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Fixed Reciprocal Dynamics
�
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Abstract

Motivated by a problem considered earlier by Schr�odinger [1]{[2],

Jamison [3]{[4] and others, we examine in this paper the construction

of Gauss-Markov processes with �xed reciprocal dynamics. Given

the class of reciprocal processes speci�ed by a second-order model, a

procedure is described for constructing a Markov process in the class

with preassigned marginal probability densities at the end points.

The problem of changing the �nal density of a Gauss-Markov process

while remaining in the same reciprocal class is also examined, and is

interpreted in terms of an estimation problem.

1 Introduction

The goal of this paper is to develop techniques for constructing discrete-
time Gauss-Markov processes with given reciprocal dynamics. We recall
that a IRn valued discrete-time stochastic process x(k) de�ned over the in-
terval I = [0; N ] is said to be reciprocal if for any subinterval [K;L] � I, the
process in the interior of [K;L] is conditionally independent of the process
in I�[K;L] given x(K) and x(L). From this de�nition, we can immediately
conclude that Markov processes are necessarily reciprocal, but the converse
is not true [5]. Reciprocal processes were introduced in 1932 by Bernstein
[6] who was in
uenced by an attempt of Schr�odinger [1], [2] at giving a
stochastic interpretation of quantum mechanics. The stochastic processes
considered by Schr�odinger were Markov processes, but they had the inter-
esting feature that the marginal probability densities of the process at both
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ends of the interval of interest were preassigned. Schr�odinger showed that
such Markov processes could be constructed by solving two coupled non-
linear integral equations. After their introduction by Bernstein, reciprocal
processes were studied in detail by Jamison [5], [3], [4], who showed that
they could be constructed by pinning a Markov process at both ends of
a �xed time interval, and then assigning an arbitrary probability density
to the end points of the process. From this perspective, two reciprocal
processes obtained by pinning the same Markov process, but assigning dif-
ferent end-point densities, can be viewed as equivalent since they have the
same dynamics. We refer the reader to [7] for a discussion of the concept
of equivalence of reciprocal processes.

In the context of Jamison's work, Schr�odinger's problem can be viewed
as one where given a Markov process, we seek to construct another Markov
process in the same reciprocal class, with the same initial density, but a
di�erent end-point density. Re�ning earlier proofs of Fortet [8] and Beurling
[9], Jamison showed that the two coupled integral equations of Schr�odinger
admit a unique solution. More recently, it was shown [10], [11] that the
problem of changing the �nal density of a Markov process can be formulated
as a stochastic optimal control problem.

Starting with Krener's work [12], a signi�cant amount of attention has
focused on developing dynamical models for reciprocal processes. It was
shown in [13], [14] that Gaussian reciprocal processes whose covariance is
uniformly positive de�nite over the interval of interest admit self-adjoint
second-order models driven by locally correlated noise, where the noise
correlation structure is totally determined by the model dynamics.

In this paper, given the equivalence class of discrete-time Gaussian re-
ciprocal processes speci�ed by a second-order model, we develop a method
for constructing a Gauss-Markov process in the class with preassigned
marginal end-point probability densities. The construction procedure relies
on a characterization of the class of boundary conditions of second-order
models corresponding to Markov processes, and requires �nding the posi-
tive de�nite solution of a standard algebraic Riccati equation. The problem
of changing the end-point density of a discrete-time Gauss-Markov pro-
cess while remaining in the same reciprocal class is also discussed. Unlike
the continuous-time case, it is shown that this problem does not admit a
stochastic optimal control interpretation, but an alternative, more general,
interpretation is given in terms of an estimation problem.

The paper is organized as follows. In Section 2 we brie
y review the
properties of the second-order models of Gaussian reciprocal processes in-
troduced in [13]. In Section 3 it is shown how to construct a Markov
process with given second-order model and end-point marginal densities.
In Section 4 we consider the problem of changing the end-point density of a
Markov process, while remaining in the same reciprocal class. A stochastic
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interpretation of the solution of this problem is provided in Section 5.

2 Second-order Models of Reciprocal Processes

We start by reviewing the properties of the second-order models of discrete-
time Gaussian reciprocal processes introduced in [13]. Let x(k) be a zero-
mean Gaussian reciprocal process taking values in IRn, de�ned over the
�nite interval I = [0; N ] and with covariance R(k; l) = E[x(k)xT (l)]. When
the process x(k) is nonsingular over I, i.e. when its covariance matrix
R = (R(k; l))0�k;l�N is positive de�nite, x(k) admits a second-order model
of the form

�M�(k)x(k � 1) +M0(k)x(k)�M+(k)x(k + 1) = e(k) ; (2.1)

for 1 � k � N � 1. This model has the following features:

(i) If Z denotes the forward shift operator Zf(k) = f(k+1), the operator

�
4
= M0(k)I �M+(k)Z �M�(k)Z

�1 (2.2a)

is self-adjoint, so that

M0(k) = MT
0 (k) ; M+(k) = MT

� (k + 1) : (2.2b)

(ii) The driving noise e(k) is the conjugate process of x(k), and has the
property

E[e(k)xT (l)] = I�(k � l) ; (2.3)

which implies
�R(k; l) = I : (2.4)

(iii) e(k) is locally correlated with covariance

E(k; l) = 0 for jk � lj > 1 (2.5a)

E(k; k) = M0(k) ; E(k; k + 1) = �M+(k) : (2.5b)

In order to specify completely the reciprocal process x(k) in terms of
the model (2.1), some boundary conditions must be provided. These can
take either the form of Dirichlet conditions�

x(0)
x(N )

�
= b � N (0; P ) (2.6a)

P =

�
R(0; 0) R(0; N )
R(N; 0) R(N;N )

�
; (2.6b)
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where b is independent of the driving noise e(k), or of cyclic boundary
conditions

�M�(0)x(N ) +M0(0)x(0)�M+(0)x(1) = e(0) (2.7a)

�M�(N )x(N � 1) +M0(N )x(N )�M+(N )x(0) = e(N ) (2.7b)

where it is now assumed that the self-adjointness relations (2.2b) hold for
0 � k � N with k + 1 de�ned modulo N + 1, and e(0) and e(N ) satisfy
(2.3).

