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Performance of RLS Identi�cation Algorithms

with Forgetting Factor: A �{Mixing Approach�
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Abstract

In this paper, systems with unknown time-varying parameters

and subject to stochastic disturbances are considered. The prob-

lem of tracking the parameters is tackled by resorting to a class of

adaptive recursive least squares algorithms, equipped with variable

forgetting factor. The basic assumption in the analysis is that the

observation vector, the noise and the parameter drift are stochastic

processes satisfying a �{mixing condition. Furthermore, it is as-

sumed that the observation vector satis�es an excitation condition

imposed on its minimum power. It is shown that the algorithm

provides estimates with bounded error whenever the so-called \co-

variance matrix" of the algorithm keeps bounded. Moreover, the size

of such a matrix can be controlled by a suitable choice of the feasible

range for the forgetting factor.
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1 Introduction and Preliminaries

1.1 The RLS algorithm

Denoting by #�(t) 2 Rn�m a matrix of unknown parameters, consider the

following system

y(t) = #�(t)0'(t) + d(t); (1:1:a)

�Received July 1, 1991; received in �nal form December 5, 1991. Summary appeared

in Vol. 4 Number 3, 1994.
yThis paper has been supported by Centro Teoria dei Sistemi of the Consiglio

Nazionale delle Ricerche and Ministero della Universita' e Ricerca Scienti�ca e

Tecnologica.

1



MARCO CAMPI

#�(t + 1) = #�(t) + �#�(t): (1:1:b)

In equations (1.1), y(t) 2 Rm is a vector of observed outputs, '(t) 2 Rn

is the measured observation vector, d(t) 2 Rm is the additive noise and

�#�(t) 2 Rn�m is the parameter drift term. The initialization of equation

(1.1.b), at time t = 1; is assumed to be L2-bounded (i.e. k #�(1) kL2 :=

E1=2[k #�(1) k2] bounded).

A common technique for the estimation of the unknown parameter #�(t)

is the Recursive Least Squares (RLS) algorithmwith forgetting factor, [19],

given by the equations

�(t) = y(t)0 � '(t)0#̂(t� 1) (1:2:a)

a(t) = (1 + '(t)0P (t� 1)'(t))�1 (1:2:b)

K(t) = a(t)P (t� 1)'(t) (1:2:c)

#̂(t) = #̂(t� 1) +K(t)�(t) (1:2:d)

P (t) =
1

�(t)
[P (t� 1)� a(t)P (t� 1)'(t)'(t)0P (t� 1)] + Q: (1:2:e)

The recursive equations (1:2:d) and (1:2:e) are initialized with given (de-

terministic) vector #̂(0) and matrix P (0) = P (0)0 > 0; respectively. In

equation(1:2:e); Q is a positive de�nite matrix and �(t) is the forgetting

factor, which is assumed to satisfy the constraint

0 < �0 � �(t) � �1 < 1: (1:3)

Remark 1.1. Many recursive algorithm used in identi�cation and control

engineering, including Exponential Forgetting, Constant Trace, Prediction

Error Forgetting, to quote but a few, can be seen as particular cases of

equations (1.2) with Q = 0:

Remark 1.2. In the implementation of algorithm (1.2), the positive def-

inite matrix Q in equation(1:2:e) guarantees that the algorithm keeps a

certain degree of responsiveness in any operating condition (even when the

observation vectors take quite large values).

In this paper, we will study the performance of algorithm (1.2) in a fully

stochastic framework. Our main concern will be the analysis of the con-

ditions under which the algorithm provides estimates of the time-varying

parameter #�(t) such that the corresponding error keeps L2-bounded.
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1.2 An overview of the existing literature

A large stream of literature has been devoted to the analysis of adaptive

RLS algorithms. Most papers deal with those variants characterized by an

algorithm gain which progressively switches o�, [2], [15], [16]. However,

such algorithms asymptotically behave as the standard RLS, so that adap-

tivity is lost in the long run. In the truly adaptive RLS context, a stream

of research focuses on the exponential convergence of the estimation to

the true parameter value when this is assumed to be time-invariant, see
e.g. [4], [5], [6], [7], [9], [14]. As a matter of fact, exponential convergence

in the constant case implies a certain degree of tracking capability in the

time-varying case, [1]. In [4], [5], [14], it is assumed that the data are free

of disturbances and the observation vector satis�es some persistent excita-

tion condition of deterministic type. On the contrary, a stochastic notion

of persistent excitation is proposed in [6] and [7], where a fairly general

variable forgetting algorithm is studied. It is proven that the algorithm

enjoys the L2-exponential convergence, [6], and the almost sure exponen-

tial convergence, [7], provided that the data are not corrupted by noise.

The problem of tracking time-varying parameters with data measurement

equations subject to stochastic disturbances is considered in [8]. However,

the results of [8] are obtained under a sti� persistent excitation condition

of deterministic type.

To the best knowledge of the present author, the �rst paper dealing with

truly adaptive identi�cation methods in a fully stochastic framework is [10].

In this paper, Gerencs�er studies a general algorithm for the estimation of

the parameters of linear continuous-time stochastic models. The proposed

identi�cation technique coincides with the classical RLS algorithm with

constant forgetting factor in the particular case of linear regressor systems.

It is shown that the probability that the tracking error is greater than

a given constant � can be made arbitrarily small provided that the time

variability of the parameters is su�ciently slow and the forgetting factor

is suitably chosen. Moreover, it is proven that, with probability 1, over

a time interval of length T the estimation error remains less than � in a

subinterval of measure T 0 such that T 0=T tends to 1 when T goes to in�nity.

