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Abstract

The paper is devoted to the problems of an impulse control for

the systems, whose dynamic is described by ordinary nonlinear dif-

ferential equations. The problem of description for a discontinuous
solution, arising from the using of an impulse control, is considered.

The representation of the discontinuous (generalized) solutions is ob-

tained on the basis of the method of a discontinuous time change.
The problem of an impulse control is also considered. An existence

theorem for the generalized optimization problem is proved.
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1 Introduction

The purpose of this paper is to obtain the representation of a discontinu-

ous solution for ordinary nonlinear di�erential equations with an impulse

control. The solution of this problem is necessary for investigating di�erent

mathematical models which arise in 
ight dynamics [4], in the control of

observations [1], and in the control of radiation and chemical therapy [2].

The main problem for this class of systems is to �nd the response of

the dynamic system to an impulse control of a �- function type. Some

approaches to this problem are known and they are based on using the

di�erential equations with a measure. But using the di�erential equations

with a measure is possible only for the special class of di�erential equa-

tions satisfying conditions of a Frobenious type [11]. Only in this case the

response of the dynamic system to an impulse control does not depend on
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the realization of this control. In other cases the way of realization of an

impulse control will be an other additional component of the control and

will give new possibilities for optimization.

In this paper we have used an approach which is based on the method

of a discontinuous time change, which was proposed in the papers of Rishel

[10] and Warga [12] for the systems with sublinear dependence upon the

unbounded control. This method was extended on a nonlinear system in

the author's work [7,8], where the representation of discontinuous (gener-

alized) solutions for the system with an impulse control has been obtained.

Here we reduce the initial optimization problem to an auxiliary optimal

control problem with bounded controls, which is equivalent to the initial

problem. Thus we can obtain existence theorems for the optimal path of a

discontinuous type, described by a generalized di�erential equation with a

measure.

2 Statement of the Problem

Let a controllable system be described by the equations

_x(t) = f(x(t); v(t); u(t); t) +B(x(t); v(t); u(t); t)w(t);

_v(t) = kw(t)k;

u(t) 2 U;w(t) 2 K:

(2.1)

Here x 2 Rn, v 2 R1, u 2 Rk, w 2 Rm. The vector variable x(t) describes

the variation of the phase variables of a controllable system, where the

controls u(t) and w(t) respectively denote the ordinary and the generalized

control components; the former corresponds to bounded controls, and the

latter to controls, which are not bounded in the norm, but bounded in the

integral sense. The values of the control u(t) are selected from a closed

bounded set U � Rk , whereas the values of the control w(t) are not

bounded in the norm, being selected from a closed cone K � Rm. A special

equation is needed for the variable v(t) 2 R1, for taking into account the

integral constraints on the control w(:); this can be done with the aid of

any of the norms of the vector W in Rm.

We shall assume that the vector function f and the matrix function B

are continuous in the totality of variables (x; v; u; t) 2 Rn+k+2 and for any

(u; t) : u 2 V , t 2 [0; T ], they satisfy Lipschitz's condition in the totality of

variables (x; v), i.e.

kf(x1; v1; u; t)� f(x2; v2; u; t)k+

kB(x1; v1; u; t)� B(x2; v2; u; t)k �

L1fkx1 � x2k+ jv1 � v2jg;

(2.2)

for any x1; x2 2 Rn, v1; v2 2 R1 with a constant L1 > 0.

2



IMPULSE CONTROL

The condition of the linear growth in (x; v) also follows from the in-

equality (2.2) and the continuity of functions f and B, i.e.,

kf(x; v; u; t)k+ kB(x; v; u; t)k � L2(1 + kxk+ jvj); (2.3)

for any (x; v) 2 Rn+1 and a constant L2 > 0.

Suppose that the control w(�) has a constraint

Z T

0

kw(t)kdt = V (T ) �M <1 (2.4)

i.e., the allowed controls can be taken in the form of functions that are as

close as desired to impulse functions of a �-function type. This, in turn, may

result in the presence of a discontinuous solution of system (2.1) under the

constraint (2.4), and it requires that the concept of solution be extended.

In the paper [8] the following de�nition of the generalized solution of system

(2.1) is proposed.

De�nition 2.1 A pair of functions fx(�); v(�)g that are continuous from

the right and have a bounded variation in the interval [0; T ] is said to be a

generalized solution of the system (2.1) if there exists a sequence of allowed

controls fuk(�); wk(�)g that satisfy the constraints

uk(t) 2 U; wk(t) 2 K;
R T
0 kwk(t)kdt �M <1 (2.5)

and such that the corresponding sequence fxk(�); vk(�)g of solutions of sys-

tem (2.1) is convergent to the functions fx(�); v(�)g at all the points of the

continuity of the functions fx(�); v(�)g.

Let us consider the totality of all generalized solutions of the system

(2.1) under the constraint (2.4) with the initial conditions fx(0); v(0)g 2 A,

where the set A is bounded and closed in Rn+1.