Following Jamison [3] and Clark [7], the concept of local equivalence of
reciprocal processes can be formulated as follows.

De�nition 2.1 Two reciprocal processes x(k) and x0(k) are said to be lo-
cally equivalent if the three point transition density r(xk�1; k�1;xk; k;xk+1,
k + 1) of x(k) given x(k � 1) and x(k + 1) is the same for both processes,
or equivalently, if they admit the same dynamics (2.1) for 1 � k � N � 1.
Quantities which are preserved under local equivalence are called reciprocal
invariants.

Thus, the dynamics (2.1) de�ne an equivalence class of reciprocal pro-
cesses, where two processes in the same class di�er only by their boundary
conditions. To specify a reciprocal process x(k) within the equivalence
class, we must select covariance matrices

�(0) = R(0; 0) �(N ) = R(N;N ) R(0; N ) (2.8)

which then yield a Dirichlet condition of the form (2.6a){(2.6b). Equiva-
lently, if we consider the cyclic conditions (2.7a){(2.7b), we see from the
self-adjointness conditions (2.2b) that

M+(0) =MT
� (1) M�(N ) = MT

+ (N � 1) (2.9)

so that M+(0) and M�(N ) are speci�ed by the dynamics (2.1), and the
only matrices we are free to choose are

M0(0) M0(N ) M+(N ) = MT
� (0) ; (2.10)

where M0(0) and M0(N ) must be symmetric positive de�nite. Thus, inde-
pendently of whether we consider Dirichlet or cyclic boundary conditions,
we have exactly the same number of degrees of degree of freedom in speci-
fying a process x(k) in the reciprocal class de�ned by (2.1).

Since Markov processes constitute a subclass of reciprocal processes,
there are some processes in the class speci�ed by (2.1) which are Markov.
In addition to a second-order description, these processes admit a �rst-order
state-space model of the form

x(k + 1) = A(k)x(k) + w(k) 0 � k � N � 1 ; (2.11)
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where w(k) is a zero-mean white Gaussian noise (WGN) process indepen-
dent of x(0) with intensity Q(k), i.e. w(k) � N (0; Q(k)). If the process
x(k) is nonsingular over [0; N ], i.e. if the covariance matrix R is posi-
tive de�nite, it is easy to verify that the noise w(k) has full rank, so that
Q(k) > 0 for all k. In [13], it is shown that there exists the following
relations between the matrices M0(k);M�(k);M+(k) of the second order
model (2.1) and the matrices A(k); Q(k) of the state-space model (2.11):

M0(k) = Q�1(k � 1) + AT (k)Q�1(k)A(k) (2.12a)

M+(k) = AT (k)Q�1(k) (2.12b)

M�(k) = Q�1(k � 1)A(k � 1) : (2.12c)

Furthermore, the conjugate process driving the second-order model (2.1)
can be expressed in terms of the white noise w(k) driving the state-space
model (2.11) as

e(k) = Q�1(k � 1)w(k � 1)� AT (k)Q�1(k)w(k) : (2.13)

3 Construction of Markov Processes with Fixed Re-

ciprocal Dynamics

In [13] the following characterization of nonsingular reciprocal processes
de�ned over a �nite interval was obtained.

Theorem 3.1 R > 0 is the covariance matrix of a reciprocal process de-
�ned over I if and only if its inverse covariance R�1 has a cyclic block
tridiagonal structure, i.e.

R�1 = (3.1)2
64

M0(0) �M+(0) 0 � � � 0 �M�(0)
�M�(1) M0(1) �M�(1) 0 � � � 0

� � � � � �
0 � � � 0 �M�(N � 1) M0(N � 1) �M+(N � 1)

�M+(N) 0 � � � 0 �M�(N) M0(N)

3
75 :

In contrast, it was shown by Ackner and Kailath [15] that R > 0 is
the covariance of a Markov process if and only if R�1 is block tridiagonal,
so that within the equivalence class of reciprocal processes with dynamics
(2.1), the subclass of Markov processes has the feature that the corner
matrices of R�1 are zero, i.e.

M+(N ) = MT
� (0) = 0 : (3.2)

The identity (3.2) provides a simple characterization of the subclass
of Markov processes with reciprocal dynamics (2.1), but it does not tell
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us how to construct a Markov process x(k) with reciprocal characteristics
(2.1) and marginal end-point densities

x(0) � N (0;�(0)) x(N ) � N (0;�(N )) : (3.3)

As was already indicated, once the reciprocal dynamics (2.1) are speci�ed,
the selection of a particular process within the reciprocal class is accom-
plished by imposing a set of boundary conditions. In order to ensure that
the resulting model is well posed, the only constraint that needs to be
imposed on Dirichlet boundary conditions is that the matrix P in (2.6b)
should be positive de�nite. However, if we want the solution of the model
to be a Markov process with marginal end-point densities (3.3), the co-
variance matrix P cannot be selected arbitrarily. Speci�cally, the Markov
property introduces additional constraints which have the e�ect of �xing
completely the correlation matrix R(0; N ) in terms of the given data. Sim-
ilarly, if we consider cyclic boundary conditions of the form (2.7a){(2.7b),
a consequence of the constraint (3.3) is that in the Markov case, the cyclic
conditions are completely speci�ed by M0(0) and M0(N ), which are also
determined by the given data.

The objective of this section is to develop a procedure for computing
the correlation matrix R(0; N ) and the cyclic boundary matrices M0(0)
and M0(N ) in function of the reciprocal dynamics (2.1) and end-point co-
variances �(0) and �(N ). A method will also be presented for constructing
a �rst-order state-space model for the Markov process x(k).

