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Abstract

Given a nonrational spectral density, minimality for square spec-

tral factors with singularities in both the left and the right half planes

is de�ned. A parametrization of all minimal square spectral factors is

then provided in terms of left inner divisors of a certain inner function

depending only on the spectral density. Some results on matrix inner

functions and minor complements on the Lindquist-Picci stochastic

realization theory are also obtained as by-products.
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1 Introduction

The spectral factorization problem, i.e., the problem of �nding minimal
spectral factors of a matrix-valued spectral density �(s) is of crucial impor-
tance in systems and control theory, circuit theory and prediction theory.
In the rational case, parametrizations of minimal stable spectral factors
have been obtained starting from the classical results of J. C. Willems [13]
on the Algebraic Riccati Equation (ARE), see also [4]. More recently, Picci
and Pinzoni in [12] extended the positive real lemma to systems with poles
in Re(s) 6= 0 (poles outside the imaginary axis), and gave a parametrization
of all minimal spectral factors with a given structure of poles or zeroes via
the solutions of two AREs. For the rational case a complete parametriza-
tion of all the spectral factors with minimal McMillan degree of a given
spectral density was presented in [3]. In [10] and [11], which are our main
references, minimality is de�ned for analytic and coanalytic spectral fac-
tors, and parametrizations of these two classes are given. In this paper we
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A. FERRANTE

deal with the nonrational case, as understanding nonrational models may
be important for approximation purposes.

In this work we de�ne minimality for general spectral factors and we
prove that, under a reasonable condition, there is a one-to-one correspon-
dence between minimal spectral factors and the left inner divisors of a
certain maximum inner function depending only on the spectral density.
This is in fact the generalization of a result obtained in [3], where the above
mentioned correspondence was established for rational spectral densities.
Also in the rational case, as well as in the nonrational, this parametriza-
tion of minimal spectral factors via left inner divisors of an inner function,
holds under a mild condition. This condition, as formulated in [3], does not
�t well with the nonrational case as it relies on a minimal realization of a
certain spectral factor of �(s). For this reason the condition in this paper
is di�erent from the one of [3]. Of course the two conditions are related
each other and the connections will be discussed below.

As corollaries we establish several results that appear as \dual" of well-
known results of [10] and [11]. Finally, we give a geometric interpretation
of these results providing a general geometric setup which encompasses the
one given in [10] and [11]. The proof requires a series of preliminary results
on matrix inner functions that appear to be of independent interest. The
paper is organized as follows. In Section 2 we collect some results of the
Lindquist-Picci stochastic realization theory. In Section 3 we de�ne mini-
mality for general spectral factors and prove that, in the rational case, this
de�nition coincides with the standard one based on the McMillan degree.
We also show that for analytic and coanalytic spectral factors this de�ni-
tion coincide with the one given in [10] and [11]. In Section 4 we state our
main result and prove one half of it. Moreover we compare this result to
the similar one obtained in [3]. The rest of the proof of the main result
hinges on various lemmas on inner functions which we state and prove in
Section 5. In Section 6 we complete the proof of the main result. In Section
7 we prove some complements of the Lindquist-Picci stochastic realization
theory.

2 Elements of Lindquist-Picci Stochastic Realization
Theory

Let fy(t); t 2 Rg be real, m-dimensional, mean square continuous vector
process with Gaussian stationary increments. In this paper we shall always
assume that the incremental spectral density �(s) of y is coercive i.e. 9c >
0 s.t. �(i!) � cI 8! 2 R. This assumption will guarantee that the spectral
density at in�nityR := �(i1) is a positive de�nite matrix. Although many
of the results of this paper might be proved without the coercivity condition
we shall assume it both for the sake of simplicity and for a more straight
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NONRATIONAL SPECTRAL DENSITY

comparison with the results of [3] and [12] where this assumption is made.
We shall denote with H(dy) the Hilbert space H(dy) = spanfyl(t) �

yl(s); t; s 2 R; l = 1; 2; :::mg. If A and B are subspaces of H, A _ B
will denote the closure of fa + b : a 2 A; b 2 Bg and A � B will denote
the orthogonal direct sum. Finally if A � B, C = A 	 B means that
C�B = A. De�ning H+

t (dy) := spanfyl(r)�yl(s); r; s � t; l = 1; 2; :::mg
and H�

t (dy) := spanfyl(r)� yl(s); r; s � t; l = 1; 2; :::mg we have:

