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Abstract

Several di�culties in controller design for in�nite-dimensional
systems arise from using an approximation for the state of the sys-

tem. In this paper it is demonstrated that the graph topology is an

appropriate framework in which to discuss convergence of approx-
imations used for controller design. It is also shown that Galerkin

type approximations to a large class of problems possess the required

convergence properties and can be used to design controllers which
will perform as designed when implemented on the original in�nite-

dimensional system. An H1{controller design problem is used to

illustrate this approach.

Key words: in�nite-dimensional systems, Galerkin approximations, coprime
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1 Introduction

There are computational di�culties, apart from the theoretical problems,

to designing controllers for systems whose dynamics are described by par-

tial di�erential equations or integral-di�erential equations. Consider the

following on a Hilbert space X :

_x(t) = Ax(t) + Bu(t); x(0) = x0; (1)
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y(t) = Cx(t):

The operator A generates a strongly continuous semigroup of operators

T (t) on X , so A is closed with domain domA dense in X . This paper is

concerned solely with the case where the input and output spaces are �nite-

dimensional and B 2 L(Rm;X ); C 2 L(X ; Rp): Systems (1) which satisfy

the above assumptions will be referred to as bounded control systems and (1)
will often be abbreviated (A;B;C). For control functions in L2(0;1;Rm);

and initial conditions in X , the equations (1) have a mild solution:

y(t) = CT (t)x0 +C

Z t

0

T (t� � )Bu(� )d�:

Further details can be found in, for instance [30].

The equations (1) are a model for a number of control problems, includ-

ing those where the system dynamics are described by a partial di�erential

equation and hereditary di�erential systems. A closed form solution can

be computed only in the simplest of situations. In general, it is necessary

to use an numerical approximation to (1) in order to simulate the response

of the system. This approximation will typically be a system of n ordinary

di�erential equations:

_x(t) = Anx(t) +Bnu(t); x(0) = x0n; (2)

y(t) = Cnx(t):

Further details on approximation schemes will be presented in subsequent

sections. The above �nite-dimensional system will often be abbreviated as

(An; Bn; Cn). This approximation is used not only to simulate the system

response, but also to compute controllers for the system whose dynamics

are modelled by (1).

There are a number of convergence questions associated with this ap-

proach. Is the use of �nite-dimensional approximations a valid technique

when designing controllers for a given in�nite-dimensional system? If so,

which approximation methods can be used to design controllers which will

perform as designed when implemented on the actual system, and how

high an order is required? It is known that convergence of the open loop

response, i.e., of the approximating semigroups on bounded intervals, is

not su�cient to ensure a�rmative answers to these questions (eg. [6]). A

scheme which yields good results when used for simulation or identi�cation

may be inappropriate for controller design.

Most research in this area has been concerned with state feedback: i.e.,
the case where the output operator C is the identity. In particular, many

researchers (eg. [5, 14, 18, 26]) have studied convergence of solutions to

a sequence of Riccati equations. Gibson [14] showed uniform convergence
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of the solutions, under assumptions of uniform stabilizability and strong

convergence of the adjoint semigroups. Subsequently, Banks and Kunisch

[5] proved uniform stabilizability for symmetric parabolic equations, and

then showed convergence of solutions to the Riccati equation. Convergence

of the optimal state feedback operators is then shown by using convergence

of solutions to the associated Riccati equations.

Ito [17] showed strong convergence of controllers based on state feed-

back and estimation, for approximation schemes which are uniformly sta-

bilizable/detectable and for which the approximating resolvants converge

uniformly. Gibson and Adamian [15] studied a similar problem for 
exible

structures and presented some numerical results. These papers are all con-

cerned with controllers obtained using linear-quadratic regulator design.

In this paper the problem of closed loop stability and closed loop con-

vergence for controllers obtained using a arbitrary design method is dis-

cussed. It is shown that the graph topology is an appropriate topology in

which to study convergence of approximations used in controller design.

Simultaneous stabilization of the system and all approximations of high

enough order, and convergence of the closed loop systems, is possible if

and only if the approximations converge in the graph topology. This is in-

dependent of the technique used for controller design. The approximation

scheme studied by Kappel and Salamon [21, 22] is used as an illustration.

It is proven that uniform stabilizability or detectability, plus the usual

conditions required in simulation, imply convergence in the graph topol-

ogy. It is proven that Galerkin approximations to a large class of sectorial

operators converge in the graph topology.

These ideas are applied to a standard H1 control problem. It is shown

that if the approximations converge in the graph topology, performance

arbitrarily close to the optimal performance may be achieved by solving a

sequence of �nite-dimensional H1 problems. Not only is the proof of this

result very simple in the context of the graph topology, it has not been

obtained by any other approach.

2 Stability

For a given linear time-invariant system, the Laplace transform of the map

from inputs u to outputs y is the system transfer function. For bounded

control systems (1), the transfer function is CR(s;A)B; where R(s;A) in-

dicates the inverse of s �A and s is the Laplace transform variable.

Suppose a system maps inputs in L2(0;1;Rm) to outputs in

L2(0;1;Rp), and that furthermore, there is a maximum ratio, 
, called

the L2{gain between the norm of the output and the norm of the input:

k ykL2(0;1;Rp) � 
k ukL2(0;1;Rm)
:
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Such a system is said to be L2{stable. In other words, L2{stable systems are

those whose input/output map is a bounded operator from L2(0;1;Rm)

to L2(0;1;Rp).

The notation H1 indicates the Hardy space of functions G(s) which

are analytic in the right-half plane Re(s) > 0 and for which

sup
!

lim
x#0

jG(x+ j!)j <1:

The norm of a function in H1 is

k Gk1 = sup
!

lim
x#0

jG(x+ j!)j:

Matrices with entries in H1 are indicated by M (H1). The norm of a

function in M (H1) is the induced matrix norm

k Gk1 = sup
!

lim
x#0

�� [G(x+ j!)]

where �� denotes the largest singular value. By the Paley-Weiner The-

orem, a system is L2{stable if and only if the system transfer function

G 2M (H1).

In the interest of brevity the statement \a linear system with transfer

function G" will often be abbreviated to \the system G". The term plant
is used to indicate a system for which a controller is to be designed.

Now, let G be the transfer function of a given plant and let H be the

transfer function of a controller, of compatible dimensions, arranged in

the feedback con�guration shown in Figure 1. This framework is general

enough to include most common control problems. For instance, in track-

ing, r1 would be the reference signal to be tracked by the plant output y1.

Since r1 can also be regarded as modelling sensor noise and r2 as modelling

actuator noise, it is reasonable to regard the control system in Figure 1 as

externally stable if the four maps from r1; r2 to e1; e2 are in M (H1): (Sta-

bility could also be de�ned in terms of the transfer matrix from (r1; r2) to

(y1; y2): both notions of stability are equivalent [36].)

Figure 1. Feedback System
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If det(I + GH) is not identically zero, then the 2 � 2 transfer matrix

�(G;H) which maps the pair (r1; r2) into the pair (e1; e2) is given by

�(G;H) =

2
4 (I +GH)�1 �G(I +HG)�1

H(I +GH)�1 (I +HG)�1

3
5 :

De�nition 2.1 The feedback system (Figure 1), or alternatively the pair
(G;H), is said to be externally stable if det(I +GH) 6= 0, and each of the
four elements in the above matrix belongs to M (H1).