As starting point, we introduce the Green's function �(k; l) associated
to the operator �. It satis�es

��(k; l) = I�(k � l) (3.4a)

�(0; l) = �(N; l) = 0 (3.4b)

with 1 � k; l � N�1, where the self-adjointness property of � implies that
�(k; l) is self-adjoint, i.e.

�(k; l) = �T (l; k) : (3.5)

Note that �(k; l) is independent of the boundary conditions, and depends
only on the dynamics (2.1), so that it is a reciprocal invariant. Then, the
solution of the model (2.1) with Dirichlet conditions (2.6a){(2.6b) is given
by

x(k) =

N�1X
l=1

�(k; l)e(l)

+�(k; 1)M�(1)x(0) + �(k;N � 1)M+(N � 1)x(N ) (3.6)
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for 1 � k � N � 1. When x(k) is a Markov process, the property (3.2)
implies that the cyclic boundary conditions (2.7a)-(2.7b) take the form

M0(0)x(0)�MT
� (1)x(1) = e(0) (3.7a)

�MT
+ (N � 1)x(N � 1) +M0(N )x(N ) = e(N ) ; (3.7b)

which after substitution of the values of x(1); x(N � 1) given by (3.6) yield

T0x(0)� Sx(N ) = f(0) (3.8a)

�STx(0) + TNx(N ) = f(N ) (3.8b)

with

T0 = M0(0)�MT
� (1)�(1; 1)M�(1) (3.9a)

TN = M0(N )�MT
+ (N � 1)�(N � 1; N � 1)M+(N � 1) (3.9b)

S = MT
� (1)�(1; N � 1)M+(N � 1) (3.9c)

f(0) = e(0) +MT
� (1)

N�1X
l=1

�(1; l)e(l) (3.9d)

f(N ) = e(N ) +MT
+ (N � 1)

N�1X
l=1

�(N � 1; l)e(l) : (3.9e)

Taking into account the orthogonality property (2.3) of the conjugate pro-
cess gives

E[f(0)xT (0)] = E[f(N )xT (N )] = I (3.10a)

E[f(0)xT (N )] = E[f(N )xT (0)] = 0 : (3.10b)

From (3.8a){(3.8b) and (3.10a){(3.10b), we deduce that

P�1 =

�
T0 �S

�ST TN

�
: (3.11)

The relations (3.9a){(3.9b) indicate that T0 and TN depend on M0(0) and
M0(N ), and thus on the boundary conditions. But the matrix S given by
(3.9c) is a reciprocal invariant, since it is completely determined by the
dynamics (2.1). Thus the problem of �nding a Dirichlet condition for a
Markov process with dynamics (2.1) and marginal densities (3.3) can be
formulated as the problem of �nding a positive de�nite matrix P such that

P =

�
�(0) �

� �(N )

�
P�1 =

�
� �S

�ST �

�
; (3.12)

where the entries denoted by a � need to be determined.
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To solve this problem, consider the LDU factorization

P =

�
I 0
Z I

� �
X 0
0 Y

� �
I ZT

0 I

�
; (3.13)

which implies

P�1 =

�
I �ZT

0 I

��
X�1 0
0 Y �1

� �
I 0
�Z I

�
: (3.14)

From

P =

�
X XZT

ZX ZXZT + Y

�
(3.15a)

P�1 =

�
X�1 + ZTY �1Z �ZTY �1

�Y �1Z Y �1 ;

�
(3.15b)

we can identify

�(0) = X (3.16a)

�(N ) = ZXZT + Y (3.16b)

S = ZTY �1 : (3.16c)

Substituting (3.16a) and (3.16c) inside (3.16b) yields the algebraic Riccati
equation (ARE)

�(N ) = Y ST�(0)SY + Y : (3.17)

Thus, we have transformed the original problem of �nding boundary con-
ditions for the Markov process with dynamics (2.1) and marginal densities
(3.3) into the equivalent one of �nding a positive de�nite solution Y to the
ARE (3.17). Given such a solution, ZT is given by

ZT = SY ; (3.18)

so that all blocks appearing in the LDU factorization of P are known. Also,
provided that �(0) > 0, the condition Y > 0 ensures that the matrix P is
positive de�nite. But the ARE (3.17) can also be written as�

�
I

2

�
Y + Y

�
�
I

2

�
+�(N ) � Y ST�(0)SY = 0 (3.19)

which is in the form of the ARE of continuous-time linear quadratic control
(or Kalman �ltering). In this equation, the continuous-time state matrix
F = �I=2 is stable, the pair (F = �I=2; G = �1=2(N )) is reachable
provided that �(N ) > 0, and the pair (H = S; F = �I=2) is detectable
since F is stable. This ensures [16], [17] that the ARE (3.17) admits a
unique positive de�nite solution.
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There are several ways of computing the positive de�nite solution of
the ARE (3.17). A numerically reliable method [18] is based on the com-
putation of the stable eigenspace of the Hamiltonian matrix

H
4
=

�
�I=2 �ST�(0)S
��(N ) I=2

�
: (3.20)

To describe this method, we �rst state without proof several properties of
the matrix H.

Property 1: If � is an eigenvalue of H, so is ��.

Property 2: H does not have any eigenvalue on the imaginary axis.

Since H has real entries, the Property 1 implies that the complex eigen-
values of H occur in groups of four: (�; ��;��;���), and its real eigenval-
ues in groups of two: (�;��). From Property 2 we conclude that H has n
eigenvalues strictly in the left half of the complex plane, and n eigenvalues
strictly in the right half-plane. The stable eigenspace of H is then given by

E =

�
U

V

�
2 IR2n�n; J 2 IRn�n (3.21a)

with
HE = EJ (3.21b)

where E has full column rank and J has all its eigenvalues in the left half-
plane. The matrices E and J can be obtained by computing the Schur
decomposition of H, which takes the form

QTHQ = R (3.22)

with Q orthonormal, where

R =

2
66664
R11 : : : : : : R1q

0 R22 : : :
...

0
. . .