The set of generalized solutions of (2.1) under these propositions is

compact in the topology of weak-� convergence in the space of the bounded

variation function. Compactness in the topology of weak-� convergence

signi�es that from any set of uniformly bounded functions f�(�) of the

uniformly bounded variation we can select a sequence f�k (�) that converges

in the interval [0; T ] to a function f(�) of the bounded variation in the sense

of

lim
k
f�k(0) = f(0);

lim
k
f�k(T ) = f(T );

and

lim
k
f�k(t) = f(t);

3



BORIS M. MILLER

at all the points of continuity of the function f(�).

This result follows from the properties of the functions f and B, and

from the Gronwall-Bellman lemma [5], because under the constraints (2.4)

and conditions (2.2),(2.3) the set of solutions of the system (2.1) is uni-

formly bounded and has a uniformly bounded variation. The set of gener-

alized solutions is the closure of the set of solutions of the system (2.1) in

the topology of weak-� convergence, and hence is compact in this topology.

Our �rst purpose is to describe the set of generalized solutions in the con-

ventional way.

3 Representation of Generalized Solutions by a Dis-

continuous Change of Time

Let us consider an auxiliary controllable system of di�erential equations

for the variables y 2 Rn, z 2 R1, � 2 R1 that is de�ned in the interval

[0; T ]; T1 � T +M :

_y(s) = �(s)f(y(s); z(s); n(s); �(s)) +

(1� �(s))B(y(s); z(s); n(s); �(s))e(s);

_z(s) = (1� �(s))ke(s)k; (3.1)

_�(s) = �(s);

with initial conditions y(0) = x(0), z(0) = 0, �(0) = 0, and the controls in

the form of functions �(�), n(�), e(�), that satisfy the constraints

�(s) 2 [0; 1]; n(s) 2 U; e(s) 2 fK \ (kek � 1)g: (3.2)

In the description of the auxiliary system (3.1) and constraints (3.2) the

functions f and B, sets U and K, and constants T and M , are the same

as for the initial system (2.1). Between the systems (2.1) and (3.1) there

exists a correspondence speci�ed by the two following theorems, which are

proved in [8].

Theorem 3.1 Let the functions fx(�); v(�); u(�); w(�)g satisfy the system

(2.1), and let the functions fu(�); w(�)g be measurable and satisfy the con-

straints

u(t) 2 U; w(t) 2 K;
R T
0
kw(t)kdt �M:

Then there exist functions fy(�); z(�); �(�); �(�); n(�); e(�)g de�ned in the in-

terval [0; T + v(T )]; that satisfy the system (3.1) and the constraints (3.2),

and such that for any t 2 [0; T ] we have

x(0) = y(0); v(0) = z(0) = 0;

x(t) = y(�(t)); v(t) = z(�(t))
(3.3)
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where

�(t) = t+ v(t): (3.4)

Theorem 3.2 Let the functions fy(�); z(�); �(�); �(�); n(�); e(�)g, which are

de�ned in the interval [0; T1], T1 � T +M , satisfy the system (3.1) and the

constraints (3.2), and let also

�(T1) = T: (3.5)

Then there exists a sequence of controls fuk(�); wk(�)g, which satisfy the

constraints

uk(t) 2 U; wk(t) 2 K;
R T
0
kwk(t)kdt �M; (3.6)

such that the corresponding sequence of solutions fxk(�); vk(�)g of the sys-

tem (2.1) converges to the functions

x(t) = y(�(t)); v(t) = z(�(t))

at all points of continuity of the function �(�) de�ned by the relation

�(t) = inffs : �(s) > tg: (3.7)

The following theorem gives us the total description of the set of generalized

solutions of the system (2.1).

Theorem 3.3 Let the pair of functions fx(�); v(�)g be the generalized solu-

tion of the system (2.1), which is de�ned in the interval [0; T ]: Then there

exists a sequence of measurable functions f�k(�); nk(�); ek(�)g; which are de-

�ned in the interval [0; T1]; T1 � T; that satisfy the constraints (3.2) every-

where in [0; T1] and such that the corresponding sequence of solution of the

system (3.1) fyk(�); zk(�); �k(�)g converges to the functions fy(�); z(�); �(�)g

uniformly in [0; T1]: The functions fy(�); z(�); �(�)g satisfy the relations

x(t) = y(�(t)); v(t) = z(�(t));

�(t) = inffs 2 [0; T1] : �(s) > tg;
(3.8)

where �(T ) = �(T1) by de�nition.

