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Fixed Gain O�-line Estimators of ARMA
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Abstract

Let b��N denote the estimator of the ARMA parameter vector ��

using a �xed gain o�-line prediction error method with gain or for-

getting rate �. We show that under certain conditions b��N � �� is an
L-mixing process and can be decomposed as the sum of an explic-

itly given L-mixing process of the order of magnitude O(�1=2) and

of a residual term of the order of magnitude O(�) + O((1 � �)N ).
Here the order of magnitude is measured as the Lq(
;F ;P ) norm

for any q � 1 where (
;F ; P ) is the underlying probability space.

The result of the paper is directly applicable to �xed gain recursive
estimators of AR models. The result of this paper has been applied

in the theory of stochastic complexity.

Key words: ARMA-processes, prediction error estimation, forgetting, strong

approximation, L-mixing processes
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1 Introduction

It has been shown in [5] that the estimation error of the parameters of an

ARMA process can be approximated by the arithmetic mean of a martin-

gale so that the approximation error is of the order of magnitudeOM (N�1).

The notation OM (�) is to be described following De�nition 4.1. That result

played a key role in deriving asymptotic properties of the so-called predic-

tive stochastic complexity for ARMA processes (cf. [4] and also [11]).
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The purpose of this paper is to present an analogous representation of

the estimation error process when the estimator is obtained using �xed

gain estimation or in other words estimation with exponential forgetting.

Fixed gain estimation is typically used when we anticipate that the

parameters may vary over time and in this case it would be more natural to

consider recursive estimation methods. However the analysis of �xed gain

recursive estimation methods in general is much harder than the analysis

of the corresponding o�-line estimation methods. An exception is the case

when the model that we consider is an autoregressive process, namely in

this case a suitable �xed gain recursive estimator is identical with the �xed

gain o�-line estimator. Thus in this case we have a practically useful result.

There is substantial evidence that the theory of stochastic complexity

provides us with a new principle of statistical analysis with the help of

which we can conveniently solve statistical problems, which were considered

earlier very di�cult. As an example we mention the problem of model

structure selection (cf. [14] and for a recent survey [11]). Also it is well-

known that the analysis of the so-called predictive stochastic complexity

depends strongly on the �ne asymptotic analysis of the estimator process

which is used in the \encoding procedure"(cf. [4]). This explains the

motivation of the present investigation. The results of the paper have

actually been applied in [6] to derive the asymptotic properties of a new

predictive stochastic complexity. The proposed estimation procedure and

the associated predictive stochastic complexity is also relevant in a new

change point detection method (cf. [9]). Also using \�xed-gain" estimators

a new model-selection method has been developed (cf. [10, 11]).

The main result of the paper is Theorem 1.2 which gives the desired

decomposition of the estimation error as the sum of an explicitly given L0-

mixing process of the order of magnitude OM (�1=2) and of an L0-mixing

error term of the order of magnitude OM(�) + OM((1 � �)N ). Here �

denotes the \forgetting rate" (i.e. small � means small rate of forgetting).

The de�nition of L0-mixing processes is given in Appendix II.

The results of the paper can easily be extended to multivariable �nite

dimensional linear stochastic systems if a certain uniqueness theorem anal-

ogous to the one given in [1] holds (cf. e.g. [16, 18]), or even to the general

estimation problem described by Ljung's scheme. Some of these possible

extensions are stated in [8]). Now we specify the notations and technical

conditions for the �rst theorem of the present paper.

Let (yn); n = 0;�1;�2; : : : be a second order stationary ARMA (p; q)

process satisfying the following di�erence equation:

yn + a�1yn�1 + : : :+ a�pyn�p = en + c�1en�1 + : : :+ c�qen�q: (1:1)

which we write in a shorthand notation as A�y = C�e where A�; C� are

polynomials of the backward shift operator. De�ne A�(z�1) =
Pp

i=0 a
�
i z
�i;
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C�(z�1) =
Pq

i=0 c
�
i z
�i:

Condition 1.1 A�(z�1) and C�(z�1) have all their roots inside the unit

circle, i.e. A�(z�1) and C�(z�1) are stable, moreover we assume that they

are relative prime and a�0 = c�0 = 1.

Let (Fn), and (F+
n ); n = 0;�1;�2 : : : be an increasing and a decreasing

family of �-algebras, respectively, such that Fn; and F
+
n are independent

for all n.

Condition 1.2 (en) is a discrete-time, second order stationary, martingale-

di�erence process with respect to Fn; n = 0;�1;�2 : : : i.e. E(enjFn�1) =
0, and E(e2njFn�1) = ��2 = const. a.s. Moreover we assume that (en) is

L-mixing.

The concept of L-mixing processes together with the conditions im-

posed onto Fn;F
+
n are described in Appendix I. A detailed exposition is

given in [3]. The signi�cance of the class of L-mixing processes is that they

are closed under all the operations which are usual in the estimation the-

ory of linear stochastic systems. This invariance property is not shared by

the class of �-mixing processes or mixingales which are also potential can-

didates for the analysis of estimation methods. The concept of L-mixing

processes has been used extensively in previous works (cf. [8, 11] for two

recent surveys).

Let G � IRp+q denote the set of �'s such that the corresponding poly-

nomials A(z�1) and C(z�1) are stable. G is an open set. Let D� and D

be compact domains such that �� 2 intD� � int D and D � G. Here

int D denotes the interior of D. To estimate the unknown parameters

a�i ; c
�
j ; i = 1; : : :p; j = 1; : : : q and the unknown variance ��2 we use the

prediction-error method. (The prediction error method without forgetting

is described e.g. in [2, 12] or in [15]). Let us take an arbitrary � 2 D and

de�ne an estimated prediction error process ("n); n � 0 by the equation

" = (A=C)y

with initial values "n = yn = 0 for n � 0. Let the coe�cient s of A(z�1)

and C(z�1) be denoted by ai and cj, respectively, and de�ne the system

parameter vector by � = (a1; : : : ; ap; c1; : : : cq)
T : To stress the dependence

of ("n) on � and �� we shall write "n = "n(�; �
�). Then the cost-function

associated with the prediction-error method using forgetting is given by

VN (�; �
�) =

1

2

NX
n=1

(1� �)N�n�"2n(�; �
�);

where 0 < � < 1 is the forgetting factor. The factor � is included in the

cost-function to ensure that the sum of the weights is approximately equal

to 1.
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It is easy to see that the cost function can be computed recursively as

follows:

VN (�; �
�) = (1� �)VN�1(�; �

�) + �"2N (�; �
�);

i.e. the correction term corresponding to the latest observation enters the

cost function always with the same �xed weight. This representation of the

cost function justi�es our terminology "�xed gain estimation".

