c0

Z T

0

(k _�(t)k2
H0(
) + k�(t)k2

H1

(
)

) dt

(4.18)

for some constant c0 > 0.

Let us next estimate the integrals over �J . Assume that � = � + ze3
has regularity

� 2 C([0; T ];H2(0; `)) \C1([0; T ];H1(0; `)); (4.19)

and that �;� satisfy the geometric junctions conditions (3.17). We then

have the following rough estimates:

�
1

2

Z
�J

(r � �)

(
D1(1� �21)

����� � @'@�
����
2

+K1

����@Z@� + ' � �

����
2
)
d�

� C
�
k�0k

2
H1(J) + k�1k

2
H1(J)

�Z T

0

j�(0; t)j2dt;

�K1

Z
�J

(r � �)(� �')(rZ + ') � � d�

� �K1

Z
�J

jr � �jj(rZ + ') � �j2d�+ C�

Z
J

�21 d�

Z T

0

j�(0; t)j2dt;

where � > 0 is arbitrary,

�

Z
�J

(r � �)

�
�1� �

@'

@�
� + � �

@'

@�
�

�
� (C["(')]�) d�

� �

Z
�J

jr � �jjC["(')]�j2d�+ C�

Z
J

����@�1@�

����
2

d�

Z T

0

j�(0; t)j2dt;

Z
�J

(r � � )

�
@'

@�
� (C["(')]�) +K1

@Z

@�
(rZ +') � �

�
d�

� �

Z
�J

jr � �j[jC["(')]�j2 +K1j(rZ +') � �j2] d�

+ C"

�
k�0k

2
H1(J) + k�1k

2
H1(J)

�Z T

0

j�(0; t)j2dt;

27



JOHN E. LAGNESE

and

Z
�J

f�K1Z(rZ +') � � + (1� �)' � (C["(')]�)g d�

� �

Z
�J

jr � �jfK1(rZ +') � �j2 + jC["(')]�j2gd�

+C�

Z
J

j�0j
2d�

Z T

0

j�(0; t)j2dt:

It follows that

I�J �
1

2

Z
�J

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�

+ (C1 � �)

Z
�J

(r � �)[jC["(')]�j2 +K1j(rZ + ') � �j2] d�

+ C�

Z T

0

j�(0; t)j2dt; (4.20)

for a suitable constant C1, where C� depends on �, the physical parameters

of the plate, on supJ jr � �j
�1 and on the H1(J) norms of �0 and �1.

We substitute (4.18) and (4.20) into (4.16) and (4.17) and obtain the

following estimates:

�(t)jT0 + c0

Z T

0

(k _�k2
H0(
) + k�k2

H1

(
)

) dt

�C0

Z
�1

(r � �)

 
jC["(')]�j2 +K1

����@Z@�
����
2
!
d�

+
1

2

Z
�J

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�

+ (C1 � �)

Z
�J

(r � �)[jC["(')]�j2 +K1j(rZ +') � �j2] d�

+C�

Z T

0

j�(0; t)j2dt

(4.21)
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in the case of Dirichlet boundary conditions (3.19), where C0 = 1=D1(1 �

�1); and

�(t)jT0 + c0

Z T

0

(k _�k2
H0(
) + k�k2

H1

(
)

) dt

�
1

2

Z
�1

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�

�
1

2

Z
�1

(r � �)

(
E1

����� � @'@�
����
2

+K1

����@Z@� + ' � �

����
2
)
d�

+ (C1 � �)

Z
�J

(r � �)[jC["(')]�j2 +K1j(rZ + ') � �j2] d�

+
1

2

Z
�J

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�+ C�

Z T

0

j�(0; t)j2dt; (4.22)

in the case of Neumann boundary conditions (3.20).

We next need to obtain an estimate analogous to (4.22) on the time

integral of the total beam energy

EB(t) =

Z `

0

(�2j _zj
2 + I�j _�2j

2 + Ij _�1j
2) d�

+

Z `

0

(GM j�01j
2 + E2M�j�

0

2j
2 +K2jz

0 + �2j
2) d�:

Let � be a solution of (3.14) with regularity (4.19) and denote by EB(�; t)

the energy density:

EB(t) =

Z `

0

EB(�; t) d�:

It follows from [5, Proposition 3.1] that the following identity holds for �:

�(t)jT0 +
1

2

Z T

0

Z `

0

[�0EB � 2��2 _z _�2 + 2�K2�
0

2(z
0 + �2)] d�dt

=
�(`)

2

Z T

0

EB(`; t) dt�
�(0)

2

Z T

0

EB(0; t) dt;

where � is an arbitrary C1[0; `] function and

�(t) =

Z `

0

�[I _�1�
0

1 + �2 _z(z
0 + �2) + I� _�2�

0

2] d�:

We choose � so that

� � 0; �0 > 0; �2�2 � (�0)2I� < 0;

�2K2 � (�0)2E2M� < 0; 0 � � � `:
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For example, one may choose

�(�) = � exp(�k�); k > max(
p
�2=I�;

q
K2=E2M�):

Then the quadratic forms

�0�2q
2
1 � 2��2q1q2 + �0I�q

2
2

and

�0E2M�q
2
1 � 2�K2q1q2 + �0K2q

2
2

are uniformly positive de�nite on 0 � � � `, hence

�0EB � 2��2 _z _�2 + 2�K2�
0

2(z
0 + �2)

= �0[Ij _�1j
2 + GM j�01j

2] + [�0�2j _zj
2 � 2��2 _z _�2 + �0I�j _�2j

2]

+ [�0E2M� j�
0

2j
2 + 2�K2�

0

2(z
0 + �2) + �0K2jz

0 + �2j
2 > c0EB

for some c0 > 0 and the following estimate holds for the solution �:

�(t)jT0 + c0

Z T

0

EB(t) dt � �
�(0)

2

Z T

0

EB(0; t) dt: (4.23)

We estimate in the right side of (4.23), using the junction conditions

(3.18), as follows:

�
�(0)

2

Z T

0

EB(0; t) dt

= �
�(0)

2

Z T

0

(�2j _z(0; t)j
2+ I�j _�2(0; t)j

2+ Ij _�1(0; t)j
2) dt

�
�(0)

2

Z T

0

(GM j�01(0; t)j
2 + E2M� j�

0

2(0; t)j
2 +K2j(z

0 + �2)(0; t)j
2) dt

� C

 Z T

0

j _�(0; t)j2dt+

Z
J

�20 d�

Z
�J

j� � (rZ +')j2d�

+

Z
J

�21 d�

Z
�J

jC["(')]�j2d�

�
: (4.24)

We then obtain from (4.23) the estimate

�(t)jT0 + c0

 Z T

0

k _�k2
H0(0;`)dt

+

Z T

0

Z `

0

(GM j�01j
2 +E2M� j�

0

2j
2 +K2jz

0 + �2j
2) d�dt

!

� C

 Z T

0

j _�(0; t)j2dt+

Z
�J

(jC["(')]�j2 + � � (rZ + ')j2) d�

!
(4.25)
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where C depends the physical parameters of the beam and on the L2(J)

norms of �0 and �1.

Multiply (4.25) by � and add the product to (4.21) and to (4.22) to

obtain

[�(t) + ��(t)]T0 + c0

Z T

0

k _�k2
H0(
)dt

+ c0�

Z T

0

k _�k2
H0(0;`)dt+ c0

Z T

0

k�k2
H1

(
)

dt

+ c0�

Z T

0

Z `

0

(GM j�01j
2 + E2M� j�

0

2j
2 +K2jz

0 + �2j
2) d�dt

�C0

Z
�1

(r � �)

 
jC["(')]�j2 +K1

����@Z@�
����
2
!
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+
1

2

Z
�J

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�+ �C

Z T

0

j _�(0; t)j2dt

+ (C1 � �� �C)

Z
�J

(r � �)[jC["(')]�j2 +K1j(rZ +') � �j2] d�

+C�

Z T

0

j�(0; t)j2dt

in the case of Dirichlet boundary conditions (3.19) on �1; and

[�(t) + ��(t)]T0 + c0

Z T

0

k _�k2
H0(
)dt

+ c0�

Z T

0

k _�k2
H0(0;`)dt+ c0

Z T

0
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H1

�0
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)dt

+ c0�

Z T

0

Z `

0

(GM j�01j
2 + E2M� j�

0

2j
2 +K2jz

0 + �2j
2) d�dt
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2

Z
�1
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h
�1j _Zj

2 + Ihj _'j
2
i
d�+ C�

Z T

0

j�(0; t)j2dt
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2

Z
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(r � �)

(
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2
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+
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2

Z
�J

(r � �)
h
�1j _Zj
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d�+ �C

Z T
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j _�(0; t)j2dt
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in the case of Neumann boundary conditions (3.20) on �1. Choose � > 0

so that C1 � �(1 + C) � 0. Also, it is possible to choose � so small that

1

2

Z
�J

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�+ �C

Z T

0

j _�(0; t)j2dt � 0: (4.26)

In fact, by utilizing the geometric junction conditions (3.17) one obtainsZ
�J

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�

=

Z
�J

(r � �)f�1�
2
0j _z(0; t) + � _�1(0; t)j

2

+ Ih�
2
1(j

_�1(0; t)j
2 + j _�2(0; t)j

2)gd�:

It is easy to check that the quadratic form

�1�
2
0j _z(0; t) + � _�1(0; t)j

2 + Ih�
2
1(j

_�1(0; t)j
2 + j _�2(0; t)j

2)

is positive semi-de�nite on J . Since r � � < 0 there,Z
�J

f� � �gd� �

Z
�J�

f� � �gd�;

where �J� = J� � (0; T ). On J� we have �i(x) = 1 and

r � � = (x0 + �� (x0)� x̂0) � �(x0) = (x0 � x̂0) � �(x0) = constant < 0:

Since Z
J�

d� = �;

Z
J�

�d� = 0;

Z
J�

�2d� =
�3

12
;

we haveZ
�J

(r � �)
h
�1j _Zj

2 + Ihj _'j
2
i
d�

� (x0 � x̂0) � �(x0)

Z T

0

�
�1j _z(0; t)j

2

+ �

�
�1
�2

12
+ Ih

�
j _�1(0; t)j

2 + �Ihj _�2(0; t)j
2

�
dt;

from which (4.26) immediately follows.

We have therefore proved the following estimates: if the initial data

satisfy

((�0;�0); (�1;�1)) 2 DA � V
 ;
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where


 =

(
�� J for Dirichlet BC on �1;

�0 for Neumann BC on �1;

and if the hypotheses of Theorem 3.3 are satis�ed, the following estimate

for the solution of (3.13){(3.19), (3.21) holds for some positive constants

c0; C0; C1:

[�(t) + ��(t)]T0 + c0

Z T

0

k((�;�); ( _�; _�)k2V
�Hdt
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Z
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(r � �)

 
jC["(')]�j2 +K1
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2
!
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+C1

Z T

0

j�(0; t)j2dt:

For the solution of (3.13){(3.18), (3.20), (3.21) the estimate is

[�(t) + ��(t)]T0 + c0

Z T

0

k((�;�); ( _�; _�))k2V�0�H
dt

�
1

2

Z
�1

(r � �)
�
�1j _Zj

2 + Ihj _'j
2
�
d�

�
1

2

Z
�1

(r � �)

(
E1

����� � @'@�
����
2

+K1

����@Z@� + ' � �

����
2
)
d�

+C1

Z T

0

j�(0; t)j2dt:

Since the solution is given by a unitary group on V
 �H, we haveZ T

0

k((�;�); ( _�; _�))k2V
�Hdt = Tk((�0;�0); (�1;�1))k2V
�H :

Moreover, it is easy to see that

j�(t) + ��(t)j � Ck((�;�); ( _�; _�))k2V�H

= Ck((�0;�0); (�1;�1))k2V
�H :

Therefore, the last two estimates may be replaced by

(c0T � 2C)k((�0;�0); (�1;�1))k2V
�H

� C0

Z
�1

(r � �)

 
jC["(')]�j2 +K1

����@Z@�
����
2
!
d�

+C1

Z T

0

j�(0; t)j2dt; (4.27)
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and

(c0T � 2C)k((�0;�0); (�1;�1))k2V�0�H

�
1

2

Z
�1

(r � �)
�
�1j _Zj

2 + Ihj _'j
2
�
d�

�
1

2

Z
�1

(r � �)

(
E1

����� � @'@�
����
2

+K1

����@Z@� + ' � �

����
2
)
d�

+C1

Z T

0

j�(0; t)j2dt;

(4.28)

respectively. Except for the last term on the right side, (4.27) is the esti-

mate of Propositions 3.1, where T0 = 2C=c0. Similarly, when r � � � 0 on

�1, the second integral over �1 on the right side of (4.28) may be dropped

and we obtain the estimate

(c0T � 2C)k((�0;�0); (�1;�1))k2V�0�H

�
1

2

Z
�1

(r � �)
�
�1j _Zj

2 + Ihj _'j
2
�
d�+ C1

Z T

0

j�(0; t)j2dt: (4.29)

Therefore, to complete the proofs, it su�ces to show that for T > T0,Z T

0

j�(0; t)j2dt � C

Z
�1

(r � �)

 
jC["(')]�j2 +K1

����@Z@�
����
2
!
d� (4.30)

in the case of (4.27), andZ T

0

j�(0; t)j2dt �
1

2

Z
�1

(r � �)
�
�1j _Zj

2 + Ihj _'j
2
�
d� (4.31)

in the case of (4.29). The proofs of both (4.30) and (4.31) follow along

standard lines (see Bardos, Lebeau, Rauch [12, Appendix II] and Zuazua

[12, Appendix I]), so we shall only sketch the ideas in the case of (4.30).