3.1 Proof of Theorem 3.3.

If the pair fx(�); v(�)g is the generalized solution of the system (2.1), then by

the de�nition there exists a sequence of functions fxk(�); vk(�); uk(�); wk(�)g;

that satisfy the system (2.1) with measurable functions fuk(�); wk(�)g; sat-

isfying the constraints (2.5), such that the sequence fxk(�); vk(�)g converges

to fx(�); v(�)g at all points of continuity. For every k; by virtue of Theorem
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3.1, there exists a totality of functions fyk(�); zk(�); �k(�); �k(�); nk(�); ek(�)g

that satisfy the system (3.1) and the constraints (3.2) in an interval [0; T1],

where T1 = T + v(T ), such that

xk(t) = yk(�k(t)); vk(t) = zk(�k(t));

�k(t) = inffs : �k(s) > tg:
(3.9)

The sequence vk(T ) =
R T
0
kwk(t)kdt is uniformly bounded by the con-

stant M; hence, there exists the constant T1, such that T1 � T k
1 for every

k. Let us complete the de�nition of functions �k(�); ek(�) by zero values in

the half-interval (T k
1 ; T1] and leave the same designation for them.

Let us consider now the sequence of the functions fyk(�); zk(�); �k(�)g

in the interval [0; T ]; because of Lipschitz's and linear growth conditions of

functions f and B (2.2),(2.3), the sequence fyk(�); zk(�); �k(�)g is uniformly

bounded and equicontinuous [5]. Then, by virtue of Artsella's theorem [3],

we can select from the sequence fyk(�); zk(�); �k(�)g a subsequence, which

converges to the functions fy(�); z(�); �(�)g uniformly in the interval [0; T ].

Let us take for this subsequence the same designation fyk(�); zk(�); �k(�)g

and prove that this subsequence is the same that is needed by the theorem.

For proving the theorem it su�ces to show that the sequence

fyk(�k(t); zk(�k(t))g converges to fy(�(t); z(�(t))g at all points of con-

tinuity of the function �(�). As a �rst step let us prove that the sequence

�k(t) converges to the value of the function �(t) = inffs : �(s) > tg at all

points of continuity.

Indeed, let t be a point of continuity of the function �(�). Then we

specify the sequence fskg, sk 2 [0; T ] that satis�es the relation �k(sk) = t

(such a point sk is unique for any �xed t by virtue of the monotonicity of

the function �k(�) for any k). Let us show that sk converges to a point s?

such that �(s?) = t. For any k we have the relation

�(sk)� �(s?) = �(sk) � �k(sk)

whose right-hand side tends to zero by virtue of the uniform convergence

of �k to �; and hence (limk �(s
k) = t):

The sequence fskg is bounded, and for any of its partial limits �s we

have �(�s) = t, and by virtue of the continuity of the function �(�) at the

point t, a point s? such that �(s?) = t will be unique.

This signi�es that

lim
k
�k(t) = �s = s? = �(t);

and hence we have established that �k(t) converges to �k(t) at all the

points of continuity of the function �(�). Then by virtue of the uniform
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convergence of fyk; zkg to fy; zg we have the relations

yk(�k(t))� y(�(t)) = yk(�k(t)) � y(�k(t)) + y(�k(t)) � y(�(t))

zk(�k(t)) � z(�(t)) = zk(�k(t)) � z(�k(t)) + z(�k(t)) � z(�(t))

and

lim
k
yk(�k(t)) = y(�(t))

lim
k
zk(�k(t)) = z(�(t))

at all points of continuity of the function �(�); and by virtue of the relations

(3.9)

lim
k
xk(t) = x(t) =

lim
k
yk(�k(t)) = y(�(t));

lim
k
vk(t) = v(t) =

lim
k
zk(�k(t)) = z(�(t))

at all points of continuity of the functions x(�); v(�).

Hence the relation (3.8) is valid at all points of continuity; but the func-

tions x(�); v(�) and �(�) are continuous from the right, and �(�) is mono-

tonically increasing, hence for every t in the interval [0; T ]

lim
�n#t

x(�n) = x(t) =

lim
�n#t

y(�(�n) = y(�(t));

(3.10)

lim
�n#t

v(�n) = v(t) =

lim
�n#t

z(�(�n) = z(�(t))

where �n # t is monotonically decreasing sequence of the points of continu-

ity. Theorem 3.3 is proved.

Let us consider the set of vectors L 2 Rn+2; denoted by L(y; z; �), such

that

L(y; z; �) = (3.11)8>><
>>:

�f(y; z; n; �)+

(1� �)B(y; z; n; �)e

(1� �)kek

�

��������
� 2 [0; 1]

n 2 U

e 2 fK \ (kek � 1)g

9>>=
>>;
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Theorem 3.4 Let us suppose that sets L(y; z; �) be convex for every

(y; z; �). Then for every generalized solution fx(�); v(�)g de�ned in the in-

terval [0; T ] there exists a totality of functions fy(�); z(�); �(�); �(�); n(�); e(�)g,

that satisfy the system (3.1) under the constraints (3.2) almost everywhere

in the interval [0; T1], with T1 � T ; such that at all points of interval [0; T ]

the equality (3.8) takes place.