The estimate b�N of �� may be de�ned as the solution of the equation

@

@�
VN (�; �

�) = V�N (�; �
�) = 0: (1:2)

(Here di�erentiation is taken both in the almost sure and in the M -sense.

For the de�nition of the latter cf. Appendix I).

It is easy to see that "n(�; �
�) is a smooth function o f � for all !, and

hence (1.2) can be written as

NX
n=1

(1 � �)N�n�"�n(�; �
�)"n(�; �

�) = 0: (1:3)

In the special case when the process to be estimated is an AR process,

i.e. when C� = 1, equation (1.3) is linear, and its solutions, which we

denote by b�N ; can be computed recursively in N . De�ning the regressor

vector �N = (�yN�1;�yN�2; : : : ;�yN�p)
T , the coe�cient matrix of the

normal equation is

RN =

NX
n=1

(1� �)N�n��n�
T
n :

With this notation we have the following recursion (cf. p.18. in [13]):

b�N = b�N�1 + �R�1
N
�N (yN � �TN�1

b�N�1):
Assuming that (yn) is actually stationary, and \freezing" b�N�1 at the valueb�N�1 = ��, the process (RN ), and thus also the process (RN )

�1 are station-

ary, too. We get that the correction term in the above recursion is � times

a stationary process, the above recursive estimation scheme is therefore

called a �xed gain estimation method.

Since equation (1.2) or (1.3) may have no solution with positive and

asymptotically non-negligible probability we will have to de�ne b�N with

more care in the general case. But �rst we need some further de�nitions.

Let us introduce the asymptotic cost function de�ned by

W (�; ��) = lim
n!1

1

2
E"2n(�; �

�):
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It is easy to see that W (�; ��) is smooth in the interior of D and we have

W�(�
�; ��) = 0 and R�

�
= W��(�

�; ��) > 0

i.e. R� is positive de�nite.

Let us now de�ne the random variables

�V�N = sup
�2D;��2D�

jV�N (�; �
�)�W�(�; �

�)j

and

�V��N = sup
�2D;��2D�

kV��N (�; �
�)�W��(�; �

�)k:

It is easy to see (cf. Lemma 4.7) that if �V�N < d0 and �V��N < d00 where

d0 and d00 are su�ciently small then (1.2) or (1.3) have a unique solution

in D. Let us choose d0 = d00 and let us de�ne the event

AN = f! : �V�N < d00; �V��N < d00g;

and de�ne a solution of (1.2) or (1.3) as a random variable which is the

solution of (1.2) and (1.3) on AN and arbitrary but D-valued otherwise.

With this notation the �rst result can be stated as follows:

Theorem 1.1 Under Condition 1.1 and 1.2 we have for any solution of

(1.2)

b�N � �� = �(R�)�1
NX
n=1

(1� �)N�n�"�n(�
�; ��)en + rN (1:4)

where rN = OM (�) + OM ((1 � �)N ). The notation OM (:) is introduced

after De�nition 4.1.

It will be seen that the dominant term on the right hand side of (1.4)

is OM(�1=2). Since it cannot be expected that P (AN ) tends to zero it

will be important to characterize the process �AN , where �AN denotes the

characteristic function of the set AN . For this we have to impose additional

conditions on the input noise process.

Theorem 1.2 If the input noise process is L0-mixing then a suitable ver-

sion of the solution of the process (b�N � ��) and the residual process (rN )

are L0-mixing with respect to (FN ;F
+
N ) such that for all 1 � q < 1 and

c > 0 we have

�q;c(b�N � ��) = O(��1+c=2(q+1)) an d �q;c(rN ) = O(��1+c=2(q+1)):

This theorem is useful to get pathwise results for the estimator process.

E.g. it follows, that for all Lipschitz-continuous function f

lim sup
N!1

1

N

NX
n=1

(f(b�N ) � f(��)) � c�1=2

almost surely, with some deterministic constant c.
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2 The Proof of Theorem 1.1

Lemma 2.1 For any �xed d > 0 and s > 0 equation (1.2) has a unique

solution in D for N > c=�, where c is a deterministic constant, with the

property that it is also in the sphere fj�� ��j < dg with probability at least

1� c0�s. Here the constants depend only on the system and on d and s.

Remark. The statement of the lemma can be weakened to saying that the

probability in question can be bounded from below by 1�c0�s�c00(1��)N .

Proof: We show �rst that the probability to have a solution outside the

sphere f� : j� � ��j < dg is less than c0�s with any s > 0 for N > c=�.

Indeed, the equation W�(�; �
�) = 0 has a single solution � = �� in

D (cf. [1]), thus for any d > 0 we have

d0
�
= inffjW�(�; �

�)j : � 2 D; �� 2 D�; j� � ��j � dg > 0

since W�(�; �
�) is continuous in (�; ��) and D�D is compact. Therefore if

a solution of (1.2) exists outside the sphere j� � ��j < d then we have for

�V�N = sup
�2D;��2D�

jV�N (�; �
�)�W�(�; �

�)j (2:1)

the inequality �V�N > d0.

