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Dynamic Feedback Linearization�

P. Rouchon

Abstract

A new necessary condition for dynamic feedback linearization in

the sense of [3] is proposed. This condition concerns control sys-
tems _x = f(x;u) with strictly less control variables than state vari-

ables. This necessary condition allows to prove the non-genericity

of dynamic feedback linearizability, for the Whitney C1 topology
on mappings (x; u) ! f(x; u). However, this topology reveals to

be too coarse to capture the nature of practical uncertainties: the

polymerization reactor studied in [17] is shown to be linearizable via
dynamic feedback for generic kinetic and thermal laws.
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1 Introduction

In [18] the genericity and structural stability of a�ne control systems which
are linearizable via dynamic feedback [3] is investigated. We address here
a similar problem for general control systems where the dependence with

respect to the control variables is not supposed to be a�ne. We prove that,
generically (in the sense of the Whitney C1 topology for mappings f(x; u)),
systems _x = f(x; u) with m � n � 1 (n = dim(x) and m = dim(u)) are
not linearizable via dynamic feedback in the sense of [3]: the set of systems
that are not linearizable via dynamic feedback contains an open and dense
subset.

The demonstration of this somehow negative result is based on a new
necessary dynamic feedback linearizability condition that generalizes to
smooth systems and exogenous dynamic compensators the necessary 
at-
ness condition given in [7] (see [13] for a de�nition of endogenous and
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exogenous dynamic compensators). In [16] Sluis proposes, independently
of us, the same necessary condition for smooth systems linearizable via a
special class of dynamic compensators. We prove here that this necessary
condition is general and does not rely on any particular subclass of dynamic
compensators.

This non-genericity seems to be in contradiction with the fact that many
practical systems are linearizable and 
at (see, e.g., [4, 1, 6, 14]). In order
to understand this apparent contradiction, we sketch an explanation via a
representative case-study: the polymerization reactor considered in [17].

Although this paper addresses the C1 case, the results presented here
have been strongly in
uenced by the di�erential-algebraic approach of dy-
namic feedback linearization and the notion of 
atness [13, 6, 7, 5, 8]. In
particular, the proof of the necessary condition is fundamentally based on
the concept of linearizing (or 
at) output due to Martin [13]. For an-
other connected approach to the dynamic feedback linearization problem
via Cartan's equivalence see also [15, 16].

The paper is organized as follows. In Section 2, the necessary condition
for C1 systems is presented. In Section 3, we establish the second main
result showing the non-genericity of linearizable systems. In Section 4, we
discuss this result and its practical implications on the representative case-
study of a polymerization reactor [17] that is shown, in the appendix, to
be linearizable via dynamic feedback for generic kinetic and thermal laws.

2 The Necessary Condition for Dynamic Feedback Lin-

earization

The set of C1 functions from a manifoldX to a manifold Y is denoted by
C1(X;Y ). Consider the control system

_x = f(x; u) (1)

with x 2 IRn and u 2 IRm and f 2 C1(IRn� IRm; IRn) such that f(0; 0) =
0.

Theorem 1 Assume that n > m � 0 and that (1) is linearizable via dy-
namic feedback around the equilibrium point (x; u) = (0; 0) in the sense of
[3]. Then, there exist X � IRn and U � IRm, open neighborhoods of 0,
such that

{ the projection of the sub-manifold f(p; x; u) 2 IRn � X � U j p �
f(x; u) = 0g of IRn� IRn� IRm onto IRn� IRn is a sub-manifold, �,
of IRn � IRn.

{ � is a ruled sub-manifold: for each point P 2 �, there exists an open
segment of a straight line parallel to the p-coordinates and included
in �.
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In [16] the same necessary condition is proposed. However, the proof
given in [16], as explicitly stated, holds only up to feedback transformations,
for the particular sub-class of dynamic compensators considered in [4]. We
state here that this necessary condition is in fact general.