H(dy) = H+
t (dy) _H

�

t (dy) 8t: (2.1)

If t = 0 we drop the subscript and write H�(dy) and H+(dy).
We shall assume that fy(t)g is purely nondeterministic (p.n.d.) in

the sense that both the remote past and the remote future are trivial
i.e. H+

+1(dy) = H�

�1(dy) = f0g. We recall now the main results of
the Lindquist and Picci geometric theory of Markovian splitting subspaces
because it plays an important role in what follows. For detailed references
see [10],[9]and [11]. We deal with the Hilbert space H := H(dy). The
inner product in H will be denoted by h:; :i. Let X;A and B subspaces of
H. With the symbol EX� we denote orthogonal projection of � 2 H onto
X. Moreover, we shall say that A is orthogonal to B given X (notation
A?BjX) if ha � EXa; b � EXbi = 0 8a 2 A; b 2 B. Since y(t) is mean
square continuous, there exists a strongly continuous group Ut of unitary
operators on H acting as shifts: Ut(yl(s) � yl(r)) = (yl(s + t)� yl(r + t)).
Finally we shall denote by X� the closure of fUtX : t � 0g and by X+

the closure of fUtX : t � 0g.

De�nition 2.1 A subspace X is said to be a Markovian splitting subspace
if

H� _X�?H+ _X+ jX: (2.2)

A Markovian splitting subspace X is said to be proper if both (H� _X�)?

and (H+ _ X+)? are full range. (Orthogonal complements being taken
in H). Finally a Markovian splitting subspace X is said to be minimal
if it does not contain any other Markovian splitting subspace as a proper
subspace.

Relation (2.2) says that a Markovian splitting subspace is a natural state
space (possibly in�nite dimensional) for dy. It was shown in [11, Theorem
4.1] that there exists a one-one correspondence between Markovian splitting
subspaces X and couples (S; S) of subspaces satisfying:�

H� � S
H+ � S

(2.3a)

�
UtS � S for t � 0
UtS � S for t � 0

(2.3b)
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S? � (S \ S)� S
?
= H: (2.3c)

This correspondence is given by:

X = S \ S: (2.4)

We shall write X � (S; S) and we shall say that (S; S) is the scattering
pair of X. It can be shown that X is proper if and only if both S? and

S
?
are full range. The minimality of a Markovian splitting subspace X

can be usefully expressed in terms of its scattering pair. In particular it
can be shown that if X � (S; S) is a Markovian splitting subspace then,

de�ning S1 := H+_S? and S1 := H�_S
?

1 , we have that X1 � (S1; S1) is
a minimal Markovian splitting subspace contained in X. It follows that a
Markovian splitting subspace X � (S; S) is minimal if and only if the two
relations

S = H+ _ S?; (2.5a)

S = H� _ S
?
; (2.5b)

hold true. De�ne now the subspaces:

N� := H� \ (H+)?; (2.6a)

N+ := H+ \ (H�)?: (2.6b)

These spaces have an intuitive interpretation: N� is the part of the past
of dy which is orthogonal to the future, N+ is the part of the future of dy
which is orthogonal to the past. We collect now a result from [11].

Lemma 2.1 If X � (S; S) is a Markovian splitting subspace such that
S � (N+)? and S = H+ _ S?, then X is minimal.

We shall prove this lemma in the special case in which S and S are �nite
dimensional spaces, which corresponds to the spectral density �(s) being
rational.