...
0 Rqq

3
77775 (3.23)

is a block upper triangular matrix such that the diagonal blocks Rii are
either 1�1 matrices or 2�2 matrices with complex conjugate eigenvalues.
In this decomposition, it is always possible to ensure that the n � n block
RS in the partition

R =

�
RS RSU

0 RU

�
(3.24)

corresponds to the stable eigenvalues of H. We can then identify J = RS,
and E is formed by the �rst n columns of Q. It can be shown that the
stable eigenspace of H has the following property:
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Property 3: The matrix UTV is symmetric positive de�nite.

We are now in position to construct the solution of the ARE (3.17). As
a consequence of Property 3, U must be invertible and

V U�1 = U�T (UTV )U�1 (3.25)

is symmetric positive de�nite. We can rewrite (3.21b) as

�
U

2
� ST�(0)SV = UJ (3.26a)

��(N )U +
V

2
= V J : (3.26b)

Premultiplying and postmultiplying (3.26a) by V U�1 and U�1, respec-
tively, and postmultiplying (3.26b) by U�1 gives

�
V U�1

2
� UV �1ST�(0)SUV �1 = V JU�1 (3.27a)

��(N ) +
V U�1

2
= V JU�1 : (3.27b)

Then, subtracting (3.27a) from (3.27b) we see that Y = V U�1 satis�es the
ARE (3.17), so that we have found a positive de�nite solution of (3.17).

Given this solution, we can now construct boundary conditions for the
Markov process x(k) with reciprocal dynamics (2.1) and end-point covari-
ances �(0) > 0 and �(N ) > 0. From (3.15a) we see that

R(0; N ) = �(0)SY (3.28)

speci�es a Dirichlet boundary condition for x(k).
Combining the expressions (3.9a){(3.9b) for T0 and TN with relation

(3.15b) for P�1 yields the identities

T0 = M0(0) �MT
� (1)�(1; 1)M�(1) = ��1(0) + SY ST (3.29a)

TN = M0(N ) �MT
+ (N � 1)�(N � 1; N � 1)M+(N � 1)

= Y �1 (3.29b)

which show that once Y has been computed, the boundary matrices M0(0)
and M0(N ) are known. Furthermore, since �(0) > 0 and Y > 0, we have
M0(0) > 0 andM0(N ) > 0 as desired. Thus the knowledge of Y yields also
cyclic boundary conditions for the Markov process x(k).

Finally, to construct a state-space model for the Markov process x(k),
we note from (2.12b) that

A(k) = Q(k)MT
+ (k) ; (3.30)

10
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and by combining (2.12a) and (2.12b), we �nd that Q�1(k) satis�es the
backward Riccati equation

M0(k) = Q�1(k � 1) +M+(k)Q(k)M
T
+ (k); 1 � k � N � 1 (3.31)

with initial condition

M0(N ) = Q�1(N � 1) : (3.32)

As we just saw, the matrix M0(N ) can be computed from the solution Y

of the ARE (3.17), and equations (3.31) and (3.30) can be used to compute
Q(k) and A(k), respectively, for 0 � k � N � 1.

The entries of P; P�1 and their block LDU factorization can be ex-
pressed in terms of the state-space dynamics. Since the state variance
�(k) of the Markov process x(k) satis�es the Lyapunov equation

�(k + 1) = A(k)�(k) + �(k)AT (k) + Q(k) 0 � k � N � 1 (3.33)

with initial condition �(0), the state variance at k = N can be expressed
in closed-form as

�(N ) = �(N; 0)�(0)�T (N; 0) +

N�1X
k=0

�(N; k+ 1)Q(k)�T (N; k+ 1) (3.34)

where the state transition matrix

�(t; s)
4
=

t�1Y
k=s

A(k) (3.35)

satis�es the recursion �(t+1; s) = A(t)�(t; s), with �(s; s) = I. The state
covariance matrix R(k; s) is given by

R(k; s) =

�
�(k; s)�(s) for k � s

�(k)�T (s; k) for k � s ;
(3.36)

so that the Dirichlet boundary conditions have the form�
x(0)
x(N )

�
= b � N (0; P ) (3.37a)

P =

�
�(0) �(0)�T (N; 0)

�(N; 0)�(0) �(N )

�
(3.37b)

with �(N ) as in (3.34). Then

R(0; N ) = �(0)�T (N; 0) (3.38a)

Z = �(N; 0) (3.38b)
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Y = �(N j0)
4
= �(N ) ��(N; 0)�(0)�T (N; 0)

=

N�1X
s=0

�(N; s + 1)Q(s)�T (N; s + 1) (3.38c)

S = �T (N; 0)��1(N j0) (3.38d)

T0 = ��1(0) + �T (N; 0)��1(N j0)�(N; 0) (3.38e)

TN = ��1(N j0): (3.38f)

4 Change of End-point Density

Let us consider now the problem of changing the end-point density of a
discrete-time Gauss-Markov process while remaining in the same reciprocal
class. This problem can be formulated follows: given a Markov process
with state dynamics (A(k); Q(k)) and end-point covariances (�(0);�(N )),
we seek to �nd a new Gauss-Markov process x�(k) in the same reciprocal
class, but with end-point covariances (�(0);��(N )).

Of course, this problem can be solved by using the results of the previous
section. This would involve using identities (2.12a){(2.12c) to compute
the second-order model of x(k), and then solving the algebraic Riccati
equation (3.17) with �(N ) replaced by ��(N ). However it is of interest to
contrast this approach with the one followed by Schr�odinger [1], Jamison
[4], and others [19], [20] for the general case of arbitrary, i.e. not necessarily
Gaussian, Markov processes. The Schr�odinger-Jamison construction of the
process x�(k) proceeds in two steps. First a characterization of the joint
probability density of x�(0); : : : ; x�(N ) is derived. Then, in a second stage,
the joint density is used to construct a state-space model for x�(k).