3.2 Proof of Theorem 3.4

By virtue of the convexity condition of the set (3.11) the right-hand side

of the system (3.1) is the convex set for every (y; z; �). The existence

of the uniformly convergent sequence (yn; zn; �n) follows from the Theo-

rem 3.3 and the limit functions (y; z; �) satisfy the equality (3.8). Then

from the convexity condition and by virtue of Fillipov lemma [13] there

exists the totality of functions (�; n; e), such that the totality of functions

(y; z; �; �; n; e) satis�es the system (3.1) under the constraints (3.2) almost

everywhere in the interval [0; T1]. Theorem 3.4 is proved.

Now we shall consider some examples of systems which satisfy the con-

dition of convexity.

3.3 Example 1

Let the sets

f(y; z; U; �) = fL 2 Rn : L = f(y; z; n; �) j n 2 Ug (3.12)

be convex for every (y; z; �); the function B does not depend on the control

n and the sets

B(y; z; �)K = (3.13)�
B(y; z; �)e

kek

���� e 2 K \ fkek � 1g
	

be convex for every (y; z; �). Then the sets L(y; z; �) are convex for every

(y; z; �) and conditions of Theorem 3.4 are satis�ed.

3.4 Example 2

Let the cone K be the set of vectors with non-negative component and the

norm of the vector is de�ned as a sum of the absolute values of components.

Then for every e 2 K the norm of e is equal to

kek =

mX
i=1

ei;
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and the set B(y; z; �)K in above example can be represented in the following

form

B(y; z; �)K = (3.14)8<
:

L1 2 Rn =
Pm

i=1Bi(y; z; �)ei

L2 2 R1 =
Pm

i=1 ei

������
ei � 0; i = 1; :::;m

Pm

i=1 ei � 1

9=
;

It is obvious that the sets (3.14) are convex for every (y; z; �).

If conditions of Theorem 3.4 are held, then the generalized solution

of the system (2.1) may be represented by a di�erential equation with a

measure.

4 Representation of Generalized Solutions via Di�er-

ential Equations with Measure

Let us consider fx(�); v(�)g which is a generalized solution of a system (2.1)

in the interval [0; T ]. The pair of functions fx(�); v(�)g has a bounded vari-

ation, and the function v(�) is monotonically non-decreasing in the interval

[0; T ], and bounded, hence it de�nes in the interval [0; T ] a scalar nonneg-

ative measure V (dt). The set of points of discontinuity of v(t) = V f[0; t]g

D = f� : �v(� ) = v(� ) � v(��) > 0g (4.1)

is countable, and the function v(�) can be represented in the form

v(t) = vc(t) +
P

�2D\f��tg �v(� ) (4.2)

where vc(t) is a continuous function.

The generalized solution fx(�); v(�)g can be represented in the following

way.

Theorem 4.1 Let the sets (3.11) be convex for every (y; z; �). Then for

every fx(�); v(�)g which is a generalized solution of the system (2.1) in the

interval [0; T ] there exists:

(i) a vector-measure a(dt) in the interval [0; T ], such that

a(A) 2 K (4.3)

for all V -measurable sets A;

(ii) both V and Lebesgue measurable function u(�), such that

u(t) 2 U (4.4)

almost everywhere with respect to both V and Lebesgue measure;
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(iii) the totality of Lebesgue measurable functions fn� (�); e� (�)g which are

de�ned for every � 2 D in the interval [0;�v(� )]; every pair

fn� (�); e� (�)g satis�es the constraints

n� (s) 2 U; e� (s) 2 K \ fkek � 1g (4.5)

almost everywhere in the interval [0;�v(� )] with respect to Lebesgue

measure, and satis�es the condition

Z �v(�)

0

e� (s)ds = �a(� ) = a(f�g);

such that generalized solution fx(�); v(�)g satis�es the di�erential equa-

tion with a measure

dx(t) = f(x(t); v(t); u(t); t)dt+

B(x(t); v(t); u(t); t)dac(t)+
(4.6)

X
�2D\(��t)

�x(� )�(t� � )dt;

v(t) = V ar[0;t]a
c(s) +

X
�2D\(��t)

�v(� );

and values of functions x(�); v(�) in the points � 2 D are de�ned by

relations

x(� ) = y� (�v(� ));

v(� ) = z� (�v(� ));

where functions fy� (�); z� (�)g satisfy the system of the di�erential

equations
_y(s) = B(y� (s); z� (s); n� (s); � )e(s)

_z(s) = 1:
(4.7)

with the initial conditions

y(0) = x(��); z(0) = v(��):

4.1 Proof of Theorem 4.1

By virtue of the Theorem 3.4 there exists a totality of functions

fy(�); z(�); �(�); �(�); n(�); e(�)g, such that fy(�); z(�); �(�)g satis�es the sys-

tem of di�erential equation (3.1) under the controls f�(�); n(�); (�)g that
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satisfy the constraints (3.2), and equalities (3.8) are valid everywhere in