Proof (�nite dimensional case): In view of equations (2.5) it is

su�cient to prove that: S = H� _ S
?
i.e. that:

S = H� _ ((H+)? \ S): (2.7)

Let s 2 S � (N+)? = (H+)? _ H�. Using the hypotheses of �nite
dimensionality we can assume that s = h1 + h2 where h1 2 (H+)? and
h2 2 H� � S. Since s and h2 belong to S we also have h1 = s � h2 2 S:
Thus s = h1+h2 2 H�_((H+)?\S): Conversely let h 2 H�_((H+)?\S).
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Again we can assume that h = h1 + h2 where h1 2 H� � S and h2 2 S:
This implies that also h = h1 + h2 2 S:

We reformulate now these results in the spectral domain. Let �(s) be
the (m�m) spectral density of dy, and assume that it has rank m almost
everywhere on the imaginary axis I. We recall that, by assumption, �(s)
is a coercive spectral density i.e. 9c > 0 s.t. �(i!) � cI 8! 2 R. It is
well-known that �(s) = �T (�s) and that under the present assumptions
on y(t) there exist solutions of the spectral factorization problem:

�(s) = W (s)W T (�s): (2.8)

In this paper we shall only consider square solutions of (2.8). Thus, in
the following, a spectral factor will be a square (m � m) matrix function
which solves (2.8). We shall say that a spectral factor is analytic if it has
no singularities in the open right half plane. Similarly a spectral factor is
coanalytic if it has no singularities in the open left half plane. Since dy is
p.n.d., equation (2.8) admits analytic and coanalytic solutions whose rows

are respectively in the modi�ed Hardy spaces W2
m and W

2
m, see [9]. We

recall that:

W2
m = f(1 + s)h;h 2 H2

mg (2.9a)

W
2
m = f(1� s)h;h 2 H

2
mg (2.9b)

where H2
m and H

2
m are the usual m-dimensional Hardy spaces on the right

and left half planes. In the following we shall assume that elements in these
space are row vectors using the same formalism of [10].

It is well-known that to each spectral factor W (s) we can associate a
unique m-dimensional Wiener process du(t) in the following way:

u(t)� u(s) =

Z +1

�1

ei!t � ei!s

i!
dû(i!); (2.10a)

dû(i!) = W�1(i!)dŷ(i!); (2.10b)

where dŷ(i!) is the orthogonal spectral measure of the process fdy(t)g.
More details on this construction can be found in [1], [10], [9] and [11].
It is also well-known [9] that the two relations (2.10a) and (2.10b) gener-
ate a one-one correspondence between Wiener processes fu(t)g satisfying:
H�(du) � H�(dy) = H� and analytic spectral factors. Similarly there
exists a one-one correspondence between Wiener processes u(t) such that:
H+(du) � H+(dy) = H+ and coanalytic spectral factors.

Let X � (S; S) be a Markovian splitting subspace of dy. We know
(eq. (2.3a)) that S � H�. Then S = H�(du) where du is a Wiener
process related to an analytic spectral factor W (s). Similarly S = H+(du)
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where du is a Wiener process related to a coanalytic spectral factor W (s).
It can be shown that equation (2.3c) implies that the function K(s) :=

W
�1
(s)W (s) is inner i.e. K(s) 2 H1

m�m andK(s)KT (�s) = K(s)K�(s) =
I: (If A(s) is a matrix function, we denote by A�(s) the matrix function
AT (�s)). This inner function K(s) is called the structural function of the
pair (W (s);W (s)).

We recall [11] that the Markovian splitting subspace X has the two
following representations in terms of the two Wiener processes du and du:

X =

Z +1

�1

[H2
m 	H2

mK(s)]dû; (2.11a)

X =

Z +1

�1

[H
2
m 	H

2
mK

�(s)]dû; (2.11b)

where H2
mK(s) := fh(s)K(s) : h(s) 2 H2

mg andH
2
mK

�(s) := fh(s)K�(s) :

h(s) 2 H
2
mg. In the following, if K(s) is an m�m inner function, we shall

use the shorthand notation H(K(s)) instead of H2
m 	H2

mK(s). Similarly,

instead of H
2
m 	H

2
mK

�(s) we shall write H(K�(s)). We shall say that X,
above de�ned, is the state space associated to the pair (W (s);W (s)).