Proof: The proof is in the spirit of an old paper of Hilbert [11] where
a closely related question is addressed for under-determinate di�erential
systems. More precisely, the proof relies mainly on the notion of \integrallos
Au
�osung" due to Hilbert[11] (see equations (5)) and on the fundamental
notion of linearizing output introduced by Martin [13]. We refer to [6, 7]
for the di�erential-algebraic approach of Fliess and the proof of a similar
necessary condition for 
at systems.

The linearizability of (1) implies, according to [3], that the rank of
@f

@u
(0; 0) is maximum and equal to m. It implies also the existence of

1. a smooth dynamic compensator�
_z = a(x; z; v)
u = b(x; z; v) (z 2 Z � IRq; v 2 V � IRm)

(2)

where, q � 0, Z and V are open neighborhoods of 0, a(0; 0; 0) = 0
and b(0; 0; 0) = 0;

2. a local C1 di�eomorphism�
X � Z ! � � IR

n+q

(x; z) ! � = �(x; z)
(3)

where �(0; 0) = 0 and � is an open neighborhood of 0;

such that (1) and (2) yield a (n+ q)-dimensional dynamics,�
_x = f(x; b(x; z; v))
_z = a(x; z; v)

which becomes with respect to (3) a constant linear controllable system
_� = F� + Gv. Up to static state feedback, this linear system may be
written in Brunovsky canonical form [2],8>><

>>:
y
(�1)

1 = v1
...

y
(�m)
m = vm

where �1, : : :, �m are the controllability indices and

� = (y1; : : : ; y
(�1�1)

1 ; : : : ; ym; : : : ; y
(�m�1)
m ):
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The existence of the neighborhoods X et U (one can choose the same
neighborhood X as the one used for the di�eomorphism �) such that � is
a sub-manifold results from the fact that the rank of f with respect to u is
maximum around 0. The equations of � are obtained via the elimination
of u from p� f(x; u) = 0: since the rank of f with respect to u around 0 is
maximum, this elimination is always possible for u 2 U (implicit function
theorem with a small neighborhood U � IRm of 0) and leads to n � m

equations
F (x; p) = 0 (4)

where F 2 C1(X � P; IRn�m) (P is an open neighborhood of 0 in IRn)
de�nes a sub-manifold � � X � P (the rank of F with respect to p is
maximum, i.e., n�m).

Denote by A 2 C1(�; X) the function corresponding to the components
of ��1 associated to x. Clearly, A is onto. Denote by � the largest integer
such that

Ay(�) =
@A

@y(�)
6= 0

(� � max((�1 � 1); : : : ; (�m � 1))). For every smooth trajectory of (1),
t ! x(t) 2 X and t ! u(t) 2 U , there exists a smooth time function,

t! y(t) 2 IRm, such that (y1; : : : ; y
(�1�1)

1 ; : : : ; ym; : : : ; y
(�m�1)
m ) 2 � and

x(t) = A(y(t); : : : ; y(�)(t)) (5)

(A is onto).
Conversely, every smooth function, t! y(t) 2 IRm, such that

(y1; : : : ; y
(�1�1)
1 ; : : : ; ym; : : : ; y

(�m�1)
m )

belongs to �, leads to the smooth time function

t �! x(t) = A(y(t); : : : ; y(�)(t))

which is a state trajectory for (1).
The substitution of (5) into (4) leads thus to an identity:

F ( A(Y; : : : ;Y(�)) ;

Ay(�) (Y; : : : ;Y
(�)) Y(�+1) + : : :+ Ay(Y; : : : ;Y

(�)) _Y ) � 0
(6)

for all Y 2 IRm, : : :, Y(�) 2 IRm, Y(�+1) 2 IRm small enough.
Consider now (x; p) 2 �. Since A is onto, there exists