Though very interesting, these results do not prevent the estimation error

from becoming very large (or even unbounded) on some events in the prob-

ability space. The occurrence of a large estimation error on events with

low probability leads to sudden overshoots in the estimates, a well known

phenomenon in engineering applications (blow-up). In order to avoid this

undesirable behaviour, one has to bound in some way the ensemble average

of the estimation error. Technically speaking, in the linear regressor case

this prompts the need of studying the behaviour of the so-called covariance

matrix of the algorithm (P (t) in our notations), what is not necessary in

order to derive bounds in probability.
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More recently, a stochastic analysis of kalman-�lter based identi�cation

techniques appeared in [12] and [11]. In particular, in [11], a stochastic

notion of persistent excitation is adopted and, by a thorough investiga-

tion, the boundedness of the tracking error in mean square and almost

surely in an average sense is proven. Finite-memory RLS algorithms have

been recently considered in [18], where an interesting study of the ob-

servation vector properties guaranteeing the invertibility of the so-called

regression matrix is provided. These results have a special importance for

rectangular-window LS techniques. However, the analysis of [18] is still

based on stationarity assumptions on the observation vectors.

The reader is referred to the recent survey [17] for a comprehensive

presentation of the most popular methods for the identi�cation of time-

varying systems as well as for a description of the main techniques and

results in the analysis.

1.3 Assumptions and main results

Denoting by �(v) the �-algebra generated by a random variable v, de�ne

Gj = �(�#�(j); '(j); d(j)) and Go = �(#�(1)). Moreover, let Ps
r = �(Gj j

r � j � s); r � 0: Note that the structure of equations (1.1) is such that

the two sequences #�(j) and y(j); j = 1; � � � ; t, are measurable w.r. to

Pt
o. Therefore, P

t
o represents the �-algebra of the past up to time t. In the

sequel, it will be assumed that G0 is independent of �(Gj j j � 1). We will

also assume that the forgetting factor �(t) is computed as a function of the

system variables up to time t, then �(t) is measurable w.r. to Pt
o.

Throughout the paper �#�(t) and d(t) are supposed to be conditionally

bounded according to

Assumption A.1:

E[k d(t) k2j P
t�p
0 ] � �2

d; p � 1 given constant; 8t � p;

Assumption A.2:

E[k �#�(t) k2j Pt�1
0 ] � �2

#; 8t � 1:

Remark 1.3. Note that assumption A.1 does not prevent d(�) from being

a coloured noise, possibly with a nonzero expected value. As for A.2, it

does not prevent #�(�) from exhibiting trends or seasonal components.

We also introduce the following assumptions on the content of infor-

mation in observations (excitation) and on the probabilistic structure of

data.

Assumption A.3:

E['(t)'(t)0] � aI > 0; 8t;
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Assumption A.4:

E[('(t)0'(t))2] � b; 8t;

Assumption A.5:

f�#�(t); '(t); d(t)g is �-mixing with process dependence index � � d:

(see Appendix A for the notion of �-mixing process and process dependence

index).

Remark 1.4. Assumption A.5 requires that the correlation of the data

is asymptotically vanishing. This corresponds to the natural decay of the

in
uence of the past on the present in dissipative physical systems. As-

sumption A.3 is an L2-excitation condition; as such it imposes a constraint

on the power of signal '(�) only. Obviously, this condition is much weaker

than the widely adopted deterministic-type excitation condition discussed

for instance in [8]. See also [3] for more discussion.

The main results of the paper can be summarized as follows.

i) The parameter error keeps bounded whenever the matrix P (�) is not
divergent. More precisely, we will prove that the L1-boundedness of P (�)

implies the L2-boundedness of the tracking error.

ii) The \amplitude" of matrix P (�) can be controlled by a suitable choice
of the feasible range for the forgetting factor. The values taken by matrix

P (�) depend on the quantity of information carried by data and the value of

the forgetting factor. When the information content is \small", matrix P (�)

tends to increase. This e�ect can be counterbalanced by taking larger val-

ues of the forgetting factor, so as to enlarge the algorithm memory length.

On the other hand, it is well known that this results in a deterioration of

the algorithm responsiveness. One of the achievements of this paper is the

determination of a critical value such that, if the forgetting factor keeps

greater than the critical value, then P (�) keeps L1-bounded.

The paper is organized as follows. In Section 2, a stochastic condition

of persistent excitation is introduced. Moreover, it is shown that the ob-

servation vectors '(�) of system (1) satisfy this condition. The analysis

of algorithm (1.2) is developed in Section 3. Some preliminary remarks

are presented in Section 3.1. In Section 3.2, it is shown that P (�) can be

kept L1-bounded provided that the lower bound of the forgetting factor

is larger than the critical value. The main result of the paper is given in

Section 3.3, where it is proven that the L1-boundedness of P (�) implies the

L2-boundedness of the tracking error. In view of the results of Section 3.2,

in Section 3.3 it is concluded that the tracking error can be kept bounded

by suitably tuning the lower bound of the forgetting factor.
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2 Persistent Excitation

Due to the monotonicity property stated in Appendix A, Assumption A.5

entails that

f'(t)g is �-mixing with process dependence index � � d.

Theorem 2.1 below investigates the properties of excitation enjoyed by the

observation vector sequence f'(t)g.

Theorem 2.1. Assume that '(�) is �-mixing and satis�es Assumptions
A.3 and A.4. Then, there exist an integer s and a real number � > 0 such
that

E

"
�min

(
t+sX

i=t+1

'(i)'(i)0

)#
� �; 8t: (2:1)

Proof: Using the inequality �min(A) � �min(B)� k A�B k; A � 0; B � 0;

one obtains:

�min

"
t+rX

i=t+1

'(i)'(i)0

#
� �min

"
t+rX

i=t+1

E['(i)'(i)0]

#
� k �(r; t) k (2:2)

where

�(r; t) =

t+rX
i=t+1

['(i)'(i)0 �E['(i)'(i)0]]:

Divide both sides of inequality (2.2) by r and apply the expectation oper-

ator. Proposition A.5 in Appendix A entails that

limr!1

1

r
E[k �(r; t) k] = 0; uniformly w.r. to t: (2:3)

On the other hand, in view of Assumption A.3,

1

r
�min

"
t+rX

i=t+1

E['(i)'(i)0]

#
� a; 8t: (2:4)

The statement of the theorem follows from equations (2.2)-(2.4).