The above de�nition of external stability is su�cient to ensure that all

maps from uncontrolled inputs to outputs are bounded. Furthermore, un-

der an additional assumption of stabilizability/detectability, external sta-

bility and internal stability are equivalent. First, some de�nitions are given.

De�nition 2.2 The Co-semigroup T (t) is stable if there exist constants M
and � > 0 such that kT (t)k �Me��t for all t � 0.

De�nition 2.3 A bounded control system (A;B;C)is said to be internally
stable if the semigroup generated by A is stable according to De�nition
(2.2).

De�nition 2.4 The pair (A;B) is stabilizable if there exists a bounded
linear operator K : X ! Rm such that A � BK generates a stable semi-
group.

De�nition 2.5 The pair (A;C) is detectable if there exists a bounded lin-
ear operator F : Rp ! X such that A � FC generates a stable semigroup.

De�nition 2.6 The system (A;B;C) is jointly stabilizable/detectable if
(A;B) is stabilizable and (A;C) is detectable.

It is easy to show, using the Hille-Yosida Theorem, that internally stable

systems (1) are externally stable. Also, external stability implies internal

exponential stability:

Theorem 2.1 ([20], Theorem 19) A jointly stabilizable/detectable bounded
control system is internally stable if and only if it is externally stable.

Theorem 2.2 ([20], Theorem 35) Assume that (A;B;C) is a jointly sta-
bilizable/detectable bounded control system and that a controller with real-
ization (Ac; Bc; Cc) is also a jointly stabilizable/detectable bounded control
system. The closed loop system is externally stable if and only if it is in-
ternally stable.
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This equivalence between internal and external stability justi�es the use

of controller design techniques based on system input/output behaviour for

in�nite-dimensional systems of the form (1).

Much of modern control theory is concerned with coprime factorizations
of systems. For the case of L2-stability, the transfer function of a system

is written as G = ND�1 where N;D 2 M (H1) and there exists X;Y 2
M (H1) with

X(s)N (s) + Y (s)D(s) = I; Re(s) � 0: (3)

The pair (N;D) is called a right coprime factorization (r.c.f.) for G. Left
coprime factorizations (l.c.f.'s) are de�ned similarly. The pair ( ~N; ~D) is a

l.c.f. for G if G = ~D�1 ~N where ~N; ~D 2 M (H1) and there exists ~X; ~Y 2
M (H1) with

~N (s) ~X (s) + ~D(s) ~Y (s) = I; Re(s) � 0: (4)

The statement that a system has a r.c.f. (N;D) will be understood to

mean that the transfer function of the system has this r.c.f.; and similarly

for l.c.f.'s. The importance of coprime factorizations for controller design

is explained by the following theorem.

Theorem 2.3 ([36] Lemma 8.3.2) Suppose a system G has a right co-
prime factorization (N;D) and a controller H, of compatible dimensions,
has a left coprime factorization (X;Y ). The closed loop system (G;H) is
externally stable if and only if the matrix XN + Y D has an inverse in
M (H1). Similarly if G has a left coprime factorization ( ~N; ~D) and H has
a right coprime factorization ( ~X; ~Y ) , (G;H) is externally stable if and
only if ~N ~X + ~D ~Y has an inverse in M (H1):

Every system which is described by a linear time-invariant ordinary

di�erential equation has both a left- and a right-coprime factorization. This

is a consequence of the fact that the transfer functions of such systems

are composed of rational functions. More general systems, which do not

have rational transfer functions, do not necessarily have either a left- or a

right-coprime factorization. In [28] this is used to show that a undamped

Euler-Bernoulli beam with bounded control and sensing operators cannot

be externally stabilized by any controller with a coprime factorization. In

fact, any system with a transfer function which can be written as a fraction

AB�1, where A;B 2M (H1), is externally stabilizable if and only if it has

a right coprime factorization [34].

Bounded control systems which are either stabilizable or detectable pos-

sess only a �nite number of right-half plane eigenvalues [20]. Such con-

trol systems possess both right and left coprime factorizations [8]. If a

bounded control system (A;B;C) is jointly stabilizable/detectable, both
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left and right coprime factorizations can be explicitly written [19]. Let

K 2 L(X ; Rm) be such that A � BK generates a stable semigroup and

F 2 L(Rp;X ) be such that A�FC generates a stable semigroup. De�ning

N (s) := CR(s;A�BK)B; D(s) := I �KR(s;A� BK)B; (5)

X(s) := KR(s;A � FC)F; Y (s) := I +KR(s;A� FC)B;

it can be shown [19] that XN + Y D = I: The pair (N;D) is a r.c.f. for

the system i.e. G(s) := CR(s;A)B = ND�1 [19]. A l.c.f. can be de�ned

similarly. De�ne

~N (s) := CR(s;A� FC)B; ~D(s) := I � CR(s;A� FC)F: (6)

Then, G(s) = ~D�1(s) ~N (s) and ~N ~X + ~D ~Y = I for some ~X; ~Y 2M (H1).

The following is now well-known. For completeness, a proof is given.

Theorem 2.4 Every jointly stabilizable/detectable bounded control system
is externally, and internally, stabilizable by a �nite-dimensional controller.

Proof: Let (N;D) be a r.c.f. for the system as de�ned in (5). Since the

time-domain realization of N is bounded byMe��t for someM;� > 0, the

Riemann-Lebesgue Lemma implies that

lim
jsj!1
Re(s)�0

�(N (s)) = 0:

Similarly,

lim
jsj!1
Re(s)�0

�(D(s)) = I:

It follows (Mergelyan's Theorem) that each factor can be approximated

by a rational element of M (H1): for su�ciently small " > 0 there exists

Nn; Dn 2M (H1), coprime and rational with

k N (s) �Nn(s)k1 < "; k D(s) �Dn(s)k1 < ":

Let (X;Y ) be a l.c.f. of any �nite-dimensional controller which (exter-

nally) stabilizes NnDn
�1 with XNn + Y Dn = I. Then, if " is small

enough, XN + Y D = U where U has an inverse in M (H1). Rewrit-

ing, X(NU�1) + Y (DU�1) = I: Sijce (NU�1; DU�1) is a r.c.f. for the

system (1), it follows that every jointly stabilizable/detectable control sys-

tem (1) is externally stabilizable by a �nite-dimensional controller. If a

jointly stabilizable/detectable realization of Y �1X is used, the closed loop

is also internally stable. 2

Since every bounded control system can be stabilized by a �nite-

dimensional controller, this suggests an indirect method of controller design
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for such systems. The in�nite-dimensional system (1) is �rst approximated

by a �nite-dimensional system (2). Some controller design method is then

used to design a controller for this �nite-dimensional system. This approach

is valid if for su�ciently large approximation order, the designed controller

also stabilizes the original system (1), and furthermore, the closed loop re-

sponses are close in some sense. In the next two sections conditions under

which these criteria are satis�ed are established.