But the process

un(�; �
�) = "�n(�; �

�)"n(�; �
�) � E"�n(�; �

�)"n(�; �
�) (2:2)

is a zero-mean L-mixing process uniformly in �; �� and the same holds for

the process (u�n(�; �
�)). By Theorem 4.3 we have

j

NX
n=1

(1� �)N�n�("�n(�; �
�)"n(�; �

�)� E"�n(�; �
�)"n(�; �

�))j = OM(�1=2):

Note that E"�n(�; �
�)"n(�; �

�) = W�(�; �
�) + �n, with some �n = OM (cn),

where 0 < c < 1, uniformly in �. The error term �n is due to the nonsta-

tionary initial conditions "�0(�; �
�) = 0; "0(�; �

�) = 0. It is easy to see that

if we let the error process (�n) pass through an exponentially smoothing

�lter, then the output process at time N will be of the order of magnitude

OM ((1� �)N for small � (cf. Lemma 4.5). Also note that

NX
n=1

(1� �)N�n� = 1� (1 � �)N+1
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hence
NX
n=1

(1� �)N�n�E"�n(�; �
�)"n(�; �

�) =

NX
n=1

(1 � �)N�n�(W�(�; �
�) + �n) = W�(�; �

�) + O((1� �)N ):

Thus we conclude that �V�N = OM(�1=2)+O((1��)N ), and here the second

term on the right hand side is deterministic. Therefore we have with some

c > 0 that for N > c=� O((1 � �)N ) < d0=2 and hence P (�V�N > d0) �
P (OM(�1=2) > d0=2) = O(�s) with any s by Markov's inequality, and thus

the proposition at the beginning of the proof follows.

Let us now consider the random variable

�V��N = sup
�2D;��2D�

kV��N (�; �
�)�W��(�; �

�)k:

By the same argument as above we have for any d00 > 0 P (�V��N > d00) =

O(�s) for N > c=�. Hence for the event AN = f! : �V�N < d00; �V��N <

d00g we have with any s > 0 and N > c=�

P (AN ) > 1�O(�s):

But on AN the equation (1.2) has a unique solution whenever d00 is su�-

ciently small. Indeed, the equation W�(�; �
�) has a unique solution � = ��

in D by [1] hence the existence of a unique solution of (1.2) can easily be

derived from the implicit function theorem (cf. Lemma 4.7). Thus the

lemma follows.
2

Let us now consider equation (1.2) and write it as:

0 = V�N (b�N ; ��) = V�N (�
�; ��) + V ��N (b�N � ��) (2:3)

where

V ��N =

Z 1

0

V��N ((1 � �)�� + �b�N ; ��)d�:

Lemma 2.3 We have b�N � �� = OM(�1=2) + OM((1� �)N ):

Proof: First we prove that V�N (�
�; ��) = OM (�1=2) + OM((1 � �)N ).

Indeed, the process (1 � �)N�n�"�n(�
�; ��)en is a martingale di�erence

process with respect to the family of ���elds (Fn). Hence by Burkholder's
inequality for martingales, (cf. e.g. Theorem 3.3.6 in [17]) we get that for

any q > 1

E1=qj
NX
n=1

(1� �)N�n�"�n(�
�; ��)enj

q �
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� CqE
1=q

�
(

NX
n=1

((1� �)N�n�"�n(�
�; ��)en)

2

�q=2
:

Taking the square of both sides and using the triangle inequality for the

Lq=2(
;F ; P )-norm of the right hand side we get that the square of the

right hand side is majorated by

C2
q

NX
n=1

(1� �)2(N�n)�2Mq("�(�
�; ��)e) = O(�) +O((1� �)2N ):

Taking the square root of both sides and using the inequality (a+ b)1=2 <

a1=2 + b1=2 for positive a; b, we get that

NX
n=1

(1� �)N�n�"�n(�
�; ��)en = OM (�1=2) + OM((1 � �)N ):

Let us now replace en on the left hand side by "n(�
�; ��). Since "n(�

�; ��) =

en + OM (cn) with some 0 < c < 1, it follows as in the argument following

(2.2) (cf. Lemma 4.5) that for small � the contribution of the error term is

OM ((1� �)N ), hence the statement at the beginning of the proof follows.

Let us now investigate V ��N . De�ne

W ��N =

Z 1

0

W��((1� �)�� + �b�N ; ��)d�: (2:4)

Obviously W ��N > cI with some positive c on AN if d is su�ciently small.

Indeed since W is smooth we have for 0 � � � 1

kW��(�
� + �(b�N � ��); ��)�W��(�

�; ��)k � Cjb�N � ��j < Cd (2:5)

where C is a system's constant in the sense that it depends only on the

system parameters and on the noise characteristics Mq(e);�q(e). Hence if

d is su�ciently small then the positive de�niteness ofW��(�
�; ��) and (2.4)

imply that W ��N > cI with some positive c. Since we have on AN

kV ��N �W ��Nk < d00

it follows that if d00 is su�ciently small then

�min(V ��N ) > c > 0 (2:6)

on AN where in general �min(B) denotes the minimal eigenvalue of the

matrix B. Hence kV
�1

��Nk < CN�1 on AN with some nonrandom constant

C and we get from (2.3)

�AN (
b�N � ��) = OM(�1=2) + OM((1 � �)N ): (2:7)
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Combining this inequality with the previous inequality P (Ac
N ) = O(�s) +

OM ((1��)N ) for any s > 0 where Ac
N denotes the complement of AN and

using the fact that jb�N � ��j is bounded we get for any s > 0

�Ac
N
(b�N � ��) = OM(�s) +OM ((1� �)N ) (2:8)

for any s > 0. Adding this equality to (2.7) we get the lemma.
2

Now we can complete the proof of Theorem 1.1. Using the result of

the last lemma we can improve the inequality (2:5) by writing OM(�1=2)+

OM ((1� �)N ) on the right hand side. Thus we get after integration with

respect to � that

kW ��N �W��(�
�; ��)k = OM(�1=2) + OM((1� �)N ): (2:9)

On the other hand the inequality �V��N = OM (�1=2) + OM ((1 � �)N )

implies that

kV ��N �W ��Nk = OM (�1=2) +OM ((1� �)N ) (2:10)

hence we �nally get

kV ��N �W��(�
�; ��)k = OM(�1=2) + OM((1 � �)N ): (2:11)

Let us now focus on the event AN , where we have the inequality (2.6).