Let W (s) be an analytic spectral factor such that the related Wiener
process du has the property:

H�(du) � (N+)?: (2.12)

De�ne S := H�(du) and S := H+ _ S?. Moreover let W the (coanalytic)
spectral factor such that the related Wiener process du satisfy the property:
H+(du) = S. In view of Lemma 2.1 the pair (S; S) is the scattering pair of
a minimalMarkovian splitting subspace X which is the natural state space
of W (s). It seems therefore natural to de�ne minimal an analytic spectral
factor W (s) if the related Wiener process du satis�es equation (2.12). We
also de�ne minimal a coanalytic spectral factor W such that the related
Wiener process du satisfy the property

H+(du) � (N�)?; (2.13)

because we can associate to W an analytic spectral factor W (s) such that
the state space X corresponding to (W (s);W (s)) is minimal. Notice that
in this way we associate the same state space X to W (s) and to W (s).

There are two special Wiener processes fu�(t)g and fu+(t)g which have
the following properties:

H�(du�) = H� (2.14a)

H+(du+) = H+ (2.14b)
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NONRATIONAL SPECTRAL DENSITY

These two Wiener processes correspond, via (2.10a) and (2.10b), respec-
tively to the outer and coouter spectral factors W�(s) and W+(s). These
two spectral factors are unique modulo multiplication on the right by a con-
stant orthogonal matrix. Moreover their inverses are analytic respectively
in the right and left half plane. Clearly the Wiener process du� related to
W�(s) satis�es equation (2.12). Using the previous construction, we can
also associate to it a coanalytic spectral factor W�(s) such that the related
Wiener process du� satisfy: H+(du�) = H+_(H�(du�))

? = (N�)?. The
spectral factor W�(s) is clearly minimal and has inverse which is analytic
in the open right half plane. Similarly we can associate a minimal analytic
spectral factor W+(s) to W+(s). The spectral factor W+(s) has inverse
which is analytic in the open left half plane and the corresponding Wiener
process du+ satisfy the condition H�(du+) = (N+)? It can be shown [9]
that any analytic spectral factor W (s) admits the the outer-inner factor-
ization:

W (s) = W�(s)Q(s) (2.15)

where Q(s) is an inner matrix function. Similarly any coanalytic spectral
factor admits the coouter-coinner factorization:

W (s) = W+(s)Q(s) (2.16)

where Q(s) is a coinner matrix function i.e. Q
�

(s) := Q
T
(�s) is inner.

In particular we de�ne Q+(s) to be the inner matrix function such that:
W+(s) = W�(s)Q+(s) and Q�(s) the coinner matrix function such that:

W�(s) = W+(s)Q�(s). It can be shown [10] that an analytic spectral
factor W (s) is minimal if and only if the inner matrix function Q(s) in the
factorization (2.15) is a left inner divisor of Q+(s) i.e. there exists another
inner matrix function V (s) such that Q+(s) = Q(s)V (s). Similarly, a
coanalytic spectral factor W (s) is minimal if and only if the inner matrix