A Joint Density Characterization

Consider a Gauss-Markov process with state-space model (2.11) and initial

density

p(x0; 0) =
1

(2�)n=2j�(0)j1=2
exp f�

1

2
xT0�

�1(0)x0g : (4.1)

Then, the joint density of x(0); : : : ; x(N ) can be expressed as

p(x0; 0;x1; 1; : : : ;xN ; N ) = p(x0; 0)

N�1Y
k=0

G(xk; k;xk+1; k + 1) ; (4.2)

where

G(xk; k;xk+1; k + 1) =
1

(2�)n=2jQ(k)j1=2

12
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exp f�
1

2
(xk+1 � A(k)xk)

TQ�1(k)(xk+1 �A(k)xk)g (4.3)

is the one-step transition density of the state-space model (2.11). This can
be rewritten more compactly as

p(x0; 0;x1; 1; : : : ;xN ; N ) =
1

Z
exp f�Jg (4.4a)

where J is the quadratic form

J
4
=

1

2

"
k x0k

2
��1(0) +

N�1X
k=0

jjxk+1� A(k)xkjj
2
Q�1(k)

#
(4.4b)

and the partition function Z is selected such that the joint probability
density integrates to one. The marginal probability density of the �nal
state is then given by

p(xN ; N ) =
1

(2�)n=2j�(N )j1=2
exp f�

1

2
xTN�

�1(N )xNg (4.5)

where �(N ) satis�es (3.34).
The following procedure can be employed to change the end-point den-

sity of x(k) while remaining in the same reciprocal class.

Theorem 4.1 Given a Markov process x(k) with state-space model (2.11)
and initial density p(x0; 0), if x

�(k) is a Markov process in the same recip-
rocal class, with the same initial density, but with �nal density p�(xN ; N ),
where p�(xN ; N ) is obtained by replacing �(N ) by ��(N ) in (4.5), the joint
probability density of x� can be expressed as

p�(x0; 0;x1; 1; : : : ;xN ; N ) =

N�1Y
k=0

G(xk; k;xk+1; k+1)qf (x0)qb(xN ) ; (4.6)

where if

G(x0; 0;xN; N ) =
1

(2�)n=2j�(N j0)j1=2

exp f�
1

2
(xN ��(N; 0)x0)

T��1(N j0)(xN ��(N; 0)x0)g (4.7)

denotes the N -step transition density of the process x(k), with �(N j0) given
by (3.38c), the end-point densities qf (x0) and qb(xN ) satisfy the coupled
integral equations

p(x0; 0) = qf (x0)

Z
G(x0; 0;xN ; N )qb(xN )dxN (4.8a)

p�(xN ; N ) = qb(xN )

Z
G(x0; 0;xN ; N )qf (x0)dx0 : (4.8b)

13
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Proof: Jamison showed [3] that two reciprocal processes in the same class
di�er only by the choice of an end-point density q(x0; xN) for the trajec-
tories of a Markov process pinned at x0 and xN . Furthermore, he proved
that the subclass of Markov processes is characterized by the fact that the
end-point density q(x0; xN) can be factored as

q(x0; xN ) = qf (x0)qb(xN ) : (4.9)

Combining these two observations with the expression (4.2) for the joint
density of x, we can conclude that the joint density of x� takes the form
(4.6). Also, equating the marginal densities for x(0) and x(N ) obtained
from the joint density (4.6) to the preassigned densities yields the coupled
integral equations (4.8a){(4.8b). 2

Multiplying qf (x0) by an arbitrary constant, and dividing qb(xN ) by
the same constant leaves equations (4.8a){(4.8b) unchanged, so that the
solution to these equations is only �xed up to an arbitrary scaling. When
such a scaling is provided, the existence and uniqueness of solutions was
established in [8], [9], [3].

For Gaussian processes, the structure of equations (4.8a){(4.8b) can be
simpli�ed considerably by assuming that qf and qb have the form

qf (x0) = Cf exp f�
1

2
xT0�

�1
f x0g (4.10a)

qb(xN ) = Cb exp f�
1

2
xTN�

�1
b xNg ; (4.10b)

where �f and �b are nonsingular symmetric, not necessarily positive de�-
nite, matrices. In this case, we have

G(x0; 0;xN ; N )qb(xN ) =
1

Zb
exp f�Jbg (4.11a)

with

Jb
4
=

1

2

�
(xN � Lbx0)

T��1b (xN � Lbx0) + xT0 �bx0
�
; (4.11b)

where

��1b = ��1(N j0) + ��1
b (4.12a)

Lb = �b�
�1(N j0)�(N; 0) (4.12b)

�b = �T (N; 0)��1(N j0)�(N; 0)� LTb �
�1
b Lb

= �T (N; 0)[�b +�(N j0)]�1�(N; 0) (4.12c)

where the last equality follows from the Sherman-Morrison-Woodbury ma-
trix inversion identity (see [21], p. 51). This impliesZ

G(x0; 0;xN; N )qb(xN )dxN =
1

Kb

exp f�
1

2
xT0 �bx0g; (4.13)

14
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so that by equating the coe�cients of the quadratic exponents on both
sides of (4.8a) we obtain

��1(0) = ��1
f +�T (N; 0)[�b + �(N j0)]�1�(N; 0) : (4.14)

Similarly we have

G(x0; 0;xN; N )qf (x0) =
1

Zf
exp f�Jfg (4.15a)

with

Jf =
1

2

h
(x0 � LfxN )

T��1f (x0 � LfxN ) + xTN�fxN

i
(4.15b)

where

��1f = �T (N; 0)��1(N j0)�(N; 0) + ��1
f (4.16a)

Lf = �f�
T (N; 0)��1(N j0) (4.16b)

�f = ��1(N j0)� LTf �
�1
f Lf

= [�(N j0) + �(N; 0)�f�
T (N; 0)]�1: (4.16c)

This impliesZ
G(x0; 0;xN ; N )qf (x0)dx0 =

1

Kf

exp f�
1

2
xTN�fxNg (4.17)

so that

���1(N ) = ��1
b + [�(N j0) + �(N; 0)�f�

T (N; 0)]�1 : (4.18)

Thus, in the Gaussian case, the coupled integral equations (4.8a){(4.8b)
reduce to the coupled algebraic Riccati equations (4.14) and (4.18).