A simple calculation shows that (2.6) and (2.11) imply

�AN kV
�1

��N �W�1
�� (��; ��)k = OM (�1=2) +OM ((1� �)N ): (2:12)

Now we can get our �nal estimate for b�N � �� by substituting (2.12) into

(2.3) to obtain

�AN (
b�N � ��) = ��ANV

�1

��NV�N (�
�; ��) (2:13)

= ��AN (W
�1
��

(��; ��) +OM (�1=2) +OM ((1� �)N ))V�N (�
�; ��)

= ��ANW
�1
��

(��; ��)V�N (�
�; ��) +OM (�) + OM((1 � �)N )OM (�1=2)+

+OM ((1� �)2N ) = �W�1
��

(��; ��)V�N (�
�; ��) + OM(�) + OM((1� �)2N )

for N � c=�. The last equality is obtained by taking into account that

1� �AN = OM (�s) with any s > 0 N � c=�. For the error terms we used

the inequality (a+ b)2 � 2(a2 + b2).

Taking into account the estimate

V�N (�
�; ��) =

NX
n=1

(1� �)N�n�"�n(�
�; ��)en +OM ((1� �)N )

for small �'s, substituting this estimate into (2.13) and adding (2.13) and

(2.8) we get the proposition of Theorem 1.1.
2
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3 The Proof of Theorem 1.2

Let us denote the �rst term on the right hand side of (1.4) by �N . i.e let

us set

�N = �(R�)�1
NX
n=1

(1� �)N�n�"�n(�
�; ��)en:

Theorem 5.2 implies that (�N ) is an L0-mixing process, and we have for

all 1 � q < 1 and c > 0 the estimations �q;c(�) = O(��1+c=2): Thus for

the dominant term of (2.14) the properties stated for (b�N � ��) and (rN )

in Theorem 1.2 are valid.

We shall prove directly that the proposition of Theorem 1.2 holds for

process (b�N � ��), i.e. for a suitable version of b�N the process (b�N � ��)

is an L0-mixing process such that for all 1 � q < 1 and c > 0 we have

�q;c(b�N � ��) = O(��1+c=2(q+1)). Combining these two statements the

proposition of the theorem for the process (rN ) follows.

First let us de�ne the event AN in a di�erent way as follows: de�ne

�N = maxf�V�N ; �V��Ng

and write

AN = f! : �N < d00g and BN = f! : �N � d00g:

The \suitable" version of b�N will be de�ned as follows. If d00 is su�ciently

small then on the event AN the nonlinear algebraic equation V�N (�) = 0

has a unique solution which we take for b�N . We shall extend the de�nition

of b�N to BN by setting b�N = �0 2 D0 on BN where �0 is �xed in advance.

We prove that with suitable choice of d
00

= d
00

N this version of the solution

is L0-mixing with \mixing rate" indicated above.

Lemma 3.1 The process (�N ) is L0-mixing and we have for all q � 1 and

c > 0

�q;c(�) = O(��1+c=2): (3:1)

Proof: Note that the process "n(�; �
�) and all its derivatives with respect

to � are L0-mixing. Indeed this follows from the fact that "n(�; �
�) and

its derivatives are obtained from (en) by the application of an exponen-

tially stable linear �lter, hence Theorem 5.2 implies our claim. It follows

that "n(�; �
�)"n(�; �

�) is L0-mixing uniformly in � for � 2 D, and also it

follows that VN (�; �
�) is L0-mixing uniformly in � for � 2 D. Similarly

all derivatives of VN (�; �
�) can be shown to be L0-mixing uniformly in �.

Moreover we have by Theorem 5.2 for all q > 1 and c > 0 �q;c(V (�; �
�)) =

10



ARMA PARAMETERS

O(��1+c=2), uniformly in � for all � 2 D, and similar estimates hold for all

derivatives of VN (�; �
�) with respect to �.

By Theorem 5.3 we conclude that for all q � 1 and c > 0

�q;c(�V�N ) = O(��1+c=2)

and

�q;c(�V��N ) = O(��1+c=2):

But then the lemma follows by the remark after De�nition 5.1 since �N =

max(�V�N �V��N ).
2

Let us now take an M such that 0 < M < N . To �nd a good F+
M
-

measurable approximation of b�N we consider the function

V +
N;M (�) = E(VN (�)jF

+
M ):

Since VN (�) is smooth in the strong L2(
;F ; P ) topology, it follows that

@

@�
V +
N:M (�) = E(V�N (�)jF

+
M )

�
= V +

�N;M
(�);

and similar conclusion is valid for the second derivatives. Let us now con-

sider the equation

V +
�N;M (�) = 0 (3:2)

and proceed with its analysis in the same way as we did with the equation

V�N (�) = 0. So let us de�ne

�V +
�N;M = sup

�2D0

jV +
�N;M (�) �W�(�)j (3:3)

and

�V +
��N;M

= sup
�2D0

jV +
��N;M

(�) �W��(�)j (3:4)

and set

�++N;M = max(�V +
�N;M ; �V

+
��N;M): (3:5)

Since V�N (�) is M -Lipschitz-continuous in � the same holds for V +
�N;M (�),

due to Jensen's inequality. The same argument applies to higher order

derivatives of V . Since by convention we take separable versions of V +
�N;M

and V +
��N;M

(�), the random variables �V +
�N;M

and �V +
��N;M

are well de�ned,

hence �++
N;M

is also well-de�ned.

Let us now consider the events

A+
N;M

= f! : �++
N;M

< d00g and B+
N;M

= f! : �++
N;M

� d00g

11
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where d00 > 0. Now anF+
M -measurable approximation b�++N;M of b�N is de�ned

as follows. If c is su�ciently small then the equation (3:1) has a unique

solution in D for all ! 2 A+
N;M

; which we take for b�++
N;M

. We extend the

de�nition of b�++
N;M

onto BN;M setting b�++
N;M

= �0 there. Obviously b�++N;M is

F+
M -measurable and we have

V +
�N;N (

b�++N;M ) = 0 on A+
N;M and b�++N = �0 on B+

N;M :

Let us now estimate b�N � b�++N;M . First we consider this approximation

error on the set AN \A+
N;M

.