function Q
�
(s) (where Q(s) is the coinner function in the factorization

(2.16)) is a right inner divisor of Q
�

�(s) i.e. there exists another inner

matrix function U (s) such that Q
�

�(s) = U (s)Q
�

(s).
In this paper inner and coinner functions play a central role. For this

reason we recall some well-known results and set some notations. Let Q1(s)
and Q2(s) be inner functions: in the set Q of common left inner divisors
of Q1(s) and Q2(s) there is an element Q(s) ( unique up to multiplication
on the right by a constant orthogonal matrix) which is divided on the left
side by all elements in Q. This inner Q(s) is called the greatest common
left inner divisor of Q1(s) and Q2(s) and we shall denote this with the
formalism: Q(s) = g:c:l:i:d:(Q1(s); Q2(s)). If Q(s) is the identity (or a
constant orthogonal matrix) we shall say that Q1(s) and Q2(s) are left co-
prime and we shall write: (Q1(s); Q2(s))L = I. In a symmetric way, we can
de�ne the greatest common right inner divisor Q(s) of Q1(s) and Q2(s).
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We shall denote it with the symbol Q(s) = g:c:r:i:d:(Q1(s); Q2(s)). If Q(s)
is the identity we say that Q1(s) and Q2(s) are right coprime and we write:
(Q1(s); Q2(s))R = I. In the scalar case we shall denote by the symbol
g:c:i:d:(:; :) the greatest common inner divisor of two scalar inner function.
We shall also drop the subscripts L or R for scalar coprime inner function.
We are now ready to tie together the geometric de�nition of minimality
and the spectral representation W (s);W (s) of the scattering pair (S; S).
Let (W (s);W (s)) be a couple of analytic and coanalytic minimal spectral
factors which admit the factorizations (2.15) and (2.16). The correspond-
ing state space X de�ned in (2.11) is characterized by three inner matrix
functions: the structural function K(s) and the two inner function Q(s)

and Q
�

(s) de�ned by (2.15) and (2.16). For this reason (K(s); Q(s); Q
�

(s))
is called the inner triplet of X, see [11, page 271].

In this setup minimality conditions (2.5) become coprimeness conditions

between K(s), Q(s) and Q
�

(s)). Indeed, a state space X (given by (2.11))

is minimal if and only if Q(s) is a left inner divisor of Q+(s), Q
�
(s) is a

right inner divisor of Q
�

�(s) and the two coprimeness conditions

(Q(s);K(s))
R
= I; (2.17a)

(Q
�
(s);K(s))

L
= I; (2.17b)

hold true.

De�nition 2.2 A couple (W (s);W (s)) of analytic and coanalytic spectral
factors is said to be a Lindquist Picci pair ( L.P. pair) if the function

W
�1
(s)W (s) is inner. A L.P. pair is said to be a minimal Lindquist Picci

pair (minimal L.P. pair) if the corresponding state space X (eq. (2.11)) is
minimal.

Let K(s) be a m � m inner matrix function. The invariant factors of
K(s) are scalar inner functions k1(s); k2(s); :::km(s)de�ned as follows [10]:
set q0(s) = 1 and, for i = 1; 2; ::m, de�ne qi(s) to be the greatest common
inner divisor of all i� i minors of K(s). Then set ki(s) := qi(s)=qi�1(s) for
i = 1; 2; ::m. Two inner functions with the same invariant factors are said
to be quasi-equivalent [5]. Obviously two scalar inner functions are quasi-
equivalent if and only if they coincide up to a constant of absolute value
one. It is proved in [8] that if K1(s) and K2(s) are structural functions
of two minimal L.P. pairs, then K1(s) and K2(s) are quasi-equivalent (in
particular they have the same determinant). In the set M of minimal L.P.
pairs of dy the two extreme elements (W�(s);W�(s)) and (W+(s);W+(s))

generate respectively, the two structural functions K�(s) := W
�1
� (s)W�(s)

and K+(s) :=W
�1
+ (s)W+(s), which will play a crucial role below.
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Let T (i!) 2 L1m�m(I). The Hankel operator with symbol T is de�ned
by

H
T
: H

2
�! H2

h �! PH2

[T (s)h];
(2.18)

where PH2

is the orthogonal projection onto H2.
If Q(s) and K(s) are inner matrix functions then the function T (s) :=

Q(s)K�(s) is an all-pass function i.e. T (s)T �(s) = I. The above factor-
ization of T (s) is said to be coprime if (Q(s);K(s))