(y; : : : ; y(�)) 2 IRm � : : :� IRm
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close to 0 (not unique in general) such that x = A(y; : : : ; y(�)). The pre-
vious developments de�ning the surjection A show that, since F (x; p) = 0,
there exists y(�+1) 2 IRm close to 0 such that

p = Ay(�)y
(�+1) +Ay(��1)y(�) + : : :+ Ay

_y

where the derivatives of A are evaluated at (y; : : : ; y(�)). Then (6) with
(Y; : : : ;Y(�)) = (y; : : : ; y(�)) and Y(�+1) = y(�+1) + � with � 2 IRm arbi-
trary and small, implies that

F (x; p+Ay(�)�) = 0:

It su�ces to take a small nonzero vector a 2 IR
n belonging to the image

of the linear operator Ay(�) (y; : : : ; y
(�)) 6= 0 to conclude that the segment

f(x; p+ �a)j � 2]� 1; 1[g belongs to �.

3 Non-genericity of Dynamic Feedback Linearization

The fact that the sub-manifold � of Theorem 1 is ruled, is clearly non-
generic. For the Whitney C1 topology on C1(IRn� IR

m
; IR

n) [10, de�ni-
tion 3.1, page 42]), we have the following theorem.

Theorem 2 Assume that n > m � 1. Denote by C10 (IRn � IRm; IRn) the
set of C1 mappings sending 0 to 0. The set of f 2 C10 (IRn � IRm; IRn),
such that _x = f(x; u) is not linearizable via dynamic feedback around the
steady-state (x; u) = 0, contains an open dense subset for the Whitney C1

topology on C10 (IRn � IR
m
; IR

n).

The Whitney C1 topology is de�ned on C10 (IRn � IR
m
; IR

n) as the re-
striction to C10 (IRn � IRm; IRn) of the standard Whitney C1 topology on
C1(IRn � IRm; IRn).

Proof: We can assume that the rank
@f

@u
(0; 0) is maximum and is equal

to rank
@(f1; : : : ; fm)

@u
(0; 0). There exist small open neighborhoods of 0,

X � IRn, U � IRm and W � IRn � IRm, such that, the mapping�
� : IRn � IRm �! IRn � IRm

(x; u) �! (x; f1(x; u); : : : ; fm(x; u))
(7)

is a di�eomorphism fromX�U toW = �(X�U ), sending 0 to 0. Moreover,
as displayed on the �gure here below, we can impose the following condition
(by taking X and U small enough): there exists a compact neighborhood
of 0, K � W , such that ��1(K) \ @(X � U ) is empty (@(X � U ) denotes
the boundary of X � U in IRn � IRm).
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Figure 1:

Thus, for (x; u) 2 X � U , (1) is equivalent to8>>>>>>>>>><
>>>>>>>>>>:

_x1 = f1(x; u)
...

_xm = fm(x; u)

_xm+1 = Fm+1(x; _x1; : : : ; _xm)
...

_xn = Fn(x; _x1; : : : ; _xm)

where the C1 function F = (Fm+1; : : : ; Fn) from W to IRn�m is derived
from f and � by eliminating (u1; : : : ; um) from the n�m last equations of
(1). The equations8><

>:
pm+1 = Fm+1(x; p1; : : : ; pm)

...
pn = Fn(x; p1; : : : ; pm)

de�ne the sub-manifold � of Theorem 1.
Consider now a C1 function H from W to IR

n�m with a compact
support included into K and with H(0) = 0. To H, we associate the C1

functions F � = F + �H for � 2 IR. We associate also to F �, f� , a function
from IRn � IRm to IRn, de�ned as follows:
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{ if x 2 X and u 2 U then

f�(x; u) =

0
BBBBBBBB@

f1(x; u)
...

fm(x; u)
F
�
m+1(x; f1(x; u); : : : ; fm(x; u))

...
F �
n (x; f1(x; u); : : : ; fm(x; u))

1
CCCCCCCCA

(8)

{ otherwise f�(x; u) = f(x; u).