Lemma 3.2 We have for any s > 0

�
AN\A

+

N;M

� (b�N � b�++
N;M

) = OM((1� �)N�M�1=2) + OM(N �M )�s:

Proof: Let us de�ne

V 0�
�N;M = sup

�2D0

jV�N (�) � V +
�N;M (�)j:

We have on AN \A+
N;M the inequality jb�N � b�++N;M j � CV 0�

�N;M with some

systems constant C. (cf. Lemma 4.7).

To estimate V 0�
�N;M note that V�N (�) satis�es

V�N (�; �
�) =

1

2

NX
n=1

(1� �)N�n�"�n(�; �
�)"n(�; �

�)

where "�n(�; �
�) and "n(�; �

�) are L0-mixing. Therefore this product is

also L0-mixing and thus we can apply the estimate (4.2) obtained in the

derivation of Theorem 5.2 Thus we get for any q � 1 and s > 0 that

E1=qjV�N (�; �
�) � V +

�N;M (�; ��)jq = O((1� �)N�M�1=2) +O((N �M )�s)

uniformly in N and M and �.

Now the same procedure can be repeated for the second derivatives

of VN (�; �
�). Combining these two estimates and applying the maximal

inequality given as Theorem 4.2, we get that for any q � 1 and s > 0

E1=qjV 0�
�N;M j

q = O((1� �)N�M�1=2) + O((N �M )�s

uniformly in N and M , thus the lemma follows.
2

12
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On the set BN \B++
N;M we have jb�N � b�++N;M j = 0. Finally on the set

D0
N;M = (AN \B+

N;M ) [ (A+
N;M \BN ) (3:6)

we use the trivial inequalities

jb�N � b�++N;M j � K�D0
N;M

where K is the diameter of the set D. Hence we have altogether the

following inequality:

jb�N � b�++N;M j � CV 0�
�N;M +K�D0

N;M
(3:7)

Lemma 3.3 For any d > 0 there exists a d
00

N such that 0 < d
00

N < d and

that wi th d
00

= d
00

N we have for any q � 1 and c > 0

NX
M=1

E1=qj�x<d00
N
(�N ) � �x<d00

N
(�++N;M )jqc = O(��1+c=2(q+1))

uniformly in N .

Proof: We can write

D0
N;M = AN�A

+
N;M

where � denotes the symmetric di�erence operator. Now remember the

de�nitions of AN and A+
N;M :

AN = f! : �N < d00g and A+
N;M = f! : �++N;M < d00g:

We have for any q � 1

E1=qj�N � �++N;M j
q � C
000q (N �M;V )

where


000q (�; V ) = 
q(t; V ) + 
q(�; V�) + 
q(�; V��) + 
q(�; V���):

Now since (en) is L0-mixing we conclude as in Lemma 3.2 that


000q (�; v) = O((1� �)��1=2) + O(� )�s

for any s > 0. Thus (�N ) is an L0-mixing process �q;c(�) = O(��1+c=2)

and Theorem 5.7 would imply that for some 0 < d
00

N < d the process

�N = �x<d00
N
(�N ) is L0-mixing and for any q � 1 and c > 0

�q;c(�) =

NX
M=1

E1=qj�x<d00
N
(�N ) � �x<d00

N
(�+
N;m

)jq �

13
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� O(��1+c=2(q+1+c))(q+1+c)=(q+1) = O(��1+c=2(q+1)): (3:8)

Now it is easy to check that in the proof of Theorem 5.7 we can replace

x+n;m = E(xnjF
+
m) by any F+

M -measurable random variable x++n;m and to

approximate �x<dn (xn) by �x<dn (x
++
n;m). Then in (5.6) 
r(n � m;x) will

be replaced by supnE
1=rjxn � x++n;mj

r. In our case xn is replaced by �N

and m is replaced byM , and x++n;m is replaced by �++N;M . Thus Theorem 5.7

implies the claim of the lemma.
2

APPENDIX I: L-mixing Processes

We summarize a few results published in [3] and used in this paper. The

set of real numbers will be denoted by IR, the p-dimensional Euclidean

space will be denoted by IRp. Let D � IRp be compact domain and let the

stochastic process (xn(�)) be de�ned on ZZ �D, where ZZ denotes the set

of natural numbers.

De�nition I.1 We say that (xn(�)) is M -bounded if for all 1 � q <1

Mq(x) = sup
n�0
�2D

E1=q jxn(�)j
q <1:

We shall also use the notation xn = OM (1) to indicate that (xn) is

M -bounded. Moreover if cn is a sequence of positive numbers, we write

xn = OM (cn) if xn=cn = OM (1). Analogously if (x�n) is a parametric

family of stochastic processes, parametrized by the real-valued and positive

parameter �, then we write x�n = OM (c(�)) ,where c(�) is a real-valued,

positive function of �, if for all q � 1 we have Mq(x
�) = O(c(�)). Finally,

we can combine the above two notations, i.e. we can write x�n = OM (cn(�))

,the de�nition of which is self-explanatory.

We say that a sequence of r.v. xn tends to a r.v. x in the M -sense if

for all q � 1 we have

lim
n!1

E1=qjxn � xjq = 0:

Similarly we can de�ne di�erentiation in the M -sense.

Let (Fn); n � 0 be a family of monotone increasing �-algebras, and

(F+
n ); n � 0 be a monotone decreasing family of �-algebras. We assume

that for all n � 0;Fn and F+
n are independent. For n � 0 F+

n = F+
0 . A

typical example is provided by the �-algebras

Fn = �fei : i � ng F+
n = �fei : i > ng

where (ei) is an i.i.d. sequence of r.v.'s.

14
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De�nition I.2 A stochastic process (xn(�)); n � 0 is L-mixingwith respect

to (Fn;F
+
n ) uniformly in � if it is Fn-progressively measurable,M -bounded

and with � being a positive integer and


q(�; x) = 
q(� ) = sup
n��
�2D

E1=qjxn(�) � E(xn(�)jF
+
n�� )j

q

we have for any 1 � q <1.