Note that condition (2.1) becomes tighter as � increases and/or s de-

creases. The minimum integer s for which the statement of Theorem 2.1
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holds true is named order of persistent excitation of '(�) and will be de-

noted by r. It is also advisable to introduce the notion of level of persistent
excitation of sequence '(�) as the real number l de�ned by

l = inf
t
E

"
�min

(
t+rX

i=t+1

'(i)'(i)0

)#
:

3 Analysis of the Tracking Error

Let ~#(t) = #̂(t) � #�(t + 1) be the parameter tracking error. From

equations (1.1), (1:2:a) and (1:2:d), it follows that

~#(t) = F (t)~#(t� 1) +K(t)d(t)0 � �#�(t); (3:1:a)

where

F (t) = I �K(t)'(t)0: (3:1:b)

This is a time-varying, nonlinear and stochastic system with d(�) and �#�(�)

as exogeneous variables. The e�ect of these variables on the error ~#(�) can

be controlled by suitably selecting the algorithm gain K(�). Obviously,

there is a chance of designing K(�) so that the error ~#(�) tends to zero only

if �#�(�) = 0:This corresponds to time-invariant systems. On the contrary,

when the parameters are time-varying, one expects that the parameter error

will be permanently subject to 
uctuations. Hence, the best one can hope

for is that these 
uctuations keep bounded. In this section, we will work

out the conditions under which the tracking error keeps bounded in the

L2-sense.

3.1 Some preliminary remarks

The goal of the present subsection is to discuss in an informal way the

connections between the boundedness of the tracking error ~#(�) and the

boundedness of the algorithm gain K(�) and the covariance matrix P (�).

The disturbance d(t) a�ects the tracking error ~#(t) through the term

K(t)d(t)0 appearing in equation(3:1:a). If the gain K(t) takes large values,

then the disturbance is ampli�ed and determines large 
uctuations in the

parameter estimate. This fact is known in the engineering literature as

\bursting phenomena". On the other hand, the value of the gain K(t) is

strictly related to that of the covariance matrix P (t � 1). In particular,

the boundedness of P (t�1) entails the boundedness of K(t). Indeed, from

equations (1:2:b) and (1:2:c) it is readily seen that k K(t) k2 � k P (t�1) k.

The above discussion shows that it is most important to control the

value of matrix P (�) in order to prevent the e�ect of the disturbance from
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beeing too large. Roughly, the boundedness of P (�) can be thought as a

necessary condition in order that the identi�cation algorithm behaves well.

In Section 3.3, we will show the important fact that this condition is also

su�cient. To be precise, we shall prove that the L1-boundedness of P (�)

implies the L2-boundedness of the tracking error.

We place emphasis on the fact that requiring the L1-boundedness of

P (�) is an implicit condition. Then, before turning to the main result (L1-

boundedness of P (�)) L2-boundedness of the tracking error) we are well

advised to work out explicit conditions which imply the boundedness of

matrix P (�). Among other things, this will allow us to point out a feasible

range for the forgetting factor. If the forgetting factor belongs to such a

range, then the boundedness of the tracking error is guaranteed.

3.2 Boundedness of the covariance matrix

Despite the complexity of recursion (1:2:e) of matrix P (t) (nonlinear and

stochastic), it is shown that E[k P (t) k] satis�es a simple linear inequality.

By imposing that such an inequality is contractive, a nice condition for the

uniform boundedness of the L1-norm of P (t) is worked out.

Theorem 3.1 Consider equation(1:2:e) initialized with P (0) = P (0)0 > 0:

If

9 integer h � 0 such that �
(h+1)r
0 > 1 � l2r�2b�1 + d2(hr + 1)�2; (3:2)

(where �0 is the lower bound for the forgetting factor (equation(1.3)); r and
l are the order and the level of persistent excitation of '(�) (Section 2), and
b appears in Assumption A.4), then

sup
t
E[k P (t) k] <1:

Proof: Since �(�) has to satisfy constraint (1.3) only, we will analyze equa-

tion (1:2:e) with �(t) replaced by �0. Indeed, for a �xed initial condition

P (0), the solution of

P (t) =
1

�0
[P (t� 1)� a(t)P (t� 1)'(t)'(t)0P (t� 1)] +Q

= [�0P (t� 1)�1 + �0'(t)'(t)
0]�1 +Q (3:3)

is the maximal solution of equation (1:2:e) with respect to all possible

functions �(�) satisfying (1.3).

We will now apply Proposition B.2 in Appendix B with m = 1 to

recursion (3.3). To this end, take as Ft the �-algebra generated by '(t)

and set � = 1: Then, all the assumptions of Proposition B.2 are satis�ed.
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Therefore, for any integer h � 0 and real numbers � > 0; � > 0; z 2 (0; 1),

the following inequality holds:

E
h
�
(h+1)r
0 k P (t+ (h+ 1)r) k

i
� �1E[k P (t) k] +H; (3:4)

where the expressions of �1 andH are given in the statement of Proposition

B.2.
We end the proof by showing that, if condition (3.2) is met with, then

there exist h � 0; � > 0; � > 0 and z 2 (0; 1), such that (3.4) is a contractive

inequality, i.e. �
�(h+1)r
0 �1 < 1: Indeed, in such a case, tacking into

account that the growth of P (�) over the intervals [j(h+1)r; (j+1)(h+1)r];

j = 0; 1; 2; : : :, is bounded (see equation (1.2.e)), it is easy to conclude that

the L1-norm of P (t) is uniformly bounded.

From the expression of �1 given in Appendix B, the contractivity con-

dition can be written as

�
�(h+1)r
0 (1+��1 k Q k)(h+1)r(rb��2+g(l; r2b; z)+d2(hr+1)�2) < 1: (3:5)

(see again Appendix B, equation (B.10), for the de�nition of function

g(�; �; �)).