Clearly f�(0; 0) = 0. Moreover, f� is C1. By construction of f� , regularity
problem can only occur on the boundary @(X �U ). But, the assumptions,
introduced for de�ning X, U and K with the mapping � of equation (7),
show that f and f� coincide on an open neighborhood of @(X � U ). This
implies the regularity of f� around @(X � U ).

To summarize, we have the following: to the C1 function F � = F +
�H, with H having a compact support included into K, there exits f� 2
C10 (IRn � IRm; IRn) such that

{ for the Whitney C1 topology, lim�!0 f
� = f

{ for (x; u) 2 X � U , the sub-manifold �� of theorem 1 associated to
f� is given by the equations8><

>:
pm+1 = F

�
m+1(x; p1; : : : ; pm)

...
pn = F �

n(x; p1; : : : ; pm):

Assume now that (1) is linearizable via dynamic feedback around 0.
Then, theorem 1 implies that for (x; p) small, there exists a 2 IRn, a 6= 0
and " > 0, such that, for all � 2]� "; "[:8><

>:
pm+1 + �am+1 = Fm+1(x; p1 + �a1; : : : ; pm + �am)

...
pn + �an = Fn(x; p1 + �a1; : : : ; pm + �am):

The derivation with respect to � leads to, when � = 0,

(am+1; : : : ; an) =
@F

@q
b

where q = (p1; : : : ; pm) and b = (a1; : : : ; am). Since a 6= 0, the above
relation implies that b 6= 0. Similarly, the second order derivation leads to

@2F

@q2
[b; b] = 0:
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More generally, the derivation of order k 2 f2; : : : ;m+ 1g leads to

@kF

@qk
[b; : : : ; b| {z }
k times

] = 0: (9)

This implies that the family of vectorial homogeneous polynomials of degree
k 2 f2; : : : ;m+ 1g

Pk(X1; : : : ; Xm) =
@kF

@qk

2
6666664

0
B@

X1

...
Xm

1
CA ; : : : ;

0
B@

X1

...
Xm

1
CA

| {z }
k times

3
7777775
= 0 (10)

admits a non-zero common solution X1 = b1; : : : ; Xm = bm.
Denote by R the resultant of the polynomials P2, : : :, Pm+1: R is

an homogeneous vectorial polynomial in the coe�cients of P2, : : :, Pm+1.
Since

{ the number of indeterminates Xi is equal to m,

{ the number of scalar polynomials induced by Pk is equal to m(n �
m) � m since n > m,

{ each Pk is homogeneous of degree k and its coe�cients are arbitrary
since they correspond to the k-th derivatives of F with respect to
(p1; : : : ; pm),

R is a nonzero vectorial polynomial of the coe�cients of P2, : : :, Pm+1.
The elimination theory [20, chapter XI] says that, since the homoge-

neous polynomials (Pk)2�k�m+1 admit a common nonzero root, their co-
e�cients are a root of the nonzero resultant R. This means that, for all
(x; q) 2W , F satis�es the following partial di�erential relations:

R

2
666664
�
@i1+:::+imFj

@pi11 : : :@pimm

�
m+ 1 � j � n

i1 � 0; : : : ; im � 0
2 � i1 + : : :+ im � m + 1

3
777775 = 0: (11)

It is clear that there exists H 2 C10 (W; IRn�m), with a support con-
tained in K, such that for j�j small enough, the vectorial function of

8
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(x; q) 2W ,

R

2
666664
 
@i1+:::+imF

�
j

@p
i1
1 : : : @p

im
m

!
m + 1 � j � n

i1 � 0; : : : ; im � 0
2 � i1 + : : :+ im � m + 1

3
777775

is not equal to 0 for (x; q) = 0. This implies that f� 2 C1(IRn� IRm; IRn)
associated to F � = F +�H (see (8)) leads to a control system _x = f�(x; u)
that is not linearizable via dynamic feedback. Since lim�!0 f

� = f for the
Whitney C1 topology, the density of nonlinearizable systems that do not
satisfy (11) is proved.