[0; T ]. Let us de�ne the vector-function a(�) by the relation

a(t) =
R �(t)
0

(1� �(s))e(s)ds; (4.8)

and the vector-function u(�) by the relation

u(t) = n(�(t)): (4.9)

Let us prove that the function u(�) is both �� and Lebesgue measurable

in the interval [0; T ], where measure �(dt) is de�ned in half-intervals (a; b]

by the relation

�f(a; b]g = �(b)� �(a):

The measurability of a function with respect to Lebesgue's measure

follows from the equation

�(Nc) = Lc [Dc (4.10)

which holds for any constant C and any component ni of the vector function

n(s). Here

Lc = ft : ni(�(t)) � cg; Nc = fs : ni(s) � cg

and Dc is a subset of set D� = ft : ��(t) > 0g. The subset Dc is at

most countable, and therefore its Lebesgue measure is zero, whereas the

set Nc is Lebesgue measurable by virtue of the measurability of n(�) in the

interval [0; T ], and the function �(�) is absolutely continuous; therefore the

set �(Nc) is Lebesgue measurable, and hence the set Lc is also measurable

[9].

For proving that the function u(t) = n(�(t)) is �� measurable let us

consider once again the set L and show that its indicator function

IfLcg =

�
1 for t 2 Lc
0 otherwise

is �� integrable for any c. It follows from the properties of the function that

�(�(s)) =

�
s for �(s) 2 [0; T ] nD

�(� ) for �(s) = � 2 D

and therefore

Ifs : �(�(s)) 2 NcgIfs : �(s) 2 [0; T ] nDg =

Ifs : s 2 NcgIfs : �(s) 2 [0; T ] nDg:
(4.11)
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The function in the right-hand side of (4.11) is Lebesgue measurable;

according to the formula for a change of variables in the Lebesgue-Stielties

integral. We therefore obtain

R �(t)
0

Ifs : �(�(s)) 2 NcgIfs : �(s) 2 [0; T ] nDgds =R t
0
Ift : �(t) 2 NcgIft : t 2 [0; T ] nDgd�(t):

(4.12)

Now let us note that the set Lc can be represented by a union of two

disjoint sets

Lc = fft : �(t) 2 Ncg \ ft : t 2 [0; T ] nDgg[

fft : �(t) 2 Ncg \ ft : t 2 Dgg;

where the second set is at most countable and is a subset of the set D; hence

it is ��measurable. With regard to the �rst set, its indicator function is ��

integrable by virtue of (4.12), and therefore the set itself is �� measurable.

Thus, the indicator function of the set Lc is �� integrable for any c;

by virtue of the absolute continuity of the measure V (dt) with respect

to the measure �(dt) (that is result of equality (3.8) v(t) = z(�(t)) =

V f[0; t]g and of the absolute continuity of the function z(�) with respect to

Lebesgue measure), it hence follows that the indicator function of the set

Lc is integrable with respect to the measure V (dt). Thus we have proved

that the function n(�(t)) is both �� and V� measurable.

The generalized solution fx(t); v(t)g by virtue of Theorem 3.4 can be

represented in form

x(t) = y(�(t)) = x(0�)

+

Z �(t)

0

�(s)f(y(s); z(s); n(s); �(s))ds

+

Z �(t)

0

(1� �(s))B(y(s); z(s); n(s); �(s))e(s)ds (4.13)

= x(0�) +

Z �(t)

0

�(s)f(y(s); z(s); n(s); �(s))ds +

+

Z �(t)

0

(1� �(s))Ifs : �(s) 2 [0; T ] nDg �

B(y(s); z(s); n(s); �(s))e(s)ds

+
X

�2D[(��t)

Z �(�)

�(��)

B(y(s); z(s); n(s); � )e(s)ds

= x(0�) + xa(t) + xc(t) + xd(t);

v(t) = z(�(t))

12
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=

Z �(t)

0

(1� �(s))ke(s)kds

=

Z �(t)

0

(1� �(s))Ifs : �(s) 2 [0; T ] nDgke(s)kds (4.14)

+
X

�2D[(��t)

Z �(�)

�(��)

ke(s)kds = vc(t) + vd(t):

In accordance with the formula for the change of variable in the

Lebesgue-Stielties integral [6] for � = �(s), and �(s) = _�(s) we can ob-

tain the following relations

xa(t) =

Z �(t)

0

�(s)f(y(s); z(s); n(s); �(s))ds

=

Z �(t)

0

f(y(s); z(s); n(s); �(s))d�(s)

=

Z �(�(t))

0

f(y(�(� )); z(�(� )); n(�(� )); � )d� (4.15)

=

Z t

0

f(x(� ); v(� ); u(� ); � )d�;

xc(t) =

Z �(t)

0

(1� �(s))Ifs : �(s) 2 [0; T ] nDg �

B(y(s); z(s); n(s); �(s))e(s)ds

=

Z �(t)