Then, it is apparent that, if

�
�(h+1)r
0 (g(l ; r2b; z) + d2(hr + 1)�2) < 1; (3:6)

inequality (3.5) is satis�ed for � and � su�ciently large. Since g(l,r2b; z)
is monotonically decreasing with z and tends to 1 � l2r�2b�1 as z ! 0

(see expression (B.10)), (3.6) is met with by a su�ciently small z whenever

(3.2) holds true.

Remark 3.1. There always exists a �0 < 1 such that condition (3.2) is

satis�ed. Indeed, one can take h large enough so that the right-hand-side

of the inequality in (3.2) is lower than 1. This corresponds to the fact that,

even if the level of excitation of '(�) is arbitrarily small, one can increase

at will the algorithm memory length by taking �0 closer and closer to 1.

The consequent accumulation of information prevents the L1-divergence of

P (�).

3.3 Boundedness of the tracking error

In this section, it will be shown that the L1-boundedness of P (�) implies

that the tracking error of algorithm (1.2) keeps L2-bounded.

Since the forgetting factor �(�) may depend on ~#(�), the updating

equation(3:1:a) for the estimation error is nonlinear. However, it is ad-

visable to express its solution in a \linear-like form" as follows:
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~#(t) = �(t; 0)~#(0) +

tX
�=1

�(t; � )[K(� )d(� )0 � �#�(� )]; (3:7)

where

�(t; � ) =

8<
:
I; � = t

F (t)F (t� 1) � � �F (� + 1); � < t;

plays the role of transition matrix. The dependence of F (t) on the past val-

ues of �(�) is rather involved (see equations (3:1:b); (1:2:b); (1:2:c); (1:2:e)).

However, it is possible to characterize in a simple way the in
uence of �(�)

on the quadratic formF (t)0P (t)�1F (t). Indeed, from the quoted equations,

one can easily obtain the inequality:

F (t)0P (t)�1F (t) � �(t)P (t� 1)�1: (3:8)

This observation motivates the forthcoming analysis where ~#(t) will be

considered in its weighted norm with kernel P (t)�1, i.e. k ~#(t) kP (t)�1 =

maxkxk=1fx
0 ~#(t)0P (t)�1~#(t)xg1=2.

From equations (3.7) and (3.8) the following fundamental bound for

k ~#(t) kP (t)�1 is readily derived

k ~#(t) kP (t)�1�

 
tY

i=1

�(i)

!1=2

k ~#(0) kP (0)�1

+

tX
�=1

 
tY

i=1

�(i)

!1=2 �
k K(� )d(� )0 kP (�)�1 + k �#�(� ) kP (�)�1

�
: (3:9)

This bound will be exploited in the proof of the following fundamental

Theorem 3.2. Assume that Assumptions A.1 - A.5 hold true. Then,
suptE[k P (t) k] <1 ) supt k

~#(t) kL2<1: (3:10)

Proof: Equation (3.9) can be rewritten as

k ~#(t) k �

 
tY

i=1

�(i)

!1=2

k P (t) k1=2k ~#(0) kP (0)�1

+

tX
�=1

 
tY

i=�+1

�(i)

!1=2

k P (t) k1=2
�
k K(� )d(� )0 kP (�)�1

+ k �#�(� ) kP (�)�1

�
:

10
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Consequently, the L2-norm of ~#(t) can be given the following upper bound

k ~#(t) kL2� E1=2

" 
tY

i=1

�(i)

!
k P (t) kk ~#(0) k2P (0)�1

#

+

tX
�=1

E1=2

" 
tY

i=�+1

�(i)

!
k P (t) kk K(� )d(� )0 k2P (�)�1

#

+

tX
�=1

E1=2

" 
tY

i=�+1

�(i)

!
k P (t) kk �#�(� ) k2P (�)�1

#
: (3:11)

We will now show how to handle a single term, say

E1=2[(�t
i=�+1�(i)) k P (t) kk K(� )d(� )0 k2P (�)�1 ];

at the right-hand-side of equation(3.11). All the other terms can be handled

in the same way.

Consider the function

�1(h; �; �; z) = (1 + ��1 k Q k)(h+1)r(rb��2 + g(l; r2b; z) + d2(hr + 1)�2);

introduced in Proposition B.2 in Appendix B, where h is a nonnegative

integer, � > 0; � > 0; z 2 (0; 1) are real numbers and g(�; �; �) is the func-

tion de�ned by equation (B.10) in Appendix B. Fix (�h; ��; ��; �z) such that

�1(�h; ��; ��; �z) < 1 (since g(l; r2b; z) < 1, this is possible). Write

t = � +mt�� (�h+ 1)r + st�� ;

where st�� 2 [0; (�h+ 1)r � 1]. Then, in view of equation (1:2:e),

E1=2

" 
tY

i=�+1

�(i)

!
k P (t) kk K(� )d(� )0 k2P (�)�1

#

� E1=2

2
4
0
@�+mt�� (�h+1)rY

i=�+1

�(i)

1
A k P (� +mt�� (�h + 1)r) k

� k K(� )d(� )0 k2P (�)�1

i

� E1=2

2
4
0
@�+mt�� (�h+1)rY

i=�+1

�(i)

1
A (�h+ 1)r k K(� )d(� )0 k2P (�)�1

3
5 ; (3:12)

where, for mt�� = 0,
�Q�

i=�+1 �(i)
�
has to be interpreted as 1.
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We will now apply Proposition B.2 in Appendix B to the �rst term at

the right-hand-side of equation (3.12). To this purpose, de�ne F1 = P1
0

and Fi = Pi
i ; i � 2: Since #�(1) is assumed to be independent of P11 ,

in view of Proposition A.1 in Appendix A, one can conclude that the �-

algebra fFt j t � 1g is �-mixing with the same dependence index � � d

of fPt
t j t � 1g. Moreover, it is straightforward to see that assumtions

i) - iv) of Proposition B.2 are satis�ed and that � =k K(� )d(� )0 k2
P (�)�1

is measurable w.r. to fFi j i � �g. Then, from Proposition B.2 with

h = �h; � = ��; � = ��, and z = �z, we have

E1=2

2
4
0
@�+mt�� (�h+1)rY

i=�+1

�(i)