�q = �q(x) =

1X
�=1


q(� ) <1:

If we consider a single stochastic process (xn) which does not depend on a

parameter � we can still use the above de�nition but the phrase \uniformly

in �" will be omitted.

Example Discrete time stationary Gaussian ARMA processes are L-

mixing. (This can be seen using a state space representation).

Theorem I.1. (cf. Theorem 1.1 in [3]) Let (un); n � 0 be an L-mixing

process with Eun = 0 for all n and let (fn) be a deterministic sequence.

Then we have for all 1 � m <1

E1=2mj

NX
n=1

fnunj
2m � Cm

� NX
n=1

f2n

�1=2

M
1=2
2m (u)�

1=2
2m (u)

where Cm = 2(2m� 1)1=2.

Corollary Let us take fn = (1� �)N�n� where 0 < � < 1. Then we get

E1=2m

����
NX
n=1

(1� �)N�n�un

����
2m

� C�1=2

where C depends only on m and M2m(u) and �2m(u).

De�ne

�x=��� = jxn(� + h) � xn(�)j=jhj
�

de�ned for n � 0; � 6= � + h 2 D with 0 < � � 1.

De�nition I.3 The stochastic process xn(�) is M -H�older-continuous in

� with exponent � if the process �x=��� is M -bounded, i.e. if for all

1 � q <1 we have

Mq(�x=�
��) = sup

n�0
� 6=�+h2D

E1=qjxn(� + h) � xn(�)j
q=jhj� <1:

15
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Example If (xn(�)) is absolutely continuous with respect to � a.s. and

the gradient process (xn(�)) is M -bounded, then (xn(�)) is M -H�older-

continuous with � = 1, in other words (xn(�)) is M -Lipschitz-continuous.

Let us consider the case when (xn(�)) is a stochastic process which

is measurable, separable, M -bounded and M -H�older-continuous in � with

exponent � for � 2 D. By Kolmogorov's theorem the realizations of (xn(�))

are continuous in � with probability 1, hence we can de�ne for almost all

!

x�n = max
�2D0

jxn(�)j

where D0 � intD is a compact domain. As the realizations of xn(�) are

continuous, x�n is measurable with respect to F , that is x�n is a random

variable. We shall estimate its moments.

Theorem I.2 (cf. Theorem 3.4 in [3]) Assume that (xn(�)) is a stochastic

process which is measurable, separable, M -bounded and M -H�older continu-

ous in � with exponent � for � 2 D. Let x�n be the random variable de�ned

above. Then we have for all positive integers q and s > p=�

Mq(x
�) � C(Mqs(x) +Mqs(�x=�

��))

where C depends only on p; q; s; � and D0; D.

Combining theorems I.1 and I.2 we get the following theorem when

fn = 1 and � = 1.

Theorem I.3 Let un(�) be an L-mixing process uniformly in � 2 D such

that Eun(�) = 0 for all n � 0, � 2 D and assume that �u=�� is also

L-mixing, uniformly in �; � + h 2 D. Let 0 < � < 1, then we get

sup
�2D0

j

NX
n=1

(1� �)N�n�un(�)j = OM (�1=2):

Theorem I.4 Let (un); n = 0; 1 � � � be an L-mixing process with respect

to a pair of families of �-algebras (Fn;F
+
n ). De�ne the process (xn) by

xn =

nX
r=0

(1� �)n�r�uq

where 0 < � < 1. Then (xn) is L-mixing with respect to (Fn;F
+
n ) and we

have for q � 1

�q(x) � O(��1=2): (I:1)
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Proof: We can assume Euq = 0 for all r since this normalization of the

mean does not e�ect �q(x). Let � be a �xed positive integer and approxi-

mate xn by

x�n;n�� =

nX
r=0

(1� �)n�r�u+r;n��

where u+r;n�� = E(uq jF
+
n��). Then obviously x�n;n�� is F+

n�� measurable

and the summation actually goes from n � � to n since for r < n � � we

have E(urjF
+
n�� ) = 0. Furthermore it is easy to see that

jxn � x�n;n�� j �

n���1X
r=0

(1� �)n�r�uq +

nX
r=n��

(1� �)n�r�ju0r;n�� j

where u0r;n�� = ur�u
+
r;n�� . Taking the Lq(
;F ; P ) norm of the right hand

side and using the corollary after Theorem I.1 for the �rst term we get

E1=qjxn � x�n;n�� j
q � (1� �)�+1OM(�1=2) + (� � 
q)(� )

where � denotes discrete time convolution which is now applied to the dis-

crete sequences � = ((1� �)��1�1�=1) and (
q(�; u))
1
�=1. Applying Lemma

2.1 of [3] gives


q(�; x) � 2(1� �)�+1OM (�1=2) + 2(� � 
)(� ): (I:2)

Let us perform summation over � form 1 to 1. The contribution of the

�rst term on the right hand side is ��1OM (�1=2) = OM(��1=2). For the

second term we apply the inequality

1X
�=1

(� � 
q)(� ) �

1X
�=1

((1� �)��1�) �

1X
�=1


q(�; u) = �q(u) = O(1):

Thus the proof of the lemma is complete.
2

Lemma I.5 (cf. Lemma 7.4 in [7]). Let (un); n � 0 be an M -bounded

process and de�ne a process (xn) by

xn+1 = (1 � �xn) + ��nun x0 = 0

where 0 < (1� �) < � < 1. If 0 < � < (1� �) < 1 then we have

E1=mjxnj
m � (1� �)n�1 �Mm(u):

17
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Lemma I.6 (cf. Lemma 7.5 in [7] ). Let vi; i = 1; 2 : : : be an IR valued

stochastic process such that vi = OM (gi), where gi > 0 satis�es

limi!1 gi=gi�1 = 1. De�ne x by

xN = �xN�1 + vi x0 = 0

where j�j < 1. Then xN = OM (gN ).