One �rst proves that

k((�0;�0); (�1;�1))k2V
�H

� C(T )

Z
�1

(r � �)

 
jC["(')]�j2 +K1

����@Z@�
����
2
!
d�

+ k�k2L1(0;T ;H0(
)) (4.32)

for T > T0 by showing thatZ T

0

j�(0; t)j2dt � C(T )

Z
�1

(r � �)

 
jC["(')]�j2 +K1

����@Z@�
����
2
!
d�

+ k�k2L1(0;T ;H0(
)): (4.33)
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Estimate (4.33) may be proved by contradiction, using (4.27) and the com-

pactness of the injection (see Simon [16, Section 8])

(�;�) 2 L1(0; T ;V
) \W
1;1(0; T ;H) 7! L1(0; T ; [V
;H]�); 0 < � � 1;

where [�; �]� denotes the interpolation space of order �.

Let X be the space of all (�;�) which satisfy the conditions

(�;�) 2 L1(0; T ;V
) \W
1;1(0; T ;H);

(�;�) satisfy (3.13){(3.19);

C["(')]� = 0;
@Z

@�
= 0 on �1;

9>>>>=
>>>>;

(4.34)

with norm

k(�;�)kX = k((�;�); ( _�; _�))kL1(0;T ;V
�H):

We wish to show that X = f0g. This is done in two steps.

(1) One �rst proves that X is �nite dimensional. This is achieved

by using (4.32), (4.34) and conservation of total energy to show that if

(�;�) 2 X then ( _�; _�) 2 X and the map

(�;�) 7! ( _�; _�) : X 7! X (4.35)

is continuous. Since the injection

f(�;�) 2 Xj ( _�; _�) 2 Xg 7! X

is compact [16], it follows that X itself is compact and, therefore, �nite

dimensional.

(2) Next, one shows that X = f0g. In fact, since the map (4.35) is

continuous, it has an eigenvalue � (here we need to work in the complexi-

�cation of X ). In particular, _� = ��, so that � = ' + Zk satis�es

�1�
2Z �K1 div(rZ + ') = 0;

�2Ih'� div(C["(')] +K(rZ + ') = 0;

)

' = 0; Z = 0; C["(')]� = 0;
@Z

@�
= 0 on �1:

Since this is a second order elliptic system with constant coe�cients and

with Cauchy data on �1, we may conclude that ' = 0 and Z = 0.

Finally, one may prove (4.30) by contradiction, using the fact that X =

f0g.
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5 Proofs of Theorems 3.1{3.4

5.1 Proofs of Theorems 3.1 and 3.2

Theorem 3.2 will be proved �rst. The system (3.1){(3.6), (3.8) may be

written as a variational equation by forming

0 =

Z



f[�1 �W �K1 div(rW + �)]Ŵ

+ [Ih ��� divC["(�)] +K1(rW +�)] � �̂gd


+

Z `

0

f(�2 �w �K2(w
0 +  2)

0)ŵ + (I � 1 � GM 001 ) ̂1

+ (I� � 2 � E2M� 
00

2 +K2(w
0 +  2)) ̂2gd�: (5.1)

Set

�̂ = �̂+ Ŵk; 	̂ =  ̂2e1 �  ̂1e2 + ŵe3 :=  ̂ + ŵe3;

and suppose that (�̂; 	̂) 2 V�0 := V . Upon carrying out integrations by

parts in (5.1) one obtains with the aid of (2.14)

(( ��; �	); (�̂; 	̂))H + ((�;	); (�̂; 	̂))V =

Z
�1

[m � �̂+ fŴ ] d�; (5.2)

where � = �+Wk, 	 =  2e1 �  1e2 + we3. We have����
Z
�1

[m � �̂+ fŴ ] d�

���� � kfkUk(�̂; 	̂)kV ;

where f =m + fk, so there is an operator B 2 L(U; V 0) such thatZ
�1

[m � �̂+ fŴ ] d� = hBf ; (�̂; 	̂)iV ; (5.3)

h�; �iV denoting the pairing in the duality between V and V 0. Therefore

(5.2) may be written

( ��; �	) +A(�;	) = Bf

or, alternately, as the �rst order system

_X = AX + Bf ; (5.4)

where

X =

�
(�;	)

( _�; _	)

�
; A =

�
0 I

�A 0

�
; Bf =

�
0

Bf

�
:
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It is well known that A, as an unbounded operator in H � V with domain

V �H, generates a C0-unitary group onH�V
0. The conclusion of Theorem

3.2 follows immediately, since Bf 2 L2(0; T ;H � V 0).

To obtain a variational equation for the Dirichlet control problem (3.1){

(3.7) we again begin with (5.1) where we now assume that (�̂; 	̂) 2 DA.