1
A k P (� +mt�� (�h + 1)r) kk K(� )d(� )0 k2P (�)�1

3
5

�
n
�mt��E

h
k P (� ) kk K(� )d(� )0 k2P (�)�1

i

+ mt���
mt���1H E

h
k K(� )d(� )0 k2P (�)�1

io1=2
�
n
�mt��E

h
k P (� ) kk K(� )d(� )0 k2P (�)�1

io1=2
+
n
mt���

mt���1H E
h
k K(� )d(� )0 k2P (�)�1

io1=2
; (3:13)

where � = max(�1(�h; ��; ��; �z); �2(�h; ��; ��; �z)) (�1 and �2 are de�ned in

Proposition B.2). By substituting (3.13) into (3.12), one �nally obtains

E1=2

" 
tY

i=�+1

�(i)

!
k P (t) kk K(� )d(� )0 k2P (�)�1

#

� �mt��=2
n
E1=2

h
k P (� ) kk K(� )d(� )0 k2P (�)�1

i
+
�
m

1=2
t�� (H=�)

1=2 + [(�h+ 1)r k Q k]1=2
�
E1=2

h
k K(� )d(� )0 k2P (�)�1

io
:

By handling in an analogous way all the terms in equation (3.11), one gets

the following bound for k ~#(t) kL2

k ~#(t) kL2� �mt=2
n
E1=2

h
k P (0) kk ~#(0) k2P (0)�1

i
+(m

1=2
t c1 + c2)E

1=2
h
k ~#(0) k2P (0)�1

io

+

tX
�=1

�mt��=2
n
E1=2

h
k P (� ) kk K(� )d(� )0 k2P (�)�1

i

+(m
1=2
t�� c1 + c2)E

1=2
h
k K(� )d(� )0 k2P (�)�1

io
12
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+

tX
�=1

�mt��=2
n
E1=2

h
k P (� ) kk �#�(� ) k2P (�)�1

i

+(m
1=2
t�� c1 + c2)E

1=2
h
k �#�(� ) k2P (�)�1

io
(3:14)

where

c1 = (H=�)1=2; c2 = [(h+ 1)r k Q k]1=2:

Our next step consists in deriving suitable upper bounds for

k K(� )d(� )0 k2
P (�)�1 and k �#�(� ) k2

P (�)�1 : To this purpose, note �rst

that P (� ) � Q, see equation (1:2:e). Consequently,

k �#�(� ) k2P (�)�1 � k Q�1 kk �#�(� ) k2 : (3:15)

Turn now to k K(� )d(� )0 k2
P (�)�1=k d(� )K(� )P (� )�1K(� )d(� )0 k, and

replace K(� ) with its expression (1:2:c). Then, one obtains

k K(� )d(� )0 k2P (�)�1�
'(� )0P (� � 1)'(� )

1 + '(� )0P (� � 1)'(� )
k d(� )d(� )0 k

�k d(� ) k2 : (3:16)

Note that the right-hand-sides of inequalities (3.15) and (3.16) are measur-

able w.r. to the �-algebra P�
� associated with time � only.

We are now in the position to bound term by term the right-hand-side

of equation (3.14). Letting suptE[k P (t) k] = bp, from (3.16) it turns out

that:

E1=2
h
k P (� ) kk K(� )d(� ) k2P (�)�1

i
+(m

1=2
t�� c1 + c2)E

1=2
h
k K(� )d(� )0 k2P (�)�1

i
� �d

h
�
�p=2
0 (bp + p k Q k)1=2 +m

1=2
t�� c1 + c2

i
; 8� � p: (3:17)

Indeed, in view of (3.16) and the inequality P (t) � P (t� 1)=�(t) +Q (see

equation (1:2:e)), the following inequality holds:

E1=2
h
k P (� ) kk k(� )d(� ) k2P (�)�1

i

� E1=2
�
�
�p
0 (k P (� � p) k +p k Q k) k d(� ) k2

�
:

Consequently, in view of Assumption A.1,

E1=2
h
k P (� ) kk k(� )d(� ) k2P (�)�1

i

� E1=2
�
��p0 (k P (� � p) k +p k Q k)�2

d

�
:

13
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This, together with (3.16), leads to (3.17).

Analogously, by resorting to inequality (3.15) and Assumption A.2, one

obtains

E1=2
h
k P (� ) kk �#�(� ) k2P (�)�1

i
+ (m

1=2
t�� c1 + c2)E

1=2
h
k �#�(� ) k2P (�)�1

i

� �# k Q
�1 k1=2

h
�
�1=2
0 (bp+ k Q k)1=2 +m

1=2
t��c1 + c2

i
; 8� � 1: (3:18)

Considering that mt�� is linearly increasing whereas �
mt�� is exponentially

decreasing with t� � , from (3.14), (3.17) and (3.18), the thesis follows.

From theorems 3.1 and 3.2, the following conclusion can be drawn:

Theorem 3.3. Assume that Assumptions A.1 - A.5 hold true and denote
by r and l the order and the level of persistent excitation of the observation
vector sequence '(�). Then, provided that

9 integer h � 0 such that �
(h+1)r
0 > 1 � l2r�2b�1 + d2(hr + 1)�2;

one has supt k
~#(t) kL2<1.

Remark 3.2. From Theorem 3.3 and Remark 3.1, it follows that, under

Assumtions A.1 - A.5, there always exists a choice of the forgetting factor

such that the tracking error keeps bounded.