R
= I. Similarly the

factorization K�(s)Q(s) is said to be coprime if (Q(s);K(s))
L
= I. As

it is shown in [5] an all-pass function T (s) admits the two coprime fac-
torization T (s) := Q(s)K�(s) = K�

1 (s)Q1(s) if and only if it is strictly
noncyclic i.e. the orthogonal complement in H2 of the range of the Hankel
operator with symbol T is a subspace of full range. Any couple of spectral
factors W1(s) and W2(s) de�nes a function T (s) := W�1

1 (s)W2(s) which
is clearly an all-pass function. Among these functions there is the one de-

�ned by: T0(s) := W
�1
+ (s)W�(s) which is the multivariate version of the

well-known phase function see [10] and [11]. Following these references, we
shall say that the process y(t) is strictly noncyclic if the phase function
T0(s), uniquely determined by y(t), is strictly noncyclic. As it is shown
in [10], a couple of spectral factors (W (s);W (s)) is a minimal L.P. pair
if and only if the phase function T0(s) admits the coprime factorization

T0(s) = Q(s)K(s)Q�(s) where (K(s); Q(s); Q
�
(s)) is the inner triplet re-

lated to (W (s);W (s)). In section 7 we shall give a dual version of this
result and a generalization to spectral factors with no analyticity property.

3 De�nition of Minimality and State Space for Gen-

eral Spectral Factors

So far, minimality for spectral factors was de�ned only in the analytic or
coanalytic case. In the rational case minimality is de�ned in a natural way
for any spectral factor, no matter where its poles are. More precisely a
rational spectral factor is said to be minimal if it has the least possible
McMillan degree i.e. the smallest possible dimension of a minimal realiza-
tion. In general (nonrational case), this de�nition is not useful (the state
space is in�nite dimensional), but we can use this idea of minimality and
say that a spectral factor is minimal if its natural state space does not
contain properly any other state space.

De�nition 3.1 Let W1(s) be an arbitrary spectral factor . We say that
W1(s) is minimal if there exists a minimal L.P. pair (W (s);W (s)) (def.
2.2) such that:

9



A. FERRANTE

U (s) :=W
�1
(s)W1(s) (3.1a)

V (s) :=W�1
1 (s)W (s) (3.1b)

are inner.

A �rst justi�cation of the previous de�nition is given by the following propo-
sition.

Proposition 3.1 In the rational case, De�nition 3.1 coincides with the
usual one based on the McMillan degree. More precisely, a rational spectral
factor W1(s) is minimal (in accordance to Def. 3.1) if and only if it has
the least possible McMillan degree.

Before proving this proposition we have to set some notation to distinguish
the di�erent minimality de�nitions. We shall simply say that a spectral
factor is minimal if it is minimal according to De�nition 3.1. We use the
word McMillan minimal to denote a spectral factor minimal in the sense
of the McMillan degree. It is also worth noticing that the de�nition of
minimality for analytic and coanalytic spectral factors given by equations
(2.12) and (2.13) coincides with McMillan minimality [11]. We give now a
preliminary result which can be found, with a slightly di�erent formulation
in [4].

Lemma 3.1 Let A be a stability matrix and (A;B) be a controllable pair.
Moreover let Qn be the unique symmetric negative de�nite solution of the
ARE

� AQ�QAT +QBBTQ = 0: (3.2)

Then
K(s) = I +BT (sI � A)�1QnB (3.3)

is a minimal realization of an inner function. Moreover the set K of the
left inner divisors of K(s) can be parametrized as follows:

K = fKi(s) = I+BT (sI�A)�1QiB : Qi is a symm. sol. of (3.2)g: (3.4)

Proof of Proposition 3.1: Let �(s) be rational andW1(s) be a McMillan
minimal spectral factor. Let