Since (�̂; 	̂) = 0 on �� J we haveZ



f�K1 div(rW + �)Ŵ � [divC["(�)]�K1(rW + �)] � �̂g d


=

Z



f�K1 div(rŴ + �̂)W � [divC["(�̂)]�K1(rŴ + �̂)] ��g d


+

Z
J

f�K1� � (rW +�)Ŵ +K1� � (rŴ + �̂)W

� �̂ � (C["(�)]�) + � � (C["(�̂)]�)g d�

+

Z
�1

[m � (C["(�̂)]�) +K1f
@Ŵ

@�
] d�:

AlsoZ `

0

f�K2(w
0 +  2)

0)ŵ �GM 001  ̂1 � [E2M� 
00

2 �K2(w
0 +  2)] ̂2gd�

=

Z `

0

f�K2(ŵ
0 +  ̂2)

0)w � GM ̂001 1 � [E2M� ̂
00

2 �K2(ŵ
0 +  ̂2)] 2gd�

+K2(w
0 +  2)(0)ŵ(0) + GM 01(0) ̂1(0) +E2M� 

0

2(0) ̂2(0)

�K2(ŵ
0 +  ̂2)(0)w(0)� GM ̂01(0) 1(0)� E2M� ̂

0

2(0) 2(0):

Since (�;	) and (�̂; 	̂) each satisfy the geometric and dynamic junction

conditions, it follows that the sum of the integrals over J with the boundary

terms at zero in the last two equations vanishes and therefore (5.1) may be

written (see Remark 3.3)

(( ��; �	); (�̂; 	̂))H + ((�;	); A(�̂; 	̂))H

=

Z
�1

[m � (C["(�̂)]�) +K1f
@Ŵ

@�
] d�: (5.5)

Write (�̂; 	̂) = A�1( ~�; ~	) where ( ~�; ~	) 2 H. Then (5.5) takes the form

(( ��; �	); A�1( ~�; ~	))H + ((�;	); ( ~�; ~	))H

=

Z
�1

[m � (C["(�̂)]�) +K1f
@Ŵ

@�
] d�: (5.6)
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One has, for s > 3=2,�����
Z
�1

[m � (C["(�̂)]�) +K1f
@Ŵ

@�
] d�

����� � CkfkUk�̂kHs(
)

� CkfkUk(�̂; 	̂)kDA

= CkfkUk( ~�; ~	)kH :

ThusZ
�1

[m � (C["(�̂)]�) +K1f
@Ŵ

@�
] d�

= (Bf ; ( ~�; ~	))H ; (�̂; 	̂) = A�1( ~�; ~	); (5.7)

for some B 2 L(U;H), so that (5.6) may be written

(( ��; �	); A�1( ~�; ~	))H + ((�;	); ( ~�; ~	))H = (Bf ; ( ~�; ~	))H ;

8( ~�; ~	) 2 H:

This is the same as the equation

( ��; �	) +A(�;	) = ABf in D0A; (5.8)

where A is an isomorphism of H onto D0A (it is the extension to H by

continuity of the Riesz isomorphism of V
 onto V 0
 through the formula

hAu; viV
 = (u;Av)H ; 8u 2 V; v 2 DA):

Equation (5.8) may be written as (5.4) with

Bf =

�
0

ABf

�
; B 2 L(U; V 0
 �D0A):

The operator A, as an unbounded operator in V 0
�D
0

A with domainH�V 0
 ,

generates a C0-group of unitary operators. Therefore, for initial data

(�0;	0) 2 V 0
 ; (�1;	1) 2 D0A;

the initial value problem for (5.8) has a unique solution with

(�;	) 2 C([0; T ]; V 0
) �C1([0; T ]; D0A):

We need to show that if the initial data satisfy the stronger regularity

assumptions of Theorem 3.1, then the solution has the regularity stated

in that theorem. This result cannot be obtained from abstract semigroup

theory but rather is a consequence of the following regularity estimate for

solutions of the homogeneous system (3.13){(3.19).
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Lemma 5.1 Let (�;�) be the solution of (3.13){(3.19) with initial data

(�0;�0) 2 V
 ; (�1;�1) 2 H;

where 
 = J . Then

Z
�1

"
jC["(')]�j2 +K1

�
@Z

@�

�2
#
d�

� C0(T + 1)k((�0;�0); (�1;�1))k2V
�H : (5.9)

The proof is deferred until the end of this section.