For the common situation where the system is already externally stable,

and an aim of controller design is to improve the settling time of the system,

a real number � > 0 is speci�ed. A system is said to be externally �{stable

if its shifted transfer function G(s��) is in M (H1). Equivalently, replace

H1 by the algebra H1� of functions which are analytic in the right half

plane Re(s) > ��, and for which

sup
!

lim
x#��

jG(x+ j!)j <1

with corresponding norm.

De�nition 2.7 The feedback system (Figure 1), or alternatively the pair
(G;H), is said to be externally �{stable if det(I + GH) 6= 0, and each of
the four elements in the matrix �(G;H) belongs to M (H1�).

De�nition 2.8 The Co-semigroup T (t) is �{stable if there exist constants
M and � > � such that kT (t)k �Me��t for all t � 0.

De�nitions (2.3{2.6) also extend in a straightforward manner to �{internal

stability, �{stabilizability etc. Also, de�ne (N;D) to be a r.c.f. over H1�

for G if G = ND�1; N;D 2M (H1�) and for some X;Y 2M (H1�);

X(s)N (s) + Y (s)D(s) = I; Re(s) � ��:
Left coprime factorizations over M (H1�) are de�ned similarly. Theorems

2.1{2.4 also extend in a straightforward way to �{external and �{internal

stability.

3 The Graph Topology

Assume a sequence of �nite-dimensional subspaces Xn � X . De�ne Pnx to

be the orthogonal projection of x 2 X onto the �nite-dimensional subspace

Xn. The norm on Xn is that inherited from X and the natural injection

Xn ! X will not be explicitly indicated.

For each Xn, the approximating system is (An; Bn; Cn) where Bn :=

PnB; Cn := CjXn ; and An is an approximation to A which satis�es the two

assumptions (A2) and (A3) below. Note that the operators An; Bn; Cn and

the semigroup Tn(t) generated by An are operators on Xn. The following
is assumed:
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(A1) For all x 2 X ; limn!1 k Pnx� xk = 0:

(A2) For some s 2 �(A) and for all x 2 X ;

lim
n!1

k PnR(s;A)x�R(s;An)Pnxk = 0:

(A3) The semigroups Tn(t) generated by An are uniformly bounded. That

is, there exist real numbers M;k and an integer N such that

kTn(t)k �Mekt for all n � N: (7)

Uniform boundedness of the approximate semigroups is generally referred

to as \stability" in the numerical analysis literature. Assumption (A2) is

usually referred to as \consistency" of the approximations.

Assumptions (A1)-(A3) are satis�ed by typical approximationmethods.

They are su�cient to ensure that the open loop response of the systems

(An; Bn; Cn) approximate the response of (A;B;C). They are not su�-

cient to ensure convergence of the closed loop response. In a series of pa-

pers which include[21, 22], Kappel and Salamon examine an approximation

scheme for a class of delay systems. This approximation scheme satis�es

convergence properties stronger than (A1)-(A3) above, and solutions of a

sequence of approximating algebraic Riccati equations converge strongly.

However, as illustrated below, it is not suitable for use in controller design.

Example: This example is taken from [22]. Let X = l2 and choose some

b 2 l2 with k bk = 1 and with each component bi real and non-negative.

Consider

_x(t) = �x(t) + bu(t) (8)

y(t) = hb; x(t)i (8b)

where h; i here indicates the l2 inner product. The solution semigroup of the

homogeneous problem is S(t) = e�tI which is clearly exponentially stable,

and so (8) is a jointly stabilizable/detectable bounded control system. Note

also that the in�nitesimal generator, �I; is self-adjoint.
For n = 1; 2; ::: de�ne

bn := col(b1; b2; :::bn+1) 2 R(n+1);

An := diag(�1;�1; :::;�b2n+1) 2 R(n+1)�(n+1)

and consider the approximating systems

_xn(t) = Anxn(t) + bnu(t); (9)

yn(t) = b�nxn(t): (9b)
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The systems (9) satisfy assumptions (A1)-(A3). Since the in�nitesimal

generators A andAn are self-adjoint, it is trivial that the adjoint semigroups

S�n (t) generated by A�n converge strongly, uniformly on bounded time

intervals, to the semigroup S� (t) generated by A� : The transfer function

of (8) is G(s) = 1

s+1
and the transfer functions Gn(s) of the approximations

(9) are

Gn(s) :=
1

s + 1

nX
i=1

b2i +
b2n+1

s+ b2n+1
:

De�ning j :=
p�1; jGn(j!)j � 2 for all !. Thus, the approximations are

uniformly externally stable. It is shown in [22] that for each u 2 L2(0;1),

yn(t) converges in L2(0;1) to y(t). Also, note that, for Re(s) � 0;

lim
n!1

Gn(s) =

�
G(s) for s 6= 0;

G(s) + 1 for s = 0:

It follows that the transfer functions converge strongly everywhere in the

the right half plane except 0. It is also shown in [22] that the approxima-

tions satisfyZ 1

0

jb�neAntPnxj2dt � (k bnk2 + 1)k xk2 � 2k xk2:

That is, they are uniformly output stable.
For each n, let �n indicate the unique non-negative de�nite self-adjoint

solution of the approximating Riccati equation

A�n �n + �nAn ��nbn b�n �n + bn b�n = 0:

The above assumptions are su�cient to guarantee strong convergence of

�n to the unique non-negative self-adjoint solution � to the in�nite-dimen-

sional Riccati equation

( A� � +�A) ��b b� �+ b b� = 0:

The behaviour of the approximations when placed with a controller in

feedback is not so well-behaved. Consider �rst a controller with transfer

function H1 := �2 s+1
s+3

. This controller externally stabilizes the in�nite-

dimensional system (8). Thus, if an internally stable realization of this

controller is used, the closed loop will be internally stable. Now,

(1 + GH1)
�1 =

s+ 3

s+ 1

and

(1 + GnH1)
�1 =

(s+ b2n+1)(s + 3)

s2 + (3� 2
Pn

i=1 b
2

i � b2n+1)s + b2n+1(1� 2
Pn

i=1 b
2

i )
:
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This controller does not stabilize the approximating systems (9) for large

values of n. Simulation results would not predict that this controller sta-

bilizes the original system (8).

As another illustration, consider the controller transfer function H2 :=

� s+1
s+2

: This controller also externally stabilizes the in�nite-dimensional sys-

tem (8). We have

(1 + GH2)
�1 =

s+ 2

s+ 1

and

(1 + GnH2)
�1 =

(s + 2)(s+ b2n+1)

s2 + (2�Pn

i=1 b
2

i )s + b2n+1(1�
Pn

i=1 b
2

i )

which is a sequence of stable systems. However,

k (1 +GnH2)
�1k1 � (1 +GnH2)

�1(0) =
2

1�Pn

i=1 b
2

i

which is an unbounded sequence. Even if this controller optimized some

performance measure for (8), simulation results would indicate that this

controller did not stabilize (8). 2

It is clear that convergence stronger than that which exists in the above

example is required. Let (G;H) be some stable plant-controller pair. A

neighbourhood of G should be de�ned so that, for all su�ciently small

neighbourhoods B of G, Gn 2 B implies that

1. (Gn;H) is externally stable, and

2. the closed loop response �(Gn;H) is close (in M (H1) ) to �(G;H).