4 Conclusions

In this paper, the tracking capability of recursive least squares identi�-

cation algorithms with forgetting factor is analyzed in a fully stochastic

framework. The main achievements are:

� The boundedness of matrix P (�) is a su�cient condition for the

boundedness of the parameter tracking error.

� A feasible range for the forgetting factor has been worked out. If the

forgetting factor belongs to such a range at any time-point, then the

boundedness of the parameter tracking error is guaranteed.

This is believed to be the �rst paper where results of this type are estab-

lished. Further work is expected in order to derive:

� quantitative bounds for the parameter tracking error, when condition

(3.2) is satis�ed;

� optimal tuning-rules for the selection of the forgetting factor in the

feasible range.

14
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Appendix A: �{mixing Stochastic Processes

Given a probability space (
;F ; p), let F1 and F2 be two sub �-algebras

of F .

De�nition A.1 (Dependence coe�cient between two �-algebras)
The dependence coe�cient of F1 with respect to F2 is de�ned as

�(F1;F2) = sup
A2F2

�
ess sup

!2

jp(A=F1)� p(A)j

�
:

Note that �(F1;F2) 2 [0; 1]; 8F1;F2. Furthermore, given two �-algebras G1
and G2 contained in F , such that G1 � F1 and G2 � F2, then �(F1;F2) �

�(G1;G2)( monotonicity property). Given another �-algebra F0 � F , con-

sider the �-algebra �(F0;F1). From the monotonicity property, it fol-

lows that �(�(F0;F1);F2) � �(F1;F2). However, if F0 is independent of

�(F1;F2), the following statement holds true.

Proposition A.1. Suppose that Fo is independent of �(F1;F2). Then

�(�(F0;F1);F2) = �(F1;F2):

This result can be proven by observing that an integrable random variable

�, measurable w.r. toF2, is such thatE[� j F1] = E[� j �(F0;F1)] whenever

F0 is independent of �(F1;F2).

The following propositions point out the role played by the dependence

coe�cient in order to extend results classically stated under the indepen-

dence assumption.

Proposition A.2. Let A and B be two subsets of 
 belonging to F1 and
F2, respectively. Then,

jp(A \B) � p(A)p(B)j � �(F1;F2)p(A):

Proposition A.3. Let the random variables �i be Fi measurable, i=1,2,
and E [j�1j

p] <1; E [j�2j
q] <1 with 1=p+ 1=q = 1: Then,

jE[�1�2]� E[�1]E[�2]j � 2�1=p(F1;F2)E
1=p [j�1j

p]E1=q [j�2j
q] :

15
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Proposition A.4. Let � � 0 be a random variable measurable w.r. to the
�-algebra F1 and denote by B an element of the �-algebra F2. ThenZ

B

�dp � (p(B) + �(F1;F2))E[�]:

Propositions A.2 and A.3 are proven in [13]; as for Proposition A.4, its

statement is an obvious consequence of Proposition A.2 when � is a sim-

ple function. Then, the general statement can be obtained by a limiting

process.

From De�nition A.1 and Proposition A.2, it follows that �(F1;F2) = 0

i� F1 and F2 are independent.

Turn now to consider a sequence of �-algebras fFt � F j t � 1g and

denote by Fs
r the �-algebra generated by Fr; � � � ;Fs. We also let F1r be

the �-algebra generated by fFj; j � rg.

De�nition A.2. (Dependence function of a �-algebra sequence)
The dependence function �(�) of a �-algebra sequence fFt j t � 1g is de�ned

by

�(m) = sup
i

�(F i
1;F

1

i+m); m � 0:

The value �(m) can be roughly interpreted as a correlation coe�cient be-

tween the past and the m-steps forward future. If fFt j t � 1g is an

independent sequence, then �(m) = 0; 8m � 1: In general, in view of the

monotonicity property, �(�) is monotonically decreasing.

De�nition A.3. (�-mixing sequence of �-algebras and dependence index
of a �-algebra sequence)
The sequence fFt j t � 1g is said to be �-mixing if

P
1

m=1 �(m)
1=2 <1:

The quantity � =
P1

m=1 �(m)
1=2 is then said to be the dependence index

of the � -algebra sequence.

The notion of �-mixing sequence of �-algebras can be applied when

fFt j t � 1g is generated by a stochastic process f�(t) j t � 1g. In this

case, the dependence function and the dependence index of the �-algebra

sequence are also called process dependence function and process dependence
index, respectively.

Many results valid for independent processes still hold true under the

�-mixing condition. This is the case of the L2-law of large numbers as

indicated in

Proposition A.5. Consider a sequence of vector random variables f�(t)g
such that

i) There exists b such that E[(�(t)0�(t))2] � b; 8t;

16
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ii)f�(t)g is �-mixing.
Then,

lim
r!1

1

r2
E

"
k

t+rX
i=t+1

f�(i)�(i)0 �E[�(i)�(i)0]g k2

#
= 0;

uniformly w.r to t.

Proof: Consider the j; k-element of matrix �(i)�(i)0 �E[�(i)�(i)0]:

�j;k(i) = �j(i)�k(i) �E[�j(i)�k(i)];

where �l(i) is the l-th component of �(i).

Since

E[(�(i)0�(i))2] � E[(�j(i)�k(i))
2]

� E[�j;k(i)
2]; 8i; 8j; k;

from condition i), it follows that:

E[�j;k(i)
2] � b; 8i; 8j; k: (A:1)

Consider now two time points � and � 0; by applying Proposition A.3 to

�j;k(� ) and �j;k(�
0), one obtains:

E[�j;k(� )�j;k(�
0)] � 2�(j � � � 0 j)1=2E1=2[�j;k(� )

2]E1=2[�j;k(�
0)2]; 8j; k;

(A:2)

where �(�) is the process dependence function of �(�).