0

B(y(s); z(s); n(s); �(s)) �

df

Z s

0

(1�]alpha(! : �(!) 2 [0; T ] nDge(!)d!g (4.16)

=

Z �(t)

0

B(y(�(� )); n(�(� )); � )dac(� )

=

Z t

0

B(x(� ); v(� ); u(� ); � )dac(� );

where

ac(t) =

Z �(t)

0

(1� �(s))Ifs : �(s) 2 [0; T ] nDge(s)ds

=

Z t

0

If� : � 2 [0; T ] nDgda(� ); (4.17)

13
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and

vc(t) =

Z �(t)

0

(1� �(s))Is : �(s) 2 [0; T ] nDgke(s)kds =

= V ar[0;t]a
c(� ): (4.18)

Then, for �x(� ), �v(� ) we can obtain relations

�x(� ) = y(�(� )) � y(�(��));

�v(� ) = z(�(� )) � z(�(��));

in interval [�(��);�(� )] functions fy(�); z(�)g satisfy the system of di�er-

ential equations

_y(s) = B(y(s); z(s); n(s); � )e(s);

_z(s) = ke(s)

with the initial condition y(�(��)) = x(��), z(�(��)) = v(��).

Let us map the interval [�(��);�(� )] into the interval [0;�v(� )] by the

change of variable

! = z(s) � z(�(��)):

Then by the change of variable p� (!) = inffs : z(s) � z(�(��)) > !g

we can obtain the system of equations for functions y� (!) = y(p� (!)),

z� (!) = z(p� (!)),

_y� (!) = B(y� (!); z� (!); n(p� (!)); � )e(p� (!);

_z� (!) = 1
(4.19)

with the initial condition y� (0) = y(�(��)) = x(��), z� (0) = z(�(��)) =

v(��). For every � functions n� (�); e� (�) can be de�ned by relations

n� (!) = n(p� (!));

e� (!) = e(p� (!));
(4.20)

and hence functions n� (�); e� (�) are de�ned in the interval [0;�v(� )], and

they are measurable with respect to Lebesgue measure. The measurability

of functions n� (�); e� (�) can be proved as above for the function u(t) =

n(�(t)).

The combination of relations (4.16)-(4.21) proves the theorem.

5 Impulse Control Problem

Let us consider the problem of control of system (2.1) with the following

performance criterion which must be minimized

J [x(�); v(�); u(�); w(�)] = '(x(0); x(T ); v(T )); (5.1)

14
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under terminal and phase constraints

h(x(0); x(T ); v(T )) = 0;

S(x(0); x(T ); v(T )) � 0

g(x(t); v(t); t) � 0 for any t 2 [0; T ],

(5.2)

where '; h; S and g are continuous (in the totality of variables) vector

functions of a correspondent dimension, with (5.2) being understood as

componentwise relation.

A solution of the problem of control of system (2.1) under the con-

straints (2.4) and (5.2) will be sought in the class of generalized solutions.

We shall require that the constraints (5.2) should hold for a generalized

solution, whereas (5.2) holds only in the limit for the sequence of ordinary

solutions that approximates the former, i.e. the approximating sequence

fxn(�); vn(�)g must satisfy the equations

limn h(x
n(0); xn(T ); vn(T )) = 0;

limn S(x
n(0); xn(T ); vn(T )) � 0;

limn Sup[0;T ]g(x
n(t); vn(t); t) � 0 for any t 2 [0; T ]:

(5.3)

Now, in order to solve this problem, we consider an auxiliary control

problem, which will be formulated as a problem of control of system (3.1)

under the constraints on the control (3.2), with a performance criterion

J
0

[y(�); z(�); �(�); �(�); n(�); e(�); T ] = '(y(0); y(T ); z(T )) (5.4)

under terminal and phase constraints

h(y(0); y(T ); z(T )) = 0; �(T1) = T;

S(y(0); y(T ); z(T )) = 0; z(T ) �M;

g(y(s); z(s); �(s)) � 0 for any s 2 [0; T ].

(5.5)

By virtue of compactness of the totality of generalized solutions and

continuity of performance criterion the solution of the primary optimiza-

tion problem exists, if the totality of admissible solutions non empty. But

this solution can be expected to have points where the equations (5.3) are

not satis�ed. This can be illustrated by the following example.

5.1 Example 3

Let the system be described by the di�erential equations:

_x1(t) = x2(t)w(t);

_x2(t) = �x1(t)w(t);
(5.6)

15
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with the initial condition x(0) = 0; x(t) = 1; under constraints

w(t) � 0;
R 1
0
w(t)dt � �; x1(t) � 0; (5.7)

with a performance criterion

J [x1(�); x2(�)] = (x2(1) + 1)2 ! min : (5.8)

The solution of the system (5.6) can be represented in form

x(t) = sin a(t); x(t) = cos a(t); (5.9)

where a(t) =
R t
0
w(� )d� . The generalized solution of the system (5.6) has

the same form, where a(t) is the nondecreasing function which satis�es the

constraints a(0) = 0, a(1) � �, and the optimal generalized solution are

the functions

x1(t) � 0;

x2(t) =

�
1 at t < � ,

�1 at t � � ,

where � 2 (0; 1), and

a(t) =

�
0 at t < � ,

� at t � � .