If G;Gn 2 M (H1); then for su�ciently small " > 0; k G�Gnk1 < "

implies (1) and (2) above. However, to be applicable to feedback control

of possibly unstable systems, a topology must be more general than the

operator norm topology for L2{stable systems.

The graph topology [37, 38] (also referred to as the gap topology) arose

from a need to de�ne distance between possibly unbounded operators. The

basic idea is outlined in Kato [23]. If E;F are closed linear subspaces of

a Banach space then �(E;F ) is the smallest number � such that for all

u 2 E;

�k uk � inf
v2F

ku� vk: (10)

The gap between E and F is de�ned as

�̂(E;F ) := max(�(E;F ); �(F;E)):

11



K.A. MORRIS

The graph of a closed operator S between Banach spaces U and Y is the

set

f(u; Su); u 2 domSg
where domS indicates the domain of S. If S and T are closed operators

from U to Y then the gap between their graphs as closed subspaces of U�Y
is well de�ned. De�ne a distance function d(S; T ) on closed operators to

be the gap between their graphs. Generalized convergence of a sequence

Sn ! S is de�ned by d(Sn; S) ! 0. If a sequence of operators fSng
are bounded, then convergence in norm to S is equivalent to generalized

convergence. Generalized convergence is thus an extension of the concept

of uniform convergence to closed operators.

Now, let R(H1) indicate transfer functions with both right and left

coprime factorizations over M (H1). Let G 2 R(H1) denote the trans-

fer function of a system with m inputs and p outputs. De�ne Um =

L2(0;1;Rm). Even if the system is unstable, some inputs u 2 Um will

be mapped to outputs y 2 Up. Consider these inputs to be the \domain"

of the system as an operator between two Banach spaces. The graph of a

system is de�ned as (the Laplace transforms of) this set of input-output

pairs, i.e.,
G(G) := f(û; ŷ); (u; y) 2 Um+pjŷ = Gûg

where û; ŷ indicate the Laplace transforms of u and y respectively. Letting

(N;D) be a r.c.f. for G;

G(G) = f(Dz;Nz); z 2 Hm
2
g

where z 2 Hm
2 indicates a vector with entries in the Hardy space H2 over

the right-half plane. It is easy to show that G(G) is a closed set.

Let G1; G2 be any two systems in R(H1). We say that G1 is \close"

to G2 in the graph topology if the gap between G(G1) and G(G2) is small.

More formally, let G be a system with a right coprime factorization (N;D)

and let �(N;D) be a number so that (N1; D1) is right coprime for allN1; D1

with 






N1 �N

D1 �D








1

< �(N;D):

A basic neighborhood is de�ned as follows. Let G be some element of

R(H1) with a r.c.f. (N;D) and let " be any positive number less than

�(N;D). The set

8<
:H1 = N1D

�1
1

j








N1 � N

D1 �D








1

< "

9=
;

12
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is a basic neighbourhood of G. By varying " over all 0 < " < �(N;D),

(N;D) over all r.c.f's of G and G over all elements of R(H1) we obtain

a collection of sets which is a base for a topology on R(H1), the graph

topology. Further details can be found in [37, 39].

The next theorem will be of use in a subsequent section.

Theorem 3.1 [37, 39] Suppose Gn is a sequence in R(H1), and that G 2
R(H1). Then the following statements are equivalent.

1. fGng converges to G in the graph topology.

2. There exists a r.c.f. (N;D) of G, and a sequence of r.c.f.'s (Nn; Dn)

of Gn such that Nn ! N and Dn ! D in M (H1):

3. There exists a l.c.f. (N;D) of G, and a sequence of l.c.f.'s (Nn; Dn)

of Gn such that Nn ! N and Dn ! D in M (H1):

For a sequence of stable systems, such as in the example discussed

above, (A1)-(A3) imply uniform convergence of CnSn(t)Bn on bounded

intervals of time, or pointwise convergence of the transfer functions in s.

Uniform convergence of the transfer functions is required in order to obtain

convergence in the graph topology. Furthermore, convergence in the graph

topology of possibly unstable systems can be established by examining

convergence in norm of stable coprime factorizations.

The importance of the graph topology in controller design is due to

the following result: A family of plants Gn can be robustly stabilized by

a compensator H which stabilizes some nominal plant G if and only if Gn

converges to G in the graph topology. Furthermore, if this is the case,

the closed loop response of the feedback pair (Gn;H) converges to that of

(G;H). This is stated more precisely below.

Theorem 3.2 [37, 39] Let Gn be a sequence of plants in R(H1).

1. Suppose Gn converges to G 2 R(H1) in the graph topology. Let H 2
R(H1) stabilize G. Then there exists an N such that H stabilizes
Gn; for all n � N , and moreover, the closed loop transfer matrix
�(Gn;H) converges to �(G;H) in M (H1).

2. Conversely, suppose there exists a H 2 R(H1) which stabilizes Gn

for all n � N; and that �(Gn;H) converges to �(G;H). Then Gn

converges to G in the graph topology.

This has obvious implications for controller design using approxima-

tions. Failure of a sequence of approximations to converge in the graph

topology implies that for each controller H, at least one of the following

must occur:

13
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1. (Gn;H) is not stable for all n su�ciently large;

2. the closed loop response �(Gn;H) does not converge uniformly to

�(G;H).

The approximating transfer functions in the example discussed earlier

in this section are in H1; but do not converge uniformly, and hence do

not converge in the graph topology. The controllers discussed illustrate the

problems which occur when an approximation scheme does not converge

in the graph topology. The �rst controller does not even stabilize the ap-

proximations for large approximation order (item 1). The second controller

leads to closed loop responses which do not converge (item 2).

Returning to the case of a general bounded control system (A;B;C), if

the transfer functions of the approximations (An; Bn; Cn) do not converge

in the graph topology to the transfer function of the original system, use

of the approximations to design a controller for (A;B;C), is guaranteed

to lead to incorrect conclusions about the behaviour of the closed loop. If

the approximations do converge in the graph topology, Theorem 3.2 states

that use of the approximations in controller design is valid.

The problem where �{stability is desired is handled entirely analo-

gously, by de�ning the graph topology with coprime factorizations over

H1� instead of H1:
The above example showed that assumptions (A1)-(A3) are not su�-

cient for convergence in the graph topology. This example also demon-

strates that strong convergence of the adjoint semigroups, even when the

approximations are uniformly externally stable, is not su�cient. In the

next section su�cient conditions for convergence in the graph topology of

�nite-dimensional approximations are presented.

4 Convergence of Approximation Schemes

Suppose that an approximation scheme for (1) satis�es, in addition to (A1)-

(A3), an assumption of uniform ��stabilizability.

(A4) If the original system is �-stabilizable, then the approximations are

uniformly �-stabilizable. That is, there exists a sequence of operators

fKng with Kn 2 L(Xn; Rm) and some K 2 L(X ; Rm) such that for

all x 2 X ; limn!1KnPnx = Kx. Furthermore, for su�ciently large

N the semigroups generated by An � BnKn are uniformly bounded

by Me��t for some M > 0; � > � and all n > N .