Letting � be the dependence index of process �(�), from (A.1) and (A.2),

it follows that:

1

r2
E

2
4
 

t+rX
i=t+1

�j;k(i)

!2
3
5 =

1

r2

t+rX
�;� 0=t+1

E[�j;k(� )�j;k(�
0)]

�
2b

r2

t+rX
�;� 0=t+1

�(j � � � 0 j)1=2

� 4b(1 + �)=r; 8j; k (A:3)

On the other hand, denoting by n the dimension of vector �(�),

1

r2
E

"
k

t+rX
i=t+1

f�(i)�(i)0 �E[�(i)�(i)0]g k2

#

17
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�
1

r2
E

2
64
8<
:

nX
j;k=1

j

t+rX
i=t+1

�j;k(i)j

9=
;

2
3
75

� n4max
j;k

1

r2
E

2
4
(

t+rX
i=t+1

�j;k(i)

)2
3
5 ; 8t:

Hence, from (A.3) the thesis follows.

Remark A.1. From the above proof, one can conclude that the rate of

convergence to zero of 1
r2
E[k

Pt+r
i=t+1 f�(i)�(i)

0 � E[�(i)�(i)0]g k2] depends

on the dimension n of vector �(i), the dependence index � of process �(�)

and parameter b only.

For further discussion on the �-mixing notion, see [13].

Appendix B: Some Technical Results on the Covariance

Matrix Recursion

Consider the recursive equation

P (t) =
1

�(t)
[P (t� 1)� a(t)P (t� 1)'(t)'(t)0P (t� 1)] +Q: (B:1:a)

a(t) = (1 + '(t)0P (t� 1)'(t))�1 (B:1:b)

with initial condition

P (0) = P (0)0 > 0 (B:2)

and �(�) and Q such that

0 < �0 � �(t) � �1 < 1; (B:3:a)

Q > 0: (B:3:b)

In this appendix, some important results concerning k P (t) k are derived.

The �rst one follows from the structure of the recursive equation and does

not require any assumption on the exogenous sequences �(�) and '(�).

Proposition B.1. Consider three time points t1; t2, and t3 such that 1 �
t1 � t2 < t3. Given any pair of positive real numbers � > 0 and � > 0; we
have

�min[P (t3)
�1]

18
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�

 
t3Y

i=t1+1

!
min

�
f1(�; t3 � t1); max

�
f2(�; t3 � t1)�min[P (t1)

�1];

f3(�; t3 � t2)IA(�;t2;t3)�min

"
t3X

t2+1

'(i)'(i)0

#))

where
f1(�; t3 � t1) = (�+ (t3 � t1) k Q k)�1

f2(�; t3 � t1) = (1 + ��1 k Q k)�(t3�t1)

f3(�; t3 � t2) = (1+ k Q kk Q�1 + �I k)�(t3�t2)

A(�; t2; t3) =

t3\
i=t2+1

fk '(i) k2� �g;

and IA denotes the indicator of set A.

Proof: From (B.1) and (B.2), it follows that P (t) > Q > 0; 8t. Therefore

P (t) is nonsingular and recursion (B.1a) can also be written as

P (t) = [�(t)P (t� 1)�1 + �(t)'(t)'(t)0]�1 + Q; (B:4)

which entails the following inequality

k P (t) k� �(t)�1 k P (t� 1) k + k Q k; 8t: (B:5)

It is advisable to distinguish two complementary events:

B = fk P (t) k> �; 8t 2 [t1; t3 � 1]g;

�B = f9�t 2 [t1; t3 � 1] : k P (�t) k� �g

The following inequalities hold:

�min[P (t3)
�1] �

 
t3Y

i=t1+1

!�
1 + ��1 k Q k

�t1�t3
�min[P (t1)

�1]; onB;

(B:6)

�min[P (t3)
�1] �

 
t3Y

i=t1+1

!
(�+ (t3 � t1) k Q k)�1; on �B; (B:7)

Inequality (B.7) is a straightforward consequence of inequality (B.5). In-

equality (B.6) follows from the inequality

k P (t) k� �(t)�1 k P (t� 1) k +��1 k Q kk P (t� 1) k; 8t 2 [t1 + 1; t3];

which can also be derived from (B.5).
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Moreover, we have

�min[P (t3)
�1]

�

 
t3Y

i=t1+1

!�
1+ k Q kk Q�1 + �I k

�t2�t3
�min

"
t3X

i=t2+1

'(i)'(i)0

#
;

onA(�; t2; t3): (B:8)

Indeed, since P (t) > Q, the inequality �(t)P (t � 1)�1 + �(t)'(t)'(t)0 �

Q�1 + �I; 8t 2 [t2 + 1; t3] holds true on A(�; t2; t3). Then, (B.4) leads to

the inequality

P (t) � (1+ k Q kk Q�1 + �I k)
�
�(t)P (t� 1)�1 + �(t)'(t)'(t)0

��1
;

8t 2 [t2 + 1; t3] (B:9)

Inequality (B.8) is a straightforward consequence of (B.9).

The thesis of the Proposition follows from (B.6) - (B.8).

The second result, stated below as Proposition B.2, deals with the time-

evolution of P (�) when the exogenous variables '(�) and �(�) are described

as particular stochastic processes. Preliminarly, we provide two technical

lemmas.

Lemma B.1. Consider two random variables  � 0 and � > 0 measurable
w.r. to the �-algebra G and a random variable � � 0 measurable w.r. to
the �-algebra H. Given a real number c > 0; let A = f� > cg. Then

E

�
 

maxf�; �g

�
� E

�
 

c

�
+ (p �A+ �(G;H))E

�
 

�

�
;

where �(G;H) is the dependence coe�cient of the two �-algebras.

Proof: Since

E

�
 

maxf�; �g

�
�

Z
A

 

c
dp +

Z
�A

 

�
dp;

the thesis follows from Proposition A.4.