The performance criterion is zero. But this solution does not satisfy

the constraint

lim
n
sup
[0;1]

xn(t) � 0

because this limit is equal to 1 for every sequence that approximates the

generalized solution (x1(�); x2(�)).

De�nition 5.1 A pair of functions fx(�); v(�)g that are continuous from

the right and have a bounded variation in the interval [0; T ] is said to be an

admissible generalized solution of system (2.1) under constraints (2.4),(5.2)

if:

(i) functions fx(�); v(�)g satisfy the constraints (5.2) in the following

sense

h(x(0�); x(T ); v(T )) = 0; S(x(0�); x(T ); v(T )) � 0;

g(x(t); v(t); t) � 0for any t 2 [0; T ];
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(ii) there exists a sequence of admissible controls fun(�); wn(�)g that sat-

isfy the constraints (2.5), and such that the corresponding sequence

fxn(�); vn(�)g of solutions of the system (2.1) converges to the func-

tions fx(�); v(�)g at all points of continuity, and in addition

limn xn(0) = x(0�); limn xn(T ) = x(T ); limn vn(T ) = v(T );

lim
n

sup
[0;T ]

gk(x
n(t); vn(t); t) � 0 for any k = 1; :::; N3.

De�nition 5.2 An admissible generalized solution fx0(�); v0(�)g is said to

be an optimal generalized solution if the following inequality takes place

'(x0(0�); x0(T ); v0(T )) � '(x
0

(0�); x
0

(T ); v
0

(T )): (5.10)

for any admissible generalized solution fx
0

(�); v
0

(�)g.

An approach based on the using the auxiliary control problem (5.4),(5.5)

permits us to obtain the theorem of the existence of the optimal generalized

solution.

Theorem 5.1 Let us suppose that sets L(y; z; �) be convex for every

(y; z; �) and let the totality of solutions of the system (2.1) under con-

straints (2.4), (5.2) is nonempty. Then there exists the optimal generalized

solution.

5.2 Proof of Theorem 5.1

Let us consider the auxiliary control problem for the system (3.1) under

constraints (3.2), (5.5) with a performance criterion (5.4) in the interval

[0; T +M ]. By virtue of the existence of an admissible solution the totality

of admissible controls in the problem (3.1), (3.2), (5.4), (5.5) is nonempty,

and hence, by virtue of convexity of sets L(y; z; �), there exists the opti-

mal control f�0(�); e0(�); n0(�)g that is de�ned in the interval [0; T1], where

T1 � T+M [5]. The optimal solution of the system (3.1) fy0(�); z0(�); �0(�)g

corresponding to the optimal control de�nes a generalized solution of a sys-

tem (2.1) fx0�); v0(:�)g by the relations x0(t) = y0(�0(t)), v0(t) = z0(�0(t)),

where �0(t) = inffs : �0(s) > tg and �0(T ) = T 0
1 by virtue of the con-

straints �0(T 0
1 ) = T:

Let us prove that fx0(�); v0(�)g is the optimal generalized solution. In-

deed this solution satis�es the constraints (5.2), besides there exists the

sequence of functions f�n(�)g which is uniformly convergent to �0(�) in the

interval [0; T ] and satis�es the constraints

0 < �(s) � 1;
R T0

1

0
�n(s)ds = T (5.11)
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(see the proof of Theorem 2 in [8]). Then the sequence of solutions of the

system (3.1) fyn(�); zn(�); �n(�)g with controls f�n(�); n0(�); e0(�)g converges

to fy0(�); z0(�); �0(�)g uniformly in the interval [0; T ]: By virtue of (5.11)

the function �n(�) which is the inverse of �n(�) (with �n(s) = _�(s) > 0)

and is de�ned in the interval [0; T ] will be absolutely continuous, and we

can specify a sequence of controls

un(t) = n(�n(t));

wn(t) =
(1��n(�n(t))

�n(�n(t))
e(�n(t))

(5.12)

that generates a sequence of solutions fxn(�); vn(�)g of system (2.1) i.e.

xn(t) = yn(�n(t)); vn(t) = zn(�n(t)): (5.13)

By virtue of the absolute continuity of the functions �n(�) we can prove

the measurability of controls fun(�); wn(�)g with respect to the Lebesgue

measure in exactly the same way as in the proof of Theorem 1 in [8]. Besides

by de�nition xn(0) = yn(0) = y0(0) = x0(0�), vn(0) = zn(0) = z0(0) =

v0(0�) = 0, and xn(T ) = yn(�0(T )) = yn(T 0
1 ), v

n(T ) = zn(�0(T )) =

zn(T 0
1 ), where the sequence fy

n(T 0
1 ); z

n(T 0
1 )g converges to fy

0(T 0
1 ); z

0(T 0
1 )g.