Finally we formulate a simple analytical lemma which is easily derived

from the implicit function theorem:

Lemma I.7 Let G(�) and �G(�) be IRp -valued continuously di�erentiable

functions, � 2 D � IRp: Assume that G(�) = 0 has a unique solution

� = �� in intD0, where D0 is a compact subset of D. Assume that G�(�
�) is

nonsingular. Then for any d > 0 there exists a positive number d0 such that

if j�G(�)j � d0 and j�G�(�)j � d0 for all � 2 D0 then G(�) + �G(�) = 0

has a unique solution b� 2 D0, moreover j��� b�j � d and also the inequality

jb� � ��j < Cd0 holds where C depends only on G and G0.

Appendix II: L0-mixing Process

Let us now de�ne a class of stochastic processes which is smaller than the

class of L-mixing processes. The notations are the same as in De�nition

I.2.

De�nition II.1 A stochastic process (xn(�)), n � 0 is L0-mixing uniformly

in � (with respect to (Fn;F
+
n )) if we have for any q � 1 and any c > 0

�q;c =

1X
�=1


cq (� ) <1:

Obviously the de�ntion extends to processes which are not parameter

dependent.

Remark It is easy to see that if (xn) is L0-mixing processes and (F (x)) is

a function which grows at most polynomially together with its �rst deriva-

tives, then (F (xn)) is also L0-mixing. Thus e.g. if (xn) and (yn) are

L0-mixing then (xn � yn) is also L0-mixing. Or if x; y are L0-mixing then

setting zn = max(xn; yn) yields an L0-mixing process. It is easy to see that

�q;c(z) � 4c(�q;c(x) + �q;c(y).

Theorem II.1 If a stochastic process (xn) is L0-mixing then we have for

all s � 1


q(�; x) � 4s�q;1=s(x)n
�s: (II:1)

Conversely if for all s � 1 we have 
q(�; x) � Csn
�s then (xn) is L0-mixing

and for any c > 0 and s > c we have

�q;c(x) � C1=c
s s=(s � c): (II:2)
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Proof: De�ne the sequence 
�q (�; �) by


�q (�; �) = min0�� 0�� (�
0; u)

and de�ne for 0 < c < 1

��q;c(x) =

1X
�=1

(
�q (�; x))
c:

Obviously 
�q;c(x) � 
q;c(x) < 1. Writing (
�q (�; �))
c = a� the sequence

a� is nonnegative and monotone decreasing. Since

A =

1X
�=1

a� = ��q;c(x) <1

a well-known elementary result implies that an � 2A=n. Hence we conclude

that

(
�q (n; x))
c � 2��q;c(x)=n � 2�q;c(x): (II:3)

Now note that for 0 � � 0 � � we have 
q(�; x) � 2
q(�
0; x) (cf. Lemma 2.1

in [3]), and hence we have

(
q(�; x))
c � 2
�q (�; x):

Combining this inequality with (II.3) and setting c = 1=s we get the �rst

part of the lemma.

To prove the second part note that

1X
�=1


cq(�; c) �

1X
�=1

C1=c
s ��s=c � C1=c

s (1 +

Z 1

1

��s=cd� ) = C1=c
s (1 +

1

s=c � 1
)

from which (II.2) follows.
2

We show that the class of L0-mixing processes is closed under the op-

erations we need in system identi�cation. First we prove the following

lemma.

Theorem II.2 Let (un) be an L0-mixing process and de�ne (xn) by

xn = (1� �)xn�1 + �un

with x0 = 0 and 0 < � < 1. Then (xn) is L0-mixing, and we have for all

q � 1 and c > 0

�q;c(x) = O(��1+c=2):
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Proof: We proved in (I.2) that


q(�; x) � 2(1� �)�+1O(�1=2) + 2(� � 
)(� ) (II:4)

(cf. (I.2)). Write the right hand side as a + b, and apply the inequality

(a + b)c � 2c(ac + bc) for a; b; c > 0. Now ac(� ) = 2(1 � �)c(�+1)O(�c=2),

hence summation over � gives the upper bound

2(1� (1� �)c)�1 �O(�c=2):

Since (1 � �)c = (1 � c�) + O(�2) for small �'s we �nally get the upper

bound ���O(�c=2), i.e.

1X
�=1

(a(� ))c = O(��1+c=2):

For the second term in (II.4) we apply Lemma II.1 twice. First take

an s to be �xed later and consider the inequality (II.1). Then consider

the sequence (b0(� )) de�ned by the convolution of the sequences � = ((1�
�)��1 ��)1�=1 and (�

�s)1�=1. Lemma I.6 implies that b0(� ) = O(��s). Hence

for �xed c > 0 taking s > c we get that

1X
�=1

b0(� ) = O(1)

and the claim of the lemma follows.
2

Theorem II.3 Let x = (xn(�)) be as in Theorem I.2 and assume that

(x(�)) and �x=�� are L0-mixing with respect to (Fn;F
+
n ). Then the pro-

cess x� = (x�n) is also L0-mixing with respect to (Fn;F
+
n ) and we have for

any c > 0 and r > p

�q;c(x
�) � 2(�rq;c(x)) + �rq;c(�x=��)):

Proof: We have for any r > p


q(x
�; � ) � 2(
rq(x) + 
rq(�x=��)):

This inequality easily follows from Theorem I.2. Applying the inequality

(a + b)c � 2(ac + bc) for a; b; c; > 0 we arrive at the proposition of the

theorem.
2
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It is easy to see that if (xn) is an L-mixing process and (f(x)) is an

absolutely continuous function which grows at most polynomially together

with its �rst derivatives then the process (yn) de�ned by yn = f(xn) is also

L-mixing. However if we take a discontinuous function f say f(x) = �x>�,

i.e, f is the characteristic function of the set fx > �g then the proposition

above is no longer true. In other words it is not necessarily true that the

level set

A�;n = f! : xn > �g

can be well approximated by sets which are F+
m-measurable. However we

do have some results for L0-mixing processes. But �rst we need a lemma.