To complete the proof of Theorem 3.1, we utilize the idea of transposi-

tion. Set V := V
 . The solution of (5.8) having initial data

X0 =

�
(�0;�0)

(�1;�1)

�

is given by

X(t) = exp(tA)X0 +

Z t

0

exp((t� s)A)Bf (s) ds; 0 � t � T;

where exp(tA) is the unitary group on V 0 �D0A generated by A. Suppose

that X0 2 H � V 0, let Y 0 2 V �DA and B0 2 L(V �DA;U ) be the dual

of B, de�ned by

hBf ; Y 0iV�DA
= (f ;B0Y 0)U ; 8f 2 U; Y

0 2 V �DA:

Let � 2 (0; T ] be �xed. We have

hX(� ); Y 0iV�DA
= hX0; exp(�A0)Y 0iH�V

+

Z �

0

(f (s);B0 exp((� � s)A0)Y 0)Uds: (5.10)

Here A0 is the dual of A, de�ned by

hAX0; Y 0iV�DA
= hX0;A0Y 0iH�V ; 8X

0 2 H � V 0; Y 0 2 V �DA:

One has

A0 =

�
0 �A

I 0

�
; D(A0) = V �DA:

As is well-known, A0 generates a unitary group exp(tA0) on H � V and

exp(tA0) is the dual of the restriction of exp(tA) to H � V 0. Therefore

(5.10) is the same as

hX(� ); Y 0iV�DA
= hX0; Y (� )iH�V +

Z �

0

(f (s);B0Y (s))Uds; (5.11)
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where Y (t) := exp((� � t)A0)Y 0, 0 � t � � , satis�es

_Y = �A0Y; 0 � t � �; Y (� ) = Y 0: (5.12)

If we write

Y = ((�1;�1); (�;�)); Y 0 = ((�1;�1); (�0;�0));

(5.12) signi�es that

( ��; ��) + A(�;�) = 0; (�1;�1) = �( _�; _�);

(�(� );�(� )) = (�0;�0); ( _�(� ); _�(� )) = �(�1;�1):

)
(5.13)

In addition,

hBf ; Y iV�DA
= hABf ; (�;�)iDA

= (Bf ; A(�;�))H :

From (5.7) we have

(Bf ; A(�;�))H =

Z
�1

[m � (C["(')]�) +Kf
@Z

@�
] d�;

where � = '+ Zk. It follows that

B0Y = C["(')]� +K1
@Z

@�
k

����
�1

:

We insert this expression into (5.11) to obtain the estimate

jhX(� ); Y 0iV�DA
j � kX0kH�V 0kY

0kH�V

+ kfkL2(0;T ;U)kC["(')]� +K1
@Z

@�
kkL2(0;T ;U)

� C0(T + 1)fkX0kH�V 0 + kfkL2(0;T ;U)gkY
0kH�V ; 0 � � � T;

in view of Lemma 5.1. It follows that X 2 L1(0; T ;H � V 0). One may

pass from L1 to C by a standard argument.

Remark 5.1 That X 2 C([0; T ];H�V 0) also follows directly from a \lift-

ing theorem" of Lasiecka and Triggiani [9] once Lemma 5.1 is established.

Proof of Lemma 5.1: It su�ces to prove (5.9) for initial data in DA�V .

We �rst use a trick from [14]. Let � 2 C1(
) such that � = 1 is a

neighborhood of �1 and � = 0 in a neighborhood of J , and set ~� = ��.
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For any ' = '1i+ '2j with 'i 2 H
2(
) we have

divC["(�')]

= D1

0
BB@

@

@x1
("11(�') + �1"22(�')) +

@

@x2
(1� �1)"12(�')

@

@x1
(1� �1)"12(�') +

@

@x2
("22(�') + �1"11(�'))

1
CCA

= � divC["(')] + 2C["(')]r� +D1
1� 3�1

2

�
'2;2 �'2;1
�'1;2 '1;1

�
r�

+D1

0
B@�;11 +

1� �1

2
�;22

1 + �1

2
�;12

1 + �1

2
�;12 �;22 +

1� �1

2
�;11

1
CA':

It follows that ~� satis�es the equations

�1
�~Z �K1 div(r ~Z + ~') = ~F;

Ih �~' � divC["(~')] +K1(r ~Z + ~') = ~M;

9=
; (5.14)

where
~F = �K1r� � (rZ +')

and

~M = �2C["(')]r� �D1
1� 3�1

2

�
'2;2 �'2;1
�'1;2 '1;1

�
r�

�D1

0
B@�;11 +

1� �1

2
�;22

1 + �1

2
�;12

1 + �1

2
�;12 �;22 +

1� �1

2
�;11

1
CA'+K1(Zr� + �');

the boundary conditions

~Z = 0; ~' = 0 on �; (5.15)

and the initial conditions

~�(0) = ��0;
_~�(0) = ��1:

For a solution of (5.14), (5.15) with initial data ( ~�(0);
_~�(0)) 2 H1

�(
) �

H0(
) := H we have the energy estimate

k( ~�(t);
_~�(t))k2

H
� k( ~�(0);

_~�(0))k2
H
+C

Z t

0

k~F(t)k2
H0(
)dt;
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where ~F = ~M + ~Fk. We shall show that