Lemma 4.1 Let (A;B;C) be a �-stabilizable bounded control system and
assume (An; Bn; Cn) is a sequence of approximations which satisfy assump-
tions (A1)-(A4). Let S(t) be the semigroup generated by A�BK and Sn(t)

14
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be the semigroup generated by An �BnKn where K;Kn are as in assump-
tion (A4) . Then k S(t)k �Me��t and for all � > 0; x 2 X ;

lim
n!1

sup
0�t��

kSn(t)Pnx� PnS(t)xk = 0:

Proof: De�ne Ao := A � BK and Ano := An � BnKn. Since (A2) is

satis�ed and limn!1BnKnPnx � PnBKx = 0 for all x 2 X ; it follows
that for some s 2 �(Ao);

lim
n!1

k PnR(s;Ao)x�R(s;Ano)Pnxk = 0:

Using (A4), the conclusions follow from the Trotter-Kato Theorem [25]

[Thm. 2.1]. 2

Theorem 4.2 Let (A;B;C) be a �-stabilizable/detectable bounded control
system, and assume (An; Bn; Cn) is a sequence of approximations which
satisfy assumptions (A1)-(A4). Then the approximating systems with trans-
fer functions Gn(s) := CnR(s;An)Bn converge to the original system in the
graph topology on M (H1�).

Proof: The theorem will be proven by showing that a sequence of right

coprime factorizations for the approximate systems (An; Bn; Cn) converge

to a right coprime factorization for (A;B;C). The result will then follow

from Theorem 3.1. Let feedback operators K and Kn be as de�ned above

(A4) so that Ano := An � BnKn generates a �{stable semigroup Sn(t) for

su�ciently large n and Ao := A � BK generates a �{stable semigroup

S(t). Referring to (5), for su�ciently large n time domain representations

of right �{coprime factors for the approximating systems are given by

Nn(t) = CnSn(t)Bn; Dn(t) = I �KnSn(t)Bn:

Similarly, a time domain representation of a right coprime factorization for

the original system is

N (t) = CS(t)B; D(t) = I �KS(t)B:

Convergence of the numerators is proven �rst. Since the semigroups

Sn(t) and S(t) are uniformly �� stable, for any " > 0 there exists � such

that Z 1

�

exp(�t) k N (t) �Nn(t) k dt <
"

2
(11)

where k � k here indicates a norm on Rp�m. Also,

k N (t)�Nn(t) k� kCk kPnS(t)B � Sn(t)PnBk+ kCS(t)B �CPnS(t)Bk:

15
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It follows from Lemma 4.1 that the �rst term above approaches zero, uni-

formly on bounded intervals [0; � ]. The second term is uniformly bounded,

equicontinuous and pointwise convergent to zero. Thus, by Ascoli's The-

orem, it also converges to zero uniformly on [0; � ]: Therefore, for any

" > 0; � > 0 there exists M such that

sup
0�t��

k N (t) � Nn(t) k� "

2e�� �
for all n > M: (12)

Combining statements (11) and (12) it follows that, since " was arbitrary,

lim
n!1

Z 1

0

exp(�t)kN (t) �Nn(t)kdt = 0:

Therefore (Nn(t) � N (t))e�t converges to zero in L1(0;1;Rp�m): Since

convergence in L1 of a function to zero implies convergence of its Laplace

transform to zero in M (H1), it follows that the numerators converge in

M (H1�).

We now show convergence of Dn(t) to D(t): De�ning

Fn(t) := [ KnPn �K ] S(t)B; En(t) := Kn [ Sn(t)PnB � PnS(t)B ];

we have

D(t) � Dn(t) = Fn(t) + En(t): (13)

Since the sequence fKng is uniformly bounded, a proof identical to that

used for the numerators shows that fEn(t)e�tg converges to zero in the L1

norm .

Since S(t) is �{stable, for any " there exists � so that

Z 1

�

exp(�t)kFn(t)kdt � "

2
:

The sequence Fn(t) is clearly uniformly bounded on [0; � ] and the sequence

is also equicontinuous. Since fFn(t)g is pointwise convergent to zero, it

follows from Ascoli's Theorem that

lim
n!1

sup
0�t��

kFn(t)k = 0;

and so

lim
n!1

Z 1

0

exp(�t)kFn(t)kdt = 0:

Therefore, (Dn(t) � D(t))e�t also converges to zero in L1(0;1;Rm�m):

Hence, the coprime factors converge in M (H1�): 2

Thus, if H is any stabilizing controller for the original system G, then

for su�ciently large N , (Gn;H) is �{externally stable for all n > N . If H

16
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is implemented as a �{stabilizable/detectable bounded control system, as

is common, Theorem 2.2 implies that the closed loop is also internally �{

stable. That is, the closed loop is a bounded control system (At; Bt; Ct) and

At generates an semigroup with bound Me�at where a > �: Furthermore,

the closed loop response of (Gn;H) converges, uniformly in the norm on

M (H1�), to that of (G;H).

If (A4) is replaced by a similar assumption of uniform detectability,

then similiar conclusions may be drawn by showing convergence of the left

coprime factors.

(A5) If the original system is �-detectable, then the approximations are

uniformly �-detectable. That is, there exists a sequence of operators

fFng with Fn 2 L(Y;Xn) and some F 2 L(Y;X ) , such that for all

y 2 Rp; limn!1 Fny � PnFy = 0: Furthermore, for su�ciently large

N , the semigroups generated by An � FnCn are uniformly bounded

by Me��t for some M > 0; � > � and all n > N .

Theorem 4.3 Let (A;B;C) be a �-stabilizable/detectable bounded control
system, and assume (An; Bn; Cn) is a sequence of approximations which
satisfy assumptions (A1)-(A3) and (A5). Then the approximating systems
with transfer functions Gn(s) = CnR(s;An)Bn converge to the original
system in the graph topology on M (H1�).

Proof: As above, it is su�cient to show convergence of the time domain

representations of a sequence of left coprime factors. Let SFn(t) denote the

semigroup of operators generated by An � FnCn and SF (t) the semigroup

generated by A� FC. De�ne

~Nn(s) = CnR(s;An � FnCn)Bn; ~Dn(s) = I � CnR(s;An � FnCn)Fn:

( ~Nn; ~Dn) is a sequence of l.c.f's for the approximating systems The pair

~N (s) = CR(s;A� FC)B; ~D(s) = I � CR(s;A� FC)F

is a l.c.f. for the original system.

The proof of convergence of ~Nn to ~N is exactly the same as that for

the case of right coprime factorizations. To show that the denominator

functions converge, de�ne

Qn(t) = CnSFn(t) [Fn � PnF ] ; Rn(t) = CnSFn(t)PnF � CSF (t)F

and note that
~D(s) � ~Dn(s) = L [Qn(t)] + L [Rn(t)]

where L(Q) here indicates the Laplace transform of Q. By assumption

(A5) and the fact that the output space Y is �nite-dimensional, Qn(t)e
�t

17
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converges to zero in L1(0;1;Rp�p). The same approach used for the nu-

merators can be used to show that Rn(t)e
�t also converges to zero in the

L1-norm.