Remark: In the special case when the end-point density remains the
same, i.e. ��(N ) = �(N ), it is natural to expect that x�(k) = x(k). To
verify this, note that the solutions of the AREs (4.14) and (4.18) are given
by

�f = �(0) ��1
b = 0 (4.19)

so that
qf (x0) = p(x0; 0) qb(xN ) � 1 ; (4.20)

which implies that the joint density of x� is the same as that of x.

Since the coupled AREs (4.14) and (4.18) have a relatively complex
form, it is not easy to demonstrate the existence of solutions directly from

15
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these two equations. Instead, it is more convenient to relate the solutions of
these two equations to the positive de�nite solution Y � of the ARE (3.17)
with �(N ) replaced by ��(N ) and S given by (3.38d). To do so, note that
according to (4.6), the joint probability density of x�(0) and x�(N ) is given
by

p�(x0; 0;xN; N ) = G(x0; 0;xN ; N )qf (x0)qb(xN ) ; (4.21)

so that if P � denotes the covariance of the vector [x�T (0)x�T (N )]T , we have

P ��1 =

�
��1
f 0

0 ��1
b

�
+

�
��T (N; 0)

I

�
��1(N j0)

�
��(N; 0) I

�
:

(4.22)
Using identities (3.29a){(3.29b) to express the diagonal blocks of P ��1 in
terms of Y �, we �nd

T �0 = ��1(0) + SY �ST = ��1
f +�T (N; 0)��1(N j0)�(N; 0) (4.23a)

T �N = Y ��1 = ��1
b +��1(N j0) ; (4.23b)

so that

��1
f = ��1(0) + S(Y � � �(N j0))ST (4.24a)

��1
b = Y ��1 ���1(N j0) : (4.24b)

This shows that solutions to the AREs (4.14) and (4.18) can be obtained
from the positive de�nite solution Y � of the ARE (3.17). Note that the
matrices �f and �b are not necessarily positive de�nite. Observing that
Y � and Y = �(N j0) both solve the ARE (3.17), but for di�erent values
��(N ) and �(N ) of the end-point covariance, it is easy to check that a
necessary and su�cient condition to have ��1

b > 0 is ��(N ) < �(N ). In
other words, �b is positive only if the uncertainty of the �nal state x�(N )
is less than that of x(N ).

B Model Construction

To construct the state-space model of x�(k), we can proceed as follows.
Consider the function

qb(xk; k) =

Z
G(xk; k;xN ; N )qb(xN ) dxN ; (4.25a)

where

G(xk; k;xN ; N ) =
1

(2�)n=2j�(N jk)j1=2

exp f�
1

2
(xN ��(N; k)xk)

T��1(N jk)(xN ��(N; k)xkg (4.25b)

16
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is the probability density of x(N ) given that x(k) = xk, with

�(N jk)
4
= �(N ) ��(N; k)�(k)�T (N; k) : (4.25c)

Substituting (4.25a) for k = 0 inside the integral equation (4.8a) yields

p(x0; 0) = qf (x0)qb(x0; 0) : (4.26)

Also, since qb(xk; k) is obtained by integrating two Gaussian distributions,
it is also Gaussian, i.e.

qb(xk; k) = Cb(k) exp f�
1

2
xTk�

�1
b (k)xkg ; (4.27a)

where we �nd

��1
b (k) = �T (N; k)[�b + �(N jk)]�1�(N; k) : (4.27b)

Consider now the modi�ed one-step transition density

G�(xk; k;xk+1; k + 1)
4
= G(xk; k;xk+1; k + 1)

qb(xk+1; k+ 1)

qb(xk; k)
(4.28a)

= C�
k exp f�J�kg (4.28b)

with

J�k =
1

2

h
k xk+1 � A(k)xkk

2
Q�1(k)+ k xk+1k

2
��1
b

(k+1)� k xkk
2
��1
b

(k)

i
:

(4.28c)
Substituting it inside the expression (4.6) for the joint density of
x�(0); : : : ; x�(N ), and taking into account (4.26), we �nd that the joint
density can be written as

p�(x0; 0;x1; 1; : : : ;xN ; N ) = p(x0; 0)

N�1Y
k=0

G�(xk; k;xk+1; k+ 1) (4.29)

which is the usual expression the joint density of a Markov process, so that
the function G�(xk; k;xk+1; k+1) given by (4.28a) is actually the one-step
transition density of x�(k).

This observation leads to the following characterization of the process
x�(k).

Theorem 4.2 Let x(k) be a Markov process with state-space model

x(k + 1) = A(k)x(k) +w(k) (4.30a)

x(0) � N (0;�(0)) (4.30b)

17
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where w(k) is a zero-mean WGN process independent of x(0) and with
intensity Q(k). Then the Markov process x�(k) with the same recipro-
cal dynamics as x(k) and end-point covariances (�(0);��(N )) admits the
state-space model

x�(k + 1) = A�(k)x�(k) +w�(k) (4.31a)

x�(0) � N (0;�(0)) (4.31b)

where w�(k) is a WGN independent of x�(0) with intensity

Q�(k) = [Q�1(k) + ��1
b (k + 1)]�1 ; (4.32a)

where �b(k) is given by (4.27b) and

A�(k) = Q�(k)Q�1(k)A(k) : (4.32b)

Proof: We need only to show that the quadratic form J�k in (4.28c) can
be expressed as