Assume now that f 2 C10 (IRn� IR
m
; IR

n) leads to F 2 C1(W; IR
n�m)

that does not satisfy (11). Then, it is obvious that every g close to f for the
Whitney C1 topology leads to G 2 C10 (W; IRn�m) that does not satisfy
(11). This results from the following facts:

{ the mapping that sends f to F 2 C10 (W; IRn�m), as stated above, can
be well de�ned for a small neighborhood of f in C10 (IRn� IRm; IRn);

{ this mapping is continuous for the Whitney C1 topology. This re-
sults from the fact that the derivatives of F with respect to x and q

are obtained via polynomial expressions of the derivatives of f with

respect to x and u and of

�
@(f1; : : : ; fm)

@u

��1
;

{ the mapping that associates to F the vectorial function de�ned by
the left-hand side of (11) is continuous for the C1 topology.

We have proved that the set of f 2 C10 (IRn � IRm; IRn) such that the

rank of
@f

@u
(0; 0) is maximum and leading, locally around 0, to mappings

F that do not satisfy (11) is open and dense. Since such mappings f lead,
according to Theorem 1, to non linearizable control systems, the proof is
�nished.

Remark 1 The necessary condition of Theorem 1 is always satis�ed for
a�ne control systems (i.e. when f is an a�ne function of u): as shown
in [18], this case seems to be much more complicated. For example, it is
well known [3, 18] that generic a�ne control systems with n = m + 1 are
linearizable via dynamic feedback. Theorem 2 says that this is no more true
when n = m + 1 and f is not supposed to be an a�ne function of u.
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4 Discussion

The mathematical notion of genericity and structural stability corresponds
to an idealization and formalization of the fact that every modeling process
is always an approximation: for the dynamic model, _x = f(x; u), f is
not precisely known. Theorem 2 means that linearizability via dynamic
feedback for arbitrary smooth systems _x = f(x; u) is not a structurally
stable property when the Whitney C1 topology is used. More precisely, the
opposite property is generic (in the sense given in [10, page 141]). Notice
that our result does not imply that the non-linearizability via dynamic
feedback is a structurally stable property, although this might be true.

According to the \structural stability dogma", i.e., the properties rel-
evant to applications are only the structurally stable ones [19], control
models linearizable via dynamic feedback must be considered as irrele-
vant to applications. In fact, the situation is not as simple as it seems.
Many dynamical processes, reasonably modeled, are linearizable via dy-
namic feedback (see, e.g., [1, 9, 6] for mechanical systems and [14] for
chemical reactors)..

In the appendix, we give a new practical and nontrivial linearizable
example: the chemical polymerization reactor with two controls considered
in [17]1. This system is linearizable via dynamic feedback for generic kinetic
and thermal laws (functions Rm, ki, � and f6 of (12)). This property is
important since it takes into account the usual fact that the kinetic and
thermal laws are semi-empirical laws elaborated from real data. For this
particular system, it is thus natural to consider only structural control
properties that do not depend on the special form of these laws.

It results that dynamic feedback linearizability makes sense for this
chemical reactor. On the opposite, the Whitney C1 topology, used for
representing model uncertainties, reveals to be too coarse for this partic-
ular system. Some a priori knowledge on the system structure must be
taken into account in the de�nition of a speci�c topology and admissible
perturbations of the model equations. It is reasonable here to de�ne such
admissible perturbations as arbitrary smooth perturbations of the functions
Rm, ki, � and f6.
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A A PolymerizationReactor Linearizable via Dynamic

Feedback

Consider the chemical reactor studied in [17]. The equations of the reactor
are (the notations are those of [17])

_Cm =
Cmms

�
�

�
1 + "

�1

�1 +MmCm

�
Cm

�
+Rm(Cm; Ci; Cs; T )

_Ci = �ki(T )Ci + u2
Ciis

V
�

�
1 + "

�1

�1 +MmCm

�
Ci

�

_Cs = u2
Csis

V
+
Csms

�
�

�
1 + "

�1

�1 +MmCm

�
Cs

�

_�1 = �MmRm(Cm; Ci; Cs; T )�

�
1 + "

�1

�1 +MmCm

�
�1

�

_T = �(Cm; Ci; Cs; �1; T ) + �1Tj

_Tj = f6(T; Tj ) + �4u1
(12)

where

{ x = (Cm; Ci; Cs; �1; T; Tj) is the state.