Hence, the sequence of l.c.f.'s for (An; Bn; Cn) converge to a l.c.f. for

(A; B; C) in M (H1�): 2

It is not clear to what extent the additional assumption (A4) or (A5)

is necessary for convergence in the graph topology. Some insight into the

requirements for convergence in the graph topology can be obtained by

considering stable systems. Suppose that the semigroup T (t) generated

by A is bounded by Me��t; � > 0. It is reasonable to demand that the

closed loop system have at least this margin of stability. If this is so, then

the sequence of approximating transfer functions Gn must converge in the

graph topology on M (H1�); � > � � 0: This implies that Gn(� � �) 2
M (H1) for large n [37, 39] and so for some sequence of constants Mn

k Gn(t)k �Mne
��t: (14)

Thus, for large enough model order, any unstable modes must be both

uncontrollable and unobservable. If the approximation scheme is valid for

arbitrary choices of sensing and actuating, then for some B;C and some

n, (An; Bn; Cn) will be �-stabilizable and �-detectable. Thus, if a scheme

is satisfactory for an arbitrary choice of B;C; then for some Mn, large

enough n, [29]

k Tn(t)k �Mne
��t; � > � > 0: (15)

This heuristic argument suggests that it is necessary that the eigenvalues

of the approximating systems are bounded away from the imaginary axis,

which is a weaker form of uniform exponential stability. However, further

research into these questions is needed.

In the next section common approximation schemes for several impor-

tant classes of bounded control systems are shown to satisfy assumptions

(A1)-(A4), and hence the corresponding sequences of transfer functions

converge in the graph topology.

5 Uniform Stabilizability of Approximation Schemes

A number of researchers (eg. [5, 14, 18, 21, 26]) have studied the problem

of which approximating schemes provide uniform exponential stabilizabil-

ity (A4) in addition to the usual (A1)-(A3). The following theorem is

immediate from results on approximations to in�nite-dimensional Riccati

equations.

Theorem 5.1 Assume that

18
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1. (A1)-(A3) hold for the system (A;B;C),

2. there exist uniformly bounded fLng such that, for someM > 0; � > �,
the semigroups generated by An � BnLn are uniformly bounded by
Me��t, and,

3. the adjoint semigroup operators converge strongly:

lim
n!1

sup
0�t��

kT �n(t)Pnx� PnT
�(t)xk = 0:

Then (A;B) is ��stabilizable, and the conclusions of Theorem 4.2 hold.

Proof: By assumption, (A;B) with observation operator I, where I is

the identity operator on X satisfy hypotheses (H1)-(H3) in [18]. The result

follows from [18, Theorem 2.1, Theorem 2.3]. 2

It is well-known that (A1)-(A4) are true if (A; B) is stabilizable, the

set of eigenfunctions f�ig of A is complete in X , and the approximating

subspaces are chosen to be Xn := spanf�igi=1;n:Therefore, the correspond-
ing sequence of �nite-dimensional approximations converges in the graph

topology.

Several other classes of bounded control systems and common approxi-

mation schemes which satisfy assumptions (A1)-(A5) are discussed below.

5.1 Hereditary systems

Consider the delay functional di�erential equation

_x(t) = Aox(t) +A1x(t� h) +

Z 0

�h

D(r)x(t+ r)dr +Bu(t); t � 0

x(0) = x0; x(� ) = �(� ); �h � � < 0; (16)

y(t) = Cx(t);

where x(t) 2 Rn; y(t) 2 Rp; u(t) 2 Rm and Ao; A1; B and C are matrices

of appropriate dimension. Also, D 2 L2(�h; 0;Rn�n): De�ning the state-

space to be X = Rn � L2(�h; 0;Rn); the hereditary system (16) can be

formulated as a bounded control system [3].
De�ne the �nite-dimensional subspaces, XN ; of X as follows:�
(�1; �2) 2 Xj �2(�) = zj;

�j

N
h � � <

�(j � 1)

N
h; j = 1; :::N where zj 2 R

n

�
:

The �nite-dimensional Galerkin approximation to (16) derived using these sub-

spaces satis�es assumptions (A1)-(A3) [3, 31]. This scheme is known as the

averaging approximation to (16).
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In [17] it is shown that this scheme is uniformly stabilizable and detectable.

In fact, for a bounded operator K such that A�BK generates a stable semigroup,
KPn satis�es (A4). Similarly, if (16) is detectable, there exists a sequence Fn ! F

where A�FC generates a stable semigroup and Fn is a sequence which satis�es

(A5).

5.2 Sectorial operators

Banks and Kunisch [5] prove that (A1)-(A4) hold for general Galerkin approxi-

mations to symmetric parabolic problems with bounded control. In this section
these results are extended to a larger class of systems.

Let V be a Hilbert space, densely and continuously imbedded in X . The

notation h�; �i indicates the inner product on X , and h�; �iV indicates the inner
product on V: In order to avoid confusion with the norm on X , the norm on V

will be indicated by k �kV . Identify X with its dual so that V ,!X = X 0,!V 0.

Let a : V � V 7! C be a continuous sesquilinear form i.e. there exists c1 such
that

ja(�; )j � c1k �kV k  kV (17)

for all �; 2 V: De�ne a closed operator A through this form by

h�A�; i = a(�; ); 8 2 V

where domA = f� 2 V ja(�; �) 2 Xg: We assume that in addition to (17), a(�; �)

satis�es Garding's inequality: there exists k � 0; such that for all � 2 V

Rea(�;�) + kh�;�i � ck �kV
2
: (18)

The inequalities (17) and (18) guarantee that A generates an analytic semigroup
with bound k T (t)k � ekt and that the spectrum of A is contained in some sector

of the complex plane[33]. Further details may be found in [33].

The assumption that Garding's inequality holds is not trivial. For instance,
structures with purely viscous damping do not satisfy this condition [4]. However,

this classi�cation does include a large number of problems. In particular, the

symmetric parabolic systems studied by Banks and Kunisch [5] are a special case
of this class of systems. Also, many damping models for structural vibrations

lead to problems of this type. Details can be found in [4]. A particular example

is described below.
Example: Consider a Euler-Bernoulli beam of unit length rotating about a �xed

hub, and let w denote the de
ection of the beam from its rigid body motion.

Denote the torque applied at the hub by u(t), and assume that the hub inertia Ih
is much larger than the beam inertia, so that, letting �(t) indicate the rotation

angle, u(t) = Ih��(t) is a reasonable approximation to the applied torque. Use of

the Kelvin-Voigt damping model leads to the following description of the beam
vibrations:

@2w

@t2
+

@2

@r2

�
EI

@2w

@r2
+ cDI

@3w

@r2@t

�
=

r

Ih
u(t); 0 < r < 1:
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The appropriate boundary conditions are

w(0; t) = 0;
@w

@r r=0
= 0;

�
EI

@2w

@r2
+ cDI

@3w

@r2@t

�
r=1

= 0;

�
EI

@3w

@r3
+ cDI

@4w

@r3@t

�
r=1

= 0: (19)

Let x := (w; _w). If the position is measured at the tip of the beam, a state-space
formulation of the above partial di�erential equation problem is

_x(t) = Ax(t) + Bu(t);

y(t) = Cx(t) := w(1; t);

where

A :=

�
0 I

�EI @
4

@r4
�cDI

@4

@r4

�
; B :=

�
0

r=Ih

�
:

De�ne

H :=
n
w(r) 2 H2[0; 1]; w(0) =

dw

dr
(0) = 0

o
:

It is known that A can be associated with a sesquilinear form a(�; �) which satis�es

(17) and (18) with V := H � H and X := H � L2[0; 1](See [4]). The operator

B is clearly a bounded operator from R to X . Since point sensing is a bounded
operator on H (Sobolev's Inequality [11] ), the output operator C is bounded

from X to R . 2

Let Xn � V be a sequence of �nite-dimensional subspaces. For the class

of bounded control systems (1) where the operator A satis�es the inequalities
(17) and (18) we assume only that the approximating subspaces Xn satisfy a

V -approximation property: for all x 2 V there exists a sequence xn 2 Xn with

(H1) lim
n!1

k xn � xk
V
= 0:

Note that it is only required that projections onto Xn converge in the V -norm.