J�k =
1

2
k xk+1 � A�(k)xkk

2
Q��1(k): (4.33)

Expanding (4.33), it is easy to check that this is equivalent to verifying
that

A�T (k)Q��1(k)A�(k) = AT (k)Q�1(k)A(k) ���1
b (k) : (4.34)

Substituting (4.32a) and (4.32b) inside (4.34) yields

��1
b (k)

= AT (k)[Q�1(k) �Q�1(k)[Q�1(k) + ��1
b (k + 1)]�1Q�1(k)]A(k)

= AT (k)[Q(k) + �b(k + 1)]�1A(k) (4.35)

so that in order to prove (4.34) we must check that the matrix function
�b(k) given by (4.27b) satis�es the backward equation (4.35) with �nal con-
dition �b(N ) = �b. But (4.35) can be rewritten as the forward Lyapunov
equation

�b(k + 1) = A(k)�b(k)A
T (k)� Q(k) (4.36)

which admits the solution

�b = �(N; k)�b(k)�
T (N; k)��(N jk) (4.37a)

with

�(N jk) =

N�1X
s=k

�(N; s + 1)Q(s)�T (N; s + 1) ; (4.37b)
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which is equivalent to (4.27b). 2

An alternative method of computing Q��1(k); A�(k), relies on the ob-
servation that x(k) and x�(k) admit the same second-order model. From
(2.12b), this implies

Q��1(k)A�(k) =MT
+ (k) = Q�1(k)A(k) (4.38)

which gives (4.32b). Also, both Q�(k) and Q(k) satisfy the Riccati equation
(3.31), but with di�erent �nal conditions. The �nal condition for Q� is
given by

Q��1(N � 1) = Q�1(N � 1) + ��1
b ; (4.39)

so that Q�(k) could be found by propagating (3.31) backward in time.
In contrast, the technique described earlier relies on the little-known fact
[22] that given a solution Q�1(k) of a Riccati equation, any other solution
Q��1(k) can be obtained from it by adding a correction term, where the
correction term

��1
b (k + 1) = Q��1(k)� Q�1(k) (4.40)

admits a closed-form expression, which is given here by (4.27b).
An important feature of the above state-space model for x�(k) is that

the intensity Q�(k) of the driving noise di�ers from the noise intensity Q(k)
of the model satis�ed by x(k). This di�erence is important, since it pre-
cludes the existence of a stochastic control interpretation of the change of
end-point density problem of the type discussed in [11] for the continuous-
time case. To see this, consider a dynamic system

x(k + 1) = A(k)x(k) + u(k) +w(k) ; (4.41)

where w(k) is a WGN sequence of intensity Q(k) and u(k) is an input func-
tion. Then, the solution of a linear quadratic stochastic control problem
for this system takes the form of a linear feedback law u(k) = �L(k)x(k)
which leaves invariant the the intensity Q(k) of the noise w(k). Thus, the
state-space model for x�(k) cannot be obtained by applying a linear control
law to the model satis�ed by x(k).

5 Stochastic Interpretation

When the matrices �f and �b obtained by solving the algebraic Riccati
equations (4.14) and (4.18) are positive de�nite, the results of the previous
section admit a simple stochastic interpretation.

As starting point, we observe that the joint probability density (4.6) of
x�(0); : : : ; x�(N ) can be expressed as

p�(x0; 0;x1; 1; : : : ;xN ; N ) =
1

Z�
exp f�J�g ; (5.1)
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where

J� =
1

2

"
N�1X
k=0

k xk+1 �A(k)xkk
2
Q�1(k)+ k x0k

2
��1
f

+ k xNk
2
��1
b

#
(5.2)

and Z� is the corresponding partition function. This means that x�(k)
admits the stochastic model

x�(k + 1) = A(k)x�(k) + n(k) (5.3a)

x�(0) = v0 (5.3b)

x�(N ) = vN ; (5.3c)

where n(k) is a zero-mean WGN process with intensity Q(k) and

v0 � N (0;�f ) vN � N (0;�b) (5.4)

where v0, vN and n(k) are independent of each other. However, (5.3a)
is not a Gauss-Markov state-space model for x�(k). This is due to the
fact that the model (5.3a){(5.3b) is overspeci�ed, in the sense that (5.3a)
and (5.3b) alone are su�cient to specify the process x�(k) for 0 � k �

N , and (5.3c) can be viewed as an observation for this process. We are
interested in obtaining the Gauss-Markov model describing the a posteriori
distribution of x�(k) given the observation oN corresponding to (5.3c). To
do so, following an approach similar to the one employed to construct a
backward Markovian model from a forward one [23], [24], we construct a
quasi-martingale decomposition of the noise process n(k) with respect to
the sigma �eld Fk generated by x(s) for 0 � s � k and the observation oN .

Noting that (5.3c) can be rewritten as

vN = x�(N ) = �(N; k)x�(k) +

N�1X
s=k

�(N; s + 1)n(s) ; (5.5)

or equivalently as

z(k) = �(N; k)x�(k) = �

N�1X
s=k

�(N; s+ 1)n(s) + vN ; (5.6)

we see immediately that through the observation (5.6), the knowledge of
the state x�(k) provides some information about the driving noise n(k).
The part of the noise n(k) which is predictable from the sigma �eld Fk is
given by

n̂(k) = E[n(k)jFk] = E[n(k)jz(k)]

= E[n(k)zT (k)]E[z(k)zT (k)]�1z(k) ; (5.7a)
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with

E[n(k)zT (k)] = �Q(k)�T (N; k + 1) (5.7b)

E[z(k)zT (k)] = �(N jk) + �b : (5.7c)

The residual process
~n(k) = n(k)� n̂(k) (5.8a)

is then a WGN sequence with respect to the increasing family of sigma
�elds Fk, with intensity

E[~n(k)~nT (k)]

= Q(k)� Q(k)�T (N; k + 1)(�(N jk) + �b)
�1�(N; k + 1)Q(k)

= Q(k)� Q(k)A�T (k)��1
b (k)A�1(k)Q(k) : (5.8b)