Hence

limn x
n(T ) = y0(T 0

1 ) = x0(T ); limn v
n(T ) = z0(T 0

1 ) = v0(T ):

By virtue of the uniform convergence of sequence fyn(�); zn(�); �n(�)g to

fy0(�); z0(�); �0(�)g and of the continuity of functions g(x; v; t) k = 1; :::; N3,

lim
n

sup
[0;T ]

gk(x
n(t); vn(t); t) =

lim
n

sup
[0;T ]

gk(y
n(�n(t)); zn(�n(t)); �n(�n(t))) �

lim
n

sup
[0;T0

1
]

gk(y
n(s); zn(s); �n(s)) � 0:

Hence we have proved that fx0(�); v0(�)g is admissible generalized solution.

Let us take any admissible generalized solution fx0(�); v0(�)g. By virtue

of the De�nition 5.1 there exists a sequence of controls fun(�); wn(�)g and a

corresponding pair of functions that satis�es the constraints (2.4), and the

system of equation (2.1), such that by virtue of the Theorem 3.1 there exists
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a totality of functions fyn(�); zn(�); �n(�); �n(�); nn(�); en(�)g that satisfy the

system (3.1) and the constraints (3.2), and such that

yn(s) = xn(�n(s)); zn(s) = vn(�n(s));

�n(s) = infft : t+ vn(t) > sg:
(5.14)

Functions fyn(�); zn(�); �n(�)g are de�ned in the interval [0; Tn
1 ] = [0; T +

vn(T )] where T +vn(T ) � T +M and are uniformly bounded and equicon-

tinuous. Let us complete these functions by values yn(Tn
1 ), z

n(Tn
1 ), �

n(Tn
1 )

in the half-intervals (T 0
1 ; T + M ], then there exists a totality of func-

tions fy(�); z(�); �(�)g and a subsequence of functions fynk(�); znk(�); �nk(�)g

that converges to fy(�); z(�); �(�)g uniformly in the some interval [0; T1],

T1 � T + M . By virtue of the convexity of the sets L(y; z; �) there ex-

ists the totality of admissible controls f�(�); n(�); e(�)g such that functions

fy(�); z(�); �(�)g satisfy the system (3.1) with this controls. The functions

fy(�); z(�); �(�)g and the generalized solution fx0(�); v0(�)g are connected by

relations

x0(t) = y(�(t)); v0(t) = z(�(t));

where �(t) = inffs : �(s) > tg, �(T ) = T1:
(5.15)

By virtue of the uniform convergence of fyn(�); zn(�); �n(�)g to fy(�); z(�);

�(�)g, and by virtue of the relations (5.14), (5.15), the relations

y(0) = limn y
n(0) = limn x

n(0);

y(T1) = limn y
n(T1) = limn y

n(Tn
1 ) = xn(T );

z(T1) = limn z
n(T1) = limn z

n(Tn
1 ) = vn(T );

(5.16)

are valid, and hence fy(0); y(T1); z(T1)g satisfy the constraints (5.5) at

terminal points. In addition for any � > 0 and k = 1; :::; N3, the function

gk(y
n(s); zn(s); �n(s)) = gk(x

n(�n(s)); vn(�n(s)); �n(s)) � � at n � N (�)

at any s 2 [0; T +M ]. Hence

limn sup[0;T1] gk(y
n(s); zn(s); �n(s)) � 0 (5.17)

and by virtue of the continuity of g and uniform convergence of fyn; zn; �ng

to fy; z; �g from (5.17) follows the inequality

lim
n

sup
[0;T ]

gk(y
n(s); zn(s); �n(s)) � 0:

Then it is proved that to any admissible generalized solution fx0(�); v0(�)g

there corresponds an admissible solution fy(�); z(�); �(�); �(�); n(�); e(�)g of
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system (3.1) in any interval [0; T1] with the same value of the performance

criterion. It follows from the relations (5.16). Hence from the optimality

of solution fy0(�); z0(�); �0(�)g in the problem (3.1),(3.2),(5.4),(5.5) the fol-

lowing inequality takes place

'(x0(0�); x0(T ); v0(T )) =

'(y0(0); y0(T 0
1 ); z

0(T 0
1 �

'(y(0); y(T1); z(T1)) =

'(x0(0�); x0(T ); v0(T )):

(5.18)

The inequality (5.18) proves the theorem.

6 Conclusion

In this paper we have studied a new class of problems of generalized control

of dynamic systems that can be transformed to conventional control prob-

lems by the method of discontinuous time change. This transformation

makes it possible to �nd a generalized solution, to establish a theorem of

existence of an optimal generalized solution, to construct an approximating

sequence of ordinary controls, and to derive an equation for the generalized

solution.
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