An earlier result [17] requires an inverse approximation property:

inf
x2Xn

k R(s;A)z� xk
V
� "1(n)k zkX

inf
x2Xn

k R(s; A� )z � xk
V
� "2(n)k zkX

where "1(N); "2(N) ! 0 as N ! 1: These conditions are stronger, and more

di�cult to verify than (H1). Furthermore, the above conditions can only be
satis�ed if R(s;A) is compact. Systems such as the Euler-Bernoulli beam with

Kelvin-Voigt damping discussed above are excluded.

The approximating generator An is de�ned by

h�Anxn; vni = a(xn; vn); 8xn; vn 2 Xn; (20)

and Pn;Bn; Cn are as de�ned at the beginning of Section 3. This type of approx-

imation is generally referred to as a Galerkin approximation.

Assumption (H1) clearly implies (A1). We now prove that, subject to hy-
pothesis (H1) the approximations also satisfy assumptions (A2)-(A5).
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Theorem 5.2 If (H1) holds, then assumptions (A2) and (A3) are satis�ed and

so the semigroups Tn(t) generated by An converge strongly, uniformly on bounded
intervals 0 � t � � , to the semigroup T (t) generated by A.

Proof: Since An are de�ned through the sesquilinear form a(�; �) we obtain
k Tn(t)k � ekt from the Lumer-Phillips Theorem [30]. The result will follow

from the Trotter-Kato Approximation Theorem if it is proven that, for some �

and for all x,
lim
n!1

R(�;An)Pnx = R(�;A)x:

Choose � > k; x 2 X , and de�ne wn := R(�;An)Pnx; w := R(�;A)x. The proof

that wn ! w is identical to that in [4, Theorem 2.2]. 2

Theorem 5.3 Suppose (A;B) is a stabilizable pair and that A satis�es (17) and

(18). Let K 2 L(X ; Rm) be such that A� BK generates a stable semigroup. If
(H1) is true, there exists N such that for some M;� > 0 and all n > N , the

semigroups Sn(t) generated by Ano := An � BnKPn are uniformly stable i.e.

k Sn(t)k �Me
��t 8n > N: (21)

Proof: The technique used in [5, Lemma 3.3] is generalized. De�ne a sesquilinear

form aB : V � V ! C by aB(z;v) = a(z; v) + (BKz;v) + k2(z; v) where k2 is
chosen so that there exists c4 > 0; 0 < c3 � c4 with

Re aB(z; z) � c3k zkV
2
; jaB(z; v)j � c4k zkV k vkV :

Therefore,
jIm aB(z; z)j

jRe aB(z; z)j
�
c4

c3
:

Thus, de�ning � := tan�1 c4
c3
; the numerical range of aB is contained in the sector

� := f � 2 C; jarg�j � � g. It follows that the spectrum of A � BK � k2I is

contained in the left sector �� := f �; jarg(��)j � � g [23, pg. 268]. Similarly,

for all n, the spectrum of An�BnKPn�k2I is contained in �� . The remainder
of the proof is identical to that in [5, Lemma 3.3]. It follows that there is an

" > 0 and an integer N such that, for n > N , the spectrum of Ano is contained

in a left sector ~� with vertex �"=2.

For some C dependent only on c3; c4 , k R(�;Ano � k2I)k � C=j�j or,

k R(�;Ano)k � C=j�� k2j

[33, Theorem IV.6.A]. The uniform exponential bound (21) for Sn(t) now follows

from the representation

Sn(t) =

Z
�

e
�t
R(�;Ano) d�

where � is the positively bounded boundary of the sector ~�, and from the obser-

vation that for all t � 1, k Sn(t)k � ek2 : 2
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Corollary 5.4 Suppose (A;B) is a �-stabilizable pair and A satis�es (17) and

(18). If (H1) is true, then there exists an N such that for all n > N; the semi-
groups Sn(t) generated by Ano := An�BnKPn are uniformly �{stable, i.e., there

exists N;M;� > � such that

k Sn(t)k �Me
��t 8n > N: (22)

Proof: Replace A by A+ �I and a(u; v) by a(u; v)� �hu; vi, in the proof of the

previous theorem. 2

It follows that if the operator A of a stabilizable/detectable bounded control
system (A;B;C) is associated with a continuous sesquilinear form a(�; �) which

satis�es Garding's inequality (18), then any sequence of Galerkin approximations

(20) satisfying assumption (H1) converge in the graph topology.
The example of an Euler-Bernoulli beam with Kelvin-Voigt damping dis-

cussed above does not have a compact resolvant, and satis�es assumptions (A1)-

(A4), so it is clear that uniform convergence of the resolvants is not necessary for
uniform stabilizability or convergence in the graph topology.

6 Application: H1 Controller Design

It has been demonstrated above that the graph topology is an appropriate topol-

ogy in which to establish convergence of approximations used for controller de-

sign, and also that such convergence exists for several important classes of systems
and approximation schemes. In this section these ideas are applied to a problem

of controller design.

Recall that G is the transfer function of the system (1) and that Gn is the
transfer function of the system (2). Denote the set of all stabilizing controllers

for a system G by S(G): Convergence in the graph topology of a sequence of

approximating systems Gn to the original system G implies that for su�ciently
large n, the sets S(Gn) and S(G) of stabilizing controllers have a non-empty

intersection. Furthermore, if H is any stabilizing controller for G, then for large

n; H 2 S(Gn), and the closed loop response �(Gn;H) converges to the exact
closed loop response.

Suppose that a sequence of controllers Hn for the approximating systems Gn
is obtained using some design technique. If Hn also converges to H 2 S(G) in the
graph topology then the closed loop response �(Gn;Hn) converges to �(G;H)

. Recall that R(H1) indicates systems with transfer functions which have right-

and left- coprime factorizations over H1:

Theorem 6.1 [37, 39] Let fGng; fHng be sequences in R(H1) and G;H 2

R(H1). Then �(Gn; Hn) ! �(G;H) in M(H1) if and only if Gn ! G and

Hn ! H in the graph topology.