Substituting the Lyapunov equation (4.36) gives

E[~n(k)~nT (k)] = Q(k)� Q(k)[�b(k + 1) + Q(k)]�1Q(k)

= [Q�1(k) + ��1
b (k + 1)]�1 = Q�(k) : (5.9)

The state-space model for x�(k) takes therefore the form

x�(k + 1) = A(k)x�(k) + n̂(k) + ~n(k) = A�(k)x�(k) + ~n(k) (5.10)

where

A�(k) = A(k) �Q(k)�T (N; k + 1)(�(N jk) + �b)
�1�(N; k)

= [I � Q(k)�T (N; k + 1)(�(N jk) + �b)
�1�(N; k + 1)]A(k)

= [I � Q(k)(Q(k) + �b(k + 1))�1]A(k)

= Q�(k)Q�1(k)A(k) (5.11)

as expected.
Thus, the state-space model for the Gauss-Markov process x�(k) can be

viewed as describing the a posteriori distribution of the model (5.3a){(5.3b)
given the observation (5.3c). An important feature of the decomposition
of the noise n(k) in its predictable part n̂(k) and residual ~n(k) is that the
intensity Q�(k) of ~n(k) is di�erent from the intensity Q(k) of n(k). As
was noted earlier, this di�erence precludes the development of a stochastic
control interpretation of the transformation leading from the model (A(k),
Q(k)) of x(k) to the model (A�(k), Q�(k)) of x�(k), since the state-feedback
law arising in such interpretations leaves the noise intensity invariant. On
the other hand, in the continuous time case, the decomposition of the
driving noise employed above takes the form of a semi-martingale decom-
position [25] into the sum of a predictable component and a martingale
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with respect to the sigma-�eld sequence considered. A key feature of such
decompositions is that the martingale parts of a sample-path continuous
semi-martingale decomposed with respect to di�erent sigma-�elds have the
same quadratic variation. In other words, when the noise decomposition
technique applied above is adapted to the continuous-time case, the driving
noise of the state-space model for x� will have the same intensity as the
noise of the x-model, which explains why in the continuous-time case it is
possible [10], [11] to derive a stochastic control interpretation of the change
of end-point density for a Markov process.

We can also give a stochastic interpretation to the coupled Riccati equa-
tions (4.14) and (4.18) for �f and �b. To do so, note that by eliminating
the vectors x(s) with 1 � s � k � 1 from (5.3a){(5.3c), we obtain

0 = �x�(N ) + �(N; 0)x�(0) + w (5.12a)

0 = �x�(0) + v0 (5.12b)

0 = �x�(N ) + vN ; (5.12c)

where

w =

N�1X
s=0

�(N; s + 1)n(s) � N (0;�(N j0)) : (5.13)

The equations (5.12a){(5.12c) can be viewed as observations where x�(0)
and x�(N ) are unknown vectors to be estimated. To compute their ML es-
timates and associated error covariance matrices, it is convenient to rewrite
(5.12a){(5.12c) as a single vector observation of the form

0 = H

�
x�(0)
x�(N )

�
+ r (5.14a)

with

H
4
=

2
4 �I �(N; 0)
�I 0

0 �I

3
5 ; (5.14b)

where r = [wTvT0 v
T
N ]

T � N (0; R) with

R =

2
4 �(N j0) 0 0

0 �b 0
0 0 �f

3
5 : (5.14c)

The ML estimates and error covariance matrix corresponding to the obser-
vation (5.14a) are given by

�
x̂�(N )
x̂�(0)

�
= HTR�1

2
4 0

0
0

3
5 = 0 (5.15)
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P � =

�
��(N ) ��(N; 0)�(0)

�(0)��T (N; 0) �(0)

�
= (HTR�1H)�1 : (5.16)

From expressions (5.14b){(5.14c), we �nd

I
4
= HTR�1H (5.17)

=

�
��1
b +��1(N j0) ���1(N j0)�(N; 0)

��T (N; 0)��1(N j0) ��1
f +�T (N; 0)��1(N j0)�(N; 0)

�
:

Comparing (5.16) and (5.17) we see that �f and �b must satisfy

��(N ) = S�10 �(0) = S�1N (5.18)

where S0 and SN denote respectively the Schur complements of the blocks
��1
f + �T (N; 0)��1(N j0)�(N; 0) and ��1

b + ��1(N j0) inside the matrix
I. After some algebra, these Schur complements can be expressed as

S0 = ��1
b + [�(N j0) + �(N; 0)�f�

T (N; 0)]�1 (5.19a)

SN = ��1
f + �T (N; 0)[�b +�(N j0)]�1�(N; 0) ; (5.19b)

so that the identities (5.18) reduce to the coupled algebraic Riccati equa-
tions (4.14) and (4.18) for �f and �b.

Thus, we have shown that when the matrices �f and �b are positive
de�nite, they can be viewed as the a priori covariances that need to imposed
on the vectors x�(0) and x�(N ), so that their a posteriori covariances after
incorporating the dynamics (5.3a) are (�(0), ��(N )).

6 Conclusions

In this paper we have studied the subclass of Markov processes contained
in the class of discrete-time Gaussian reciprocal processes speci�ed by a
second-order model de�ned over a �nite interval. It was shown how to
choose the boundary conditions to ensure that the solution of the model
is a Markov process with given initial and �nal marginal probability den-
sities. The speci�cation of boundary conditions requires the solution of an
algebraic Riccati equation. We then considered the problem of changing
the end-point density of a Markov process while remaining in the same
reciprocal class as the original Markov process. This problem was solved
by using a characterization of the joint density of the transformed pro-
cess in terms of two Gaussian end-point densities qf and qb, which were
obtained by solving two coupled algebraic Riccati equations. It was also
shown that the transformed process admits a stochastic interpretation as
the process corresponding to the a-posteriori density of a Markov process
given a measurement of its �nal state.
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