Z
�

2
4jC["(~')]�j2 +K1

 
@ ~Z

@�

!2
3
5 d�

� C

"Z T

0

k~F(t)k2
H0(
)dt+ (T + 1)k( ~�;

_~�)k2L1(0;T ;H)

#
: (5.16)

Since

k( ~�;
_~�)k2L1(0;T ;H) � k( ~�(0);

_~�(0))k2H +C

Z T

0

k~F(t)k2
H0(
)dt

� C

 
k(�0;�1)k2

H1

(
)�H

0(
) +

Z T

0

k~F(t)k2
H0(
)dt

!
;

Z T

0

k~F(t)k2
H0(
)dt � C

Z T

0

k�(t)k2
H1

 (
)

dt

� C

Z T

0

k((�(t);�(t)); ( _�(t); _�(t)))k2V
�Hdt

= CTk((�0;�0); (�1;�1))k2V
�H ;

and since ~� = � on �1, Lemma 5.1 follows from (5.16).

The idea leading to (5.16) is standard (cf. [12], for example). One

multiplies (5.14) by h � r ~Z and (r~')h respectively, where h is a W 1;1

vector �eld in 
 such that h = � on �, adds the products and integrates

the sum over 
� (0; T ). One thereby obtains

Z T

0

Z



f[�1
�~Z �K1 div(r ~Z + ~')]h � r ~Z

+ [Ih �~'� divC["(~')] +K1(r ~Z + ~')] � ((r~')h)g d
dt

=

Z T

0

Z



[(h � r ~Z) ~F + ((r~')h) ~M] d
dt: (5.17)

One has

Z T

0

Z



(h � r ~Z)
�~Z d
dt =

Z



(h � r ~Z)
_~Z d
jT0 +

1

2

Z T

0

Z



(divh)j
_~Zj2d
dt;
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Z T

0

Z



(h � r ~Z) div(r ~Z + ~') d
dt

=

Z T

0

Z



fdiv[(h � r ~Z)r ~Z]� (rhr ~Z) � r ~Z

�
1

2
div(hjr ~Zj)2 +

1

2
(divh)jr ~Zj2 + (div ~')(h � r ~Z)gd
dt

=

Z T

0

Z



f
1

2
(divh)jr ~Zj2 � (rhr ~Z) � r ~Z

+ (div ~')(h � r ~Z)gd
dt+
1

2

Z
�

 
@ ~Z

@�

!2

d�;

Z T

0

Z



�~' � (r~'h)d
dt =

Z



_~' � (r~'h)d
jT0 +
1

2

Z T

0

Z



(divh)j _~'j2d
dt:

Also, from Lemma 4.2 we have

Z T

0

Z



(r~'h) � divC["(~')] d
dt = �
1

2

Z
�

(C["(~')]; "(~')) d�

+

Z
�

(r~'h) � (C["(~')]�) d��

Z T

0

Z



Q(r~') d
dt:

When the last four formulas are inserted into (5.17) the result is

Z



f�1
_~Z(h � r ~Z) + Ih _~' � (r~'h)gd


����
T

0

+
1

2

Z T

0

Z



(divh)f�1j
_~Zj2 + Ihj _~'j

2gd
dt

+

Z T

0

Z



fQ(r~') +K1[�
1

2
(divh)jr ~Zj2 + (rhr ~Z) � r ~Z

� (div ~')(h � r ~Z) + (r ~Z + ~') � ((r~')h)]gd
dt

�

Z
�

8<
:K1

2

 
@ ~Z

@�

!2

+ (r~'h) � (C["(~')]�) �
1

2
(C["(~')]; "(~'))

9=
; d�

=

Z T

0

Z



[ ~F (h � r ~Z) + ~M � (r~'h)] d
dt:

On � on has (see (4.5){(4.7))

r~'h =
@ ~'

@�
; C["(~')]� = D1

��
� �

@ ~'

@�

�
� +

1� �1

2

�
� �

@ ~'

@�

�
�

�
;
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(C["(~')]; "(~')) =
1

D1

�
jC�(~')j

2 +
2

1� �1
jC�(~')j

2

�

= D1

��
� �

@ ~'

@�

�
� +

1� �1

2

�
� �

@ ~'

@�

�
�

�
:

Therefore, on �

(r~'h) � (C["(~')]�) �
1

2
(C["(~')]; "(~'))

=
D1

2

"�
� �

@ ~'

@�

�2

+
1� �1

2

�
� �

@ ~'

@�

�2
#

�
1

2D1
jC["(~')]�j2:

In addition,�����
Z T

0

Z



f ~F (h � r ~Z) + ~M � (r~'h)g d
dt

�����
� C

Z T

0

(k~Fk2
H0(
) + k

~�k2
H1

�
(
)) dt;