As an illustration, consider H1 optimal control methods. Let G be a stable
plant, and fGng a sequence of approximations in M(H1) which converge to G;

i.e.,

lim
n!1

k G�Gnk1 = 0: (23)
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Such convergence is guaranteed by Theorem 4.2 if the approximations satisfy

assumptions (A1)-(A3), and in addition, the constant k in (7) can be chosen less
than zero. The most basic H1-control problem is weighted sensitivity minimiza-

tion:

�(G) := inf
H2S(G)

m(G;H) (24)

where

m(G;H) := k W1(I +GH)�1k
1

(25)

and W1 2M(H1): This problem arises in the context of minimizing the steady-

state error e1 (see Figure 1) with the error weighted by W1. Typically, W1 is a
function which is large near the frequencies where the disturbance r1 is expected

to be signi�cant. Further details can be found, for instance, in [12].

The set of all stabilizing controllers for a system with a right (or left) coprime
factorization may be described in terms of theYoula parametrization: a controller

H externally stabilizes G if and only if it can be written

H = (Y �Q ~N)�1(X +Q ~D); jY �Q ~N j 6= 0; Q 2M(H1) (26)

where X;Y; ~N; ~D are as de�ned in (3), (4). The set of all stabilizing controllers

for a given system G are parametrized by Q , as Q ranges over all stable systems.
In other words,

S(G) = f (Y �Q ~N)�1(X +Q ~D); jY �Q ~N j 6= 0; Q 2M(H1) g:

Using the Youla parametrization (26) of all stabilizing controllers, any stab-

ilizing controller for G must be of the form

H = Q(I �GQ)�1; Q 2M(H1); (27)

and so (24, 25) can be rewritten

�(G) := inf
Q2M(H1)

m(G;H)

where

m(G;H) = kW1(I �GQ)k1:

As shown in [35], this problem is not in general continuous in the argument

G. The assumption that Gn ! G in the graph topology, does not imply that
�(Gn)! �(G). Even if it is known that

lim
n!1

�(Gn) = �(G);

and W1
�1 2 M(H1), the corresponding controllers may not converge. To see

this, suppose fHng is such that m(Gn;Hn) ! m(G;H) and let Qn;Q be the

corresponding Youla parameters. This implies only that GnQn ! GQ , so fQng

may be unbounded. It is not possible prove in general that Hn stabilizes G for
all n su�ciently large.
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Consider now the mixed sensitivity problem

�(G) := inf
H2S(G)

m(G;H) (28)

where

m(G;H) :=





 W1(I +GH)�1

W2H(I +GH)�1






1

(29)

and W1;W2;W2
�1 2 M(H1). This problem arises when sensitivity is being

reduced in conjunction with a robustness constraint (eg. [12]). Using the Youla
parametrization to rewrite (29),

m(G;H) =





 W1(I �GQ)

W2Q






1

(30)

where Q is the Youla parameter for H 2 S(G). The optimal value for this

problem is continuous in G [35]. That is, uniform convergence of Gn to G (23)

implies that
lim
n!1

�(Gn) = �(G):

Since the mixed sensitivity problem is continuous in G, it is possible to con-

struct a sequence of �nite-dimensional controllers, Hn, which satisfy the inequal-
ity m(Gn;Hn) � p where p > �(G). For large enough n, Hn stabilizes G, and

a level of performance m(G;Hn) arbitrarily close to p can be achieved when the

�nite-dimensional controller Hn is implemented with the original model G. This
is stated precisely and proven below.

Theorem 6.2 Let Gn be a sequence of transfer functions inM(H1) which con-

verge to G in norm on M(H1). Choose some p > �(G) where �(G) is de�ned

in (28, 29). It is possible to choose a sequence of controllers which satisfy

m(Gn;Hn) � p (31)

for su�ciently large n, where m(�; �) is given by (29). For su�ciently large N ,
Hn stabilizes G for n > N , and furthermore, for any " > 0, we can choose N

large enough so that

m(G;Hn) � p+ "; n > N: (32)

If the sequence of Hn are optimal to within a tolerance 
 i.e. for some N ,

m(Gn;Hn) � �(Gn) + 
; n > N ; (33)

then,
limsupn!1m(G;Hn) � �(G) + 
:

That is, performance arbitrarily close to optimal can be obtained with a �nite-
dimensional controller Hn.

Proof: Since �(Gn) ! �(G); �(Gn) < p for su�ciently large n. This proves

(31).
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The boundedness of the performance measure m(Gn; Hn) guarantees, using

(30), that the Youla parameters k Qnk1 � M for some constant M . For su�-
ciently large n,

Hn(I +GHn)
�1 = Qn(I + (G�Gn)Qn)

�1;

(I +GHn)
�1 = (I �GnQn)(I + (G�Gn)Qn)

�1

are in M(H1). Therefore, from the de�nition of external stability, Hn = Qn(I�
GnQn)

�1 stabilizes G for large n.

Furthermore,

m(G;Hn) �

����
����
�
W1(I �GnQn)

W2Qn

�����
���� ����(I + (G�Gn)Qn)

�1
���� :

Thus,
m(G;Hn) �m(Gn;Hn)

����(I + (G�Gn)Qn)
�1
���� : (34)

By choosing N large enough, (32) can be satis�ed for any " > 0.
If , for some 
;N , (33) is satis�ed, then since limn!1 �(Gn) = �(G), k Qnk1

is again bounded and Hn stabilizes G for su�ciently large n. Taking limits of

both sides of (34),
limsupn!1m(G;Hn) � �(G) + 


as required. 2

Note that not only have these results not been previously obtained, use of

the graph topology leads to a short and simple proof.

7 Conclusions

For most applications, �nite-dimensional approximations must be used in de-

signing a controller for an in�nite-dimensional system. The graph topology has
been used here to discuss convergence of approximations to bounded semigroup

control systems. Convergence in this topology is stronger than the convergence

required for simulation of the original system. However, convergence in the graph
topology is a necessary condition for any scheme to be satisfactory for controller

design.

It has been shown that the standard assumptions used in numerical analysis,

plus an additional condition, uniform stabilizability (or detectability), are suf-

�cient for the convergence in the graph topology. This work is currently being
extended to problems where control and/or observation may be unbounded.

Several examples have been given of common problems, and common ap-

proximation schemes for these problems, which converge in the graph topology.
Banks' and Kunisch's results [5] have been extended to show that Galerkin type

approximations to sectorial operators are uniformly stabilizable, and converge in

the graph topology.
At the present time, necessary and su�cient conditions for an approximation

scheme to converge in the graph topology are not known. The standard converg-

ence conditions (A1)-(A3) with uniform stabilizability (A4) of the approximations
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are su�cient. Uniform convergence of the resolvants is not necessary for this con-

dition to be satis�ed. Furthermore, strong convergence of the adjoint semigroups,
even with uniform external stability is not su�cient. However, the questions of

whether uniform stabilizability is necessary and whether it can be obtained with-

out strong convergence of the adjoint semigroups remain unanswered.
Once a scheme has been shown to converge in the graph topology, we would

also like to be assured that a given design technique will yield reliable results. We

need to establish that the sequence of �nite-dimensional controllers at least stabi-
lizes the original system for high enough model order. Convergence of controllers

designed using �nite-dimensional approximations and H1 techniques has been

discussed. Future work will demonstrate convergence of linear quadratic regula-
tor type controllers.
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