{ u = (u1; u2) is the control

{ p = (Cmms
;Mm; "; �; Ciis

; Csms
; Csis

; V; �1; �4) are constant positive
physical parameters.

{ the functions Rm, ki, � and f6 can be considered arbitrary since they
are not precisely determined: they involve kinetic laws, heat transfer
coe�cients and reaction enthalpies; their expressions are derived from
real data and semi-empirical considerations.

Symbolically, (12) is denoted by _x = f(x; u; p).
Consider now the output y = (y1; y2) = (Csis

Ci�Ciis
Cs;MmCm+�1).

We shall see that y is a linearizing output [6] of (12) for generic functions
Rm, ki, � and f6. In other words, we will prove that the entire state x
and the control u are functions of y and a �nite number of its derivatives.
This means that (12) is linearizable via endogenous dynamic feedback [13]
around equilibria for generic functions Rm, ki, � and f6 (the term generic
is related here to the Whitney topology for C1 mappings).

We just prove now in details that x and u are functions of y and a �nite
number of its derivatives, for Rm, ki, � and f6 generic. We do not prove in
details, although this is possible but has little interest for our purpose, the
fact that, generically for Rm, ki, � and f6, (12) is linearizable via dynamic
feedback around an equilibrium in the sense of [3].
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We have

_y2 = Mm

Cmms

�
�

�
1 + "

�1

y2

�
y2

�
:

Thus �1 is a function of y2 and _y2. Since y2 = MmCm + �1, Cm is also a
function of y2 and _y2. We have8>>>>><

>>>>>:

_y1 = �Csis
ki(T )Ci �

Csms
Ciis

�
�

�
1 + "

�1

y2

�
y1

�

_�1 = �MmRm(Cm; Ci; Cs; T )�

�
1 + "

�1

y2

�
�1

�

y1 = Csis
Ci �Ciis

Cs:

Thus (Ci; Cs; T ) is a function of (y1; _y1; y2; �1; _�1; Cm). According to the
previous computations, (Ci; Cs; T ) is a function of (y1; _y1; y2; _y2; �y2).

Similarly, since8><
>:

_Cs = u2
Csis

V
+
Csms

�
�

�
1 + "

�1

�1 +MmCm

�
Cs

�

_T = �(Cm; Ci; Cs; �1; T ) + �1Tj ;

(Tj ; u2) is a function of (y1; _y1; �y1; y2; _y2; �y2; y
(3)

2 ). Since

_Tj = f6(T; Tj) + �4u1

u1 is a function of (y1; _y1; �y1; y
(3)
1 ; y2; _y2; �y2; y

(3)
2 ; y

(4)
2 ).

Thus x is a function of

(y1; _y1; �y1; y2; _y2; �y2; y
(3)
2 )

and u depends on

(y1; _y1; �y1; y
(3)
1 ; y2; _y2; �y2; y

(3)
2 ; y

(4)
2 ):

These calculations show also that, generically, the extended system�
_x = f(x; u1; u2; p)
_u2 = ~u2

with the control (u1; ~u2) is linearizable via static feedback [12] and can be
transformed into

y
(3)
1 = v1; y

(4)
2 = v2:

The reader can verify that (12) is not linearizable via static feedback. No-
tice furthermore that the linearizing output admits a clear physical inter-
pretation:

12
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{ y1 =

���� Csis
Cs

Ciis
Ci

���� measures the degree of colinearity of the solvent

and initiator compositions between the inlet initiator stream and the
reactor.

{ y2 is the sum of the concentration of monomer and polymer in the
reactor.
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