Z



f�1
_~Z(h � r ~Z) + Ih _~' � (r~'h)gd


����
T

0

� Ck( ~�;
_~�)k2L1(0;T ;H);�����

Z T

0

Z



(divh)f�1j
_~Zj2 + Ihj _~'j

2gd
dt

����� � khkW1;1(
)

Z T

0

k
_~�k2
H0(
)dt;

�����
Z T

0

Z



fQ(r~') +K1[�
1

2
(divh)jr ~Zj2 + (rhr ~Z) � r ~Z

� (div ~')(h � r ~Z) + (r ~Z + ~') � ((r~')h)]gd
dt
���

� C

Z T

0

k~�k2
H1

�
(
)) dt:

It follows from the above estimates thatZ
�

2
4jC["(~')]�j2 +K1

 
@ ~Z

@�

!2
3
5 d�

� C

"Z T

0

�
k~F(t)k2

H0(
) + k( ~�;
_~�)k2

H

�
dt+ k( ~�;

_~�)k2L1(0;T ;H)

#

� C

"Z T

0

k~F(t)k2
H0(
)dt+ (T + 1)k( ~�;

_~�)k2L1(0;T ;H)

#
:
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5.2 Proofs of Theorems 3.3 and 3.4

We begin with the proof of Theorem 3.3. Consider the control-to-state

map

ST f =

Z T

0

exp((T � s)A)Bf (s) ds:

We have already proved that ST 2 L(L
2(0; T ;U );H � V 0
) for each T > 0.

Since

hST f ; Y
0iH�V
 =

Z T

0

(f (s);B0Y (s))Uds; (5.18)

the dual map S0T : H�V
 7! L2(0; T ;U ) is given by S0TY
0 = B0Y (�), where

Y = ((�1;�1); (�;�)) satis�es (5.13) with � = T . Therefore Range(ST ) =

H � V 0
 is equivalent to

kB0Y (�)kL2(0;TU) � c0kY
0kH�V
 ; 8Y

0 2 H � V
 ; (5.19)

for some c0 > 0. From the proof of Theorem 3.1, it is seen that (5.19) is

equivalent to showing thatZ
�1

fjC["(')]�j2 +K1

����@Z@�
����
2

gd� � c0k((�
0;�0); (�1;�1))k2V
�H :

The last estimate follows from Proposition 3.1 for T large enough.

The proof of Theorem 3.4 is similar. In this case one again has (5.18),

where now B0 is given by (see (5.3)) B0Y = �j�1
= ' + Zkj�1

. However,

(5.19) will not hold in general, so to prove Theorem 3.4 we use the Hilbert

Uniqueness Method introduced by Lions [11]. One de�nes a norm

kY 0kF = kB0Y (�)kL2(0;T ;U); Y 0 2 H � V�0 ;

and a space F which is the completion of H � V�0 in the F norm. Then

S0T is an isometry of F onto L2(0; T ;U ). Since

hSTS
0

TZ
0; Y 0iF = (Z0; Y 0)F ;

STS
0

T is the Riesz isomorphismofF ontoF 0, the dual space ofF . Therefore

RT = F 0 for T > 0. On the other hand, according to Corollary 3.1 one has

F � V 0�0 �H for T large enough, and therefore V�0 �H � F 0 for T large

enough. If X0 2 RT and Y 0 = (STS
0
T )
�1X0, then f = S0TY

0 is the control

of minimum norm in L2(0; T ;U ) for which ST f = X0.
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Vol. 8, Masson, Paris, 1988.

[13] S. Nicaise. About the Lam�e system in a polygonal or a polyhedral

domain and a coupled problem between the Lam�e system and the

plate equation I: regularity of the solutions, Pub. IRMA, Lille, 22(5)

(1990).

46



PLATE-BEAM SYSTEMS

[14] J.-P. Puel and E. Zuazua. Exact controllability for a model of multidi-

mensional 
exible structure, Proc. Royal Soc. Edinburgh 123A (1993),

323{344.

[15] J.-P. Puel and E. Zuazua. Controllability of a multi-dimensional sys-

tem of Schr�odinger equations: application to a system of plate and

beam equations, to appear.

[16] J. Simon. Compact sets in Lp(0; T ;B), Ann. Mat. Pura et Applicate

CXLVI (1987), 65{96.

[17] M. Tucsnak. R�esultats de Stabilisation sur quelques Probl�emes non

Lin�eaires de Plaques et de Poutres �Elastiques, Theses de L'Universite

d'Orleans, January, 1992.

Department of Mathematics, Georgetown University, Washing-

ton, DC 20057-0996 USA

Communicated by Clyde F. Martin

47