Lemma B.2. Consider a random variable � � 0 such that

i) E[�] � 
 > 0;

ii) E[�2] � � <1:
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Given any real z 2 (0; 1), the probability of Az = f! : � � z
g is bounded
from above by the quantity

g(
; �; z) = (2
2z2)�1f2z
2 � � + [4
2�z(z � 1) + �2]1=2g < 1: (B:10)

Proof: Observe thatZ
�Az

�2dp �
1

p( �Az)

�Z
�Az

�dp

�2

: (B:11)

Moreover, in view of assumption i),


 � z
p(Az ) +

Z
�Az

�dp: (B:12)

Then, from ii), (B.11) and (B.12)

� � E[�2] �

Z
�Az

�2dp �
1

p( �Az)

�Z
�Az

�dp

�2

�
1

p( �Az)
(1� zp(Az))

2
2:

The statement easily follows from this inequality.

Proposition B.2. Let fFt j t � 1g be a�-mixing sequence of �-algebras
with dependence index � � d and assume that

i) �(t) is measurable w.r. to �(Fi j i � t); 8t

ii) '(t) is measurable w.r. to Ft; 8t

iii) E['(t)'(t)0] � aI > 0; 8t

iv) E[('(t)0'(t))2] � b <1; 8t:

Given an integer h � 0; three real numbers � > 0; � > 0; and z 2 (0; 1) and
a random variable � � 0 measurable w.r. to �(Fi j i � �t), the following
inequality holds true

E

2
4
0
@�t+m(h+1)rY

i=�t+1

�(i)

1
A � k P (�t+m(h + 1)r) k

3
5

� �m1 E[� k P (�t) k] +

mX
i=1

�m�i1 �i�12 HE[�]; 8m � 1;

with

�1 = (1 + ��1 k Q k)(h+1)r(rb��2 + g(l; r2b; z) + d2(hr + 1)�2);

�2 = �
(h+1)r
1 ;
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H = (1+ k Q kk Q�1 + �I k)rz�1l�1 + (�+ (h+ 1)r k Q k);

where r and l are the order and the level of persistent excitation of '(�) and
g(�; �; �) is de�ned in (B.10). (See the discussion in Section 2 for the notion
of order and level of persistent excitation of process '(�)).

Proof: Let

� (n) = �t + n(h+ 1)r;

A(n) =

�(n)\
i=�(n�1)+hr+1

fk '(i) k2� �g;

�(n) =

�(n)X
i=�(n�1)+hr+1

'(i)'(i)0;

M (n) =

( Q�(n)
i=�(0)+1 �(i); n � 1

1; n = 0:

Resorting to Proposition B.1 with t1 = � (m � 1); t2 = � (m � 1) + hr; t3 =

� (m), after simple calculations one obtains

E[M (m)� k P (� (m)) k]

� E[M (m� 1)�f1(�; (h+ 1)r)�1] +E[M (m� 1)��(m)�1]; (B:13)

where

�(m)

= max
�
f2(�; (h+ 1)r)�min [P (� (m� 1))�1]; IA(m)f3(�; r)�min[�(m)]

	
:

In order to derive an upper bound for the second term at the right-hand-

side of (B.13), apply Lemma B.1 with

G = fFi j i � � (m � 1)g;

H = fFi j i � � (m� 1) + hr + 1g;

 =M (m � 1)�;

� = f2(�; (h+ 1)r)�min[P (� (m� 1))�1];

� = IA(m)f3(�; r)�min[�(m)];

c = zlf3(�; r):

It turns out that:

E[M (m� 1)��(m)�1] � E[M (m� 1)�(zlf3(�; r))
�1]

+
�
pfIA(m)�min[�(m)] � zlg+ �(hr + 1)

�
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�E
�
M (m � 1)�f2(�; (h+ 1)r)�1 k P (� (m� 1)) k

�
; (B:14)

where �(�) is the dependence function of fFt j t � 1g.

The probability pfIA(m)�min[�(m)] � zlg can also be bounded from

above. With this objective in mind, notice �rst that

E
�
(�min[�(m)])

2
�
� E

2
64
0
@ �(m)X

i=�(m�1)+hr+1

k '(i) k2

1
A

2
3
75

� r2
�

max
i2[�(m�1)+hr+1;�(m)]

E[k '(i) k4]

�
:

Hence, from assumption iv),

E
�
�min[�(m)])

2
�
� r2b: (B:15)

In view of assumptions ii) - iv); '(�) satis�es equation (2.1) with s = r and

� = l (see Theorem 2.1 and the discussion which follows this theorem).

Consequently,

E(�min [�(m)]) � l: (B:16)

In view of Lemma B.2, (B.15) and (B.16) entail that:

pf�min[�(m)] � zlg � g(l; r2b; z): (B:17)

Consider now the complement of A(m):

�A(m) =

�(m)[
i=�(m�1)+hr+1

fk '(i) k2> �g:

Thanks to assumption iv), the Chebyshev inequality entails that pfk '(i) k2

> �g � b��2. Therefore:

p( �A(m)) � rb��2: (B:18)

Finally, inequalities (B.17) and (B.18) can be used to derive the required

upper bound

pfIA(m)�min [�(m)] � zlg � rb��2 + g(l; r2b; z): (B:19)

Substituting (B.19) into (B.14), and further substituting into (B.13), one

obtains

E[M (m)� k P (� (m)) k]

�
�
(zlf3(�; r))

�1 + f1(�; (h+ 1)r)�1
�
E[M (m� 1)�]
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+
�
rb��2 + g(l; r2b; z) + �(hr + 1)

�
f2(�; (h+ 1)r)�1

�E [M (m � 1)� k P (� (m� 1)) k] : (B:20)

Recall now that the dependence function �(�) enjoys the fundamental

monotonicity property. Therefore, being the dependence index of fFt j t �

1g bounded from above by d, �(hr + 1) � d2(hr + 1)�2. In conclusion,

from (B.20) and the de�nitions of �1; �2 and H given in the statement of

the proposition, one obtains

E[M (m)� k P (� (m)) k] � �1E [M (m � 1)� k P (� (m� 1)) k]+H�m�12 E[�]:

From this recursive inequality the thesis is easily obtained.
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