In this lemma we use the set-theoretic notation A�B = (AnB) + (BnA).

Lemma II.4 Let x; y be the two random variables for which the q-th mo-

ments exist with some q � 1, and let us de�ne the sets

A� = f! : x > �g and B� = f! : y > �g:

Then for any K > 0 we have

P (A�4B�) � CqK
q=(q+1)E1=(q+1)jx� yjq

for all �-s except a set of �-s of measure at most 1=K.

Proof: Let " > 0 and consider the sets A� nB��" and B� nA��". We have

A� nB��" = f! : x > �; y � � � "g � f! : jx� yj > "g;

hence we have for any q � 1

P (A� nB��") � Ejx� yjq="q:

Similar estimation hold for B� nA��". Now note that

A�4B� � (A� nB��") [ (B��" nB�) [ (B� nA��") [ (A��" nA�):

Setting

P (B��" nB�) = P (� � " � y < �) = �(�)

we have Z 1

�1

�(�)d� = ":

This can be easily seen by Fubini's theorem. Indeed we can write

�(�) = E�[��";�)(y) =

Z



�[��";�)(y)dP
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hence Z +1

�1

�(�)d� =

Z +1

�1

Z



�[��2;�)(y)dPd� =

Z



Z +1

�1

�[��";�)(y)d�dP =

Z



"dP = ":

Since �(�) � 0 we conclude that for any K > 0 we have �(�) � K" except

perhaps on a set of �-s, say N , of measure not greater that 1=K.

Thus we get that for � =2 N

P (A�4B�) � 2Ejx� yjq="q + 2K":

Let us now minimize the right hand side with respect to ". In general

let us consider the function

 (") = a"�� + b"�:

Lemma II.5 The minimized value of  (") is of the form

Ca�=(�+�)b�=(�+�);

where C depends only on � and �.

Proof: Di�erentiation with respect to " gives

d

d"
 (") = ��a"���1 + �b"��1:

Setting this expression equal to zero and solving the resulting equation for

" gives

" =

�
�a

�b

�1=(�+�)

and thus

 (") = a

�
�b

�a

��=(�+e
�
ta)

+ b

�
�a

�b

��=(�+�)
:

Taking out the powers of a and b we get

 (") = Ca�=(�+�)b�=(�+�)

where C depends only on � and �, which proves the lemma.
2

Applying Lemma II.5 with � = q; � = 1 a = 2Ejx� yjq and b = 2k we

get the proposition of Lemma II.4.
2
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Let kx�ykLq = E1=qjx�yjq. Then we can write Lemma II.4 as follows:

P (A��B�) � CqK
q=(q+1)kx� yk

q=(q+1)
Lq

:

Lemma II.6 With the notation of Lemma II.4 we have for any q � 1 and

L > 0 and " > 0

P (A��B�) � CqL
q=(q+1)kx� yk

(1�")q=(q+1)
Lq

except for a set of �'s of measure at most kx� yk"Lq=L.

Proof: Setting K = Lkx� yk�"Lq we get from Lemma II.4

P (A��B�) � CqL
q=(q+1)kx� yk

�"q=(q+1)
Lq

kx� yk
q=(q+1)
Lq

which simpli�es to the expression given in the lemma.
2

Theorem II.7 Let (xn), n � 0 be an L0-mixing process, and let I � IR be

a �xed nonempty open interval. Then there exist a sequence of real numbers

�n"I such that the process yn = �x>�n(xn) is L0-mixing, and we have for

any r � 1 and c > 0

�r;c(y) � 2C0�
(r+1+c)=(r+1)

r;c=(r+1+c) (x)

where C0 depends only on I and r.

Proof: Let us apply Lemma II.4 with x = xn, y = x+n;m where 0 � m � n.

Then Ejx�yjr � 
rr (n�m;x). To make sure that the estimation provided

by Lemma II.4 is simple we choose with K = L
�"r (n � m;x), where L

and " are to be �xed later. We shall approximate �x>�(xn) by �x>�(x
+
n;m).

Then we have with A� and B� de�ned as in Lemma II.4

Ej�x>�(xn)� �x>�(x
+
n;m)j = P (A��B�) �

� CrL
�r=(r+1)
(1�")r=(r+1)r (n�m;x); (II:5)

except for a set of �'s of measure at most 1=K = 
"r (n�m;x)=L. For �xed
n and running m the union of the sets of exceptional �'s has measure at

most
1X
�=1


"r (�; x) = �r;"(x)=L:

To ensure the existence of a non-exceptional �n"I we choose L so that

�r;"(x)=L < jIj. Let us set L = 2�r;"(x)=jIj.
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Let us substitute this value of L into (I:1) and take the r-th root of

both sides with some r � 1. We get for some �n 2 I

E1=rj�x>�n(xn)� �x>�n(x
+
n;m)j � C1=r

r (2=jIj)1=(r+1)�

��1=(r+1)r;" (x) � 
(1�")=(r+1)r (n�m;x): (II:6)

Since y00n;m
�
= �x>�n(xn)� �x>�n(x

+
n;m) is a random variable with values 0

or �1 the left hand side of (II.6) can also be written as E1=rjy00n;mj
r.

Now applying Lemma 2.1 of [3] we get that E1=rjyn � E(ynjF
+
m)j

r and

hence 
r(n�m; y) is majorated by twice the right hand side of (II.6). Hence

for any c > 0 we get


cr(n �m; y) � 21=cCc=r
r (2=jIj)c=(r+1)�c=(r+1)r;"

�
c(1�")=(r+1)r (n�m;x): (II:7)

Let us set

C0 = 21=cCc=r
r (2=jIj)c=(r+1)

and let us now choose " so that we have " = c(1� ")r=r(r + 1), i.e. we

set " = "� = c=(r + 1 + c). Then summation of the inequalities (II.7) over

� = n�m gives

1X
�=1


cr(�; y) � C0�
c=(r+1)
r;" (x) � �r;"(x):

The exponent of �r;" will be c=(r + 1) + 1 = (r + 1 + c)=(r + 1) which

was the proposition of the theorem.
2
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