W1(s) = H(sI � F )�1G+R1=2 (3.5)

be a minimal realization of W1(s). We recall that here R := �(i!) is
positive de�nite. Our program is to use the results of [12] to build up a
couple of analytic and coanalytic spectral factors, and then to prove that
this couple is a minimal L.P. pair.
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Consider the following ARE:

FTQ+QF +QGGTQ = 0: (3.6)

It is well-known that in the set symmetric solutions of equation (3.6)
there are a maximal and a minimal element Q+ and Q�, (in the partial
ordering of semide�nite positive matrices). We can associate to this two
matrices the two spectral factors

W (s) := H+(sI � F+)
�1G+ R�1=2; (3.7a)

W (s) := H�(sI � F�)
�1G+ R�1=2; (3.7b)

where F+ := F + BBTQ+, F� := F + BBTQ�, H+ := H + R�1=2GTQ+

and H� := H + R�1=2GTQ�.
We have that the spectral factors W (s) and W (s) above de�ned are co-

analytic and analytic, respectively, and they are McMillan minimal spectral

factors [12]. Moreover it is easy to see that W
�1
(s), W�1(s) and W�1

1 (s)
have minimal realizations with the same state matrix � := F �GR�1=2H.
We shall say thatW (s), W (s) andW1(s) have the same zero matrix. Again
an easy computation shows that

W
�1
(s)W1(s) and (3.8a)

W�1
1 (s)W (s) (3.8b)

are inner functions.
We know thatW (s) is McMillan minimal, thus we can associate toW (s)

a coanalytic spectral factor W 1(s) such that (W (s);W 1(s)) is a minimal
L.P. pair, (see section 2 or [11]) Then, by corollary (11.2) in [11], W 1(s)
has the same zero matrix of W (s), and then of W1(s). Thus W1(s) has a
minimal realization of the form

W 1(s) := H1(sI � F1)
�1G+R�1=2; (3.9)

where F1 := F + BBTQ1, H1 := H +R�1=2GTQ1 and Q1 is a symmetric
solution of (3.6).

But the only coanalytic spectral factor of this form is W (s) thus we
have W (s) = W 1(s). Hence (W (s);W (s)) is a minimal L.P. pair. This
together with (3.8) concludes one direction of the proof.

Conversely, letW1(s) be a minimal spectral factor of a rational spectral
density. Then, by de�nition, there exists a minimal L.P. pair (W (s);W (s))
such that:

W1(s) = W (s)U (s); (3.10a)

W (s) = W1(s)V (s); (3.10b)

11
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with U (s) and V (s) inner functions. We remark that W (s) and W (s) are
McMillan minimal and have the same zero matrix and then, if W (s) =
C(sI + AT )�1B + R�1=2 is a minimal realization of W (s), W (s) has the
following minimal realization [12]:

W (s) = H(sI � F )�1B +R1=2 (3.11)

where F = �AT + BBTQn, H = C + R1=2BTQn and Qn is the unique
negative de�nite solution of the ARE (3.2).

De�ne the inner matrix function K(s) by K(s) := U (s)V (s). We easily

get W
�1
(s)W (s) = K(s) and computing the calculations yields the min-

imal realization: K(s) = I + BT (sI � A)�1QnB: Hence, by Lemma 3.1
U (s) has the (nonminimal) realization: U (s) = I + BT (sI � A)�1Q1B;
where Q1 is a symmetric solution of the ARE (3.2). We can now com-
pute W1(s) = W (s)U (s) and this yields W1(s) = H(sI � F )�1B + R1=2

where F = �AT + BBTQ1, H = C + R1=2BTQ1. It is easy to see that
this realization ofW1(s) has the same dimension of the minimal realization
(3.11) ofW (s) which is McMillan minimal. Hence, also W1(s) is McMillan
minimal.

We have also to check that for analytic and coanalytic spectral factors
this de�nition is in agreement with the one given in [10] and [11] above
recalled in (2.12) and (2.13).

Proposition 3.2 For analytic and coanalytic spectral factors, De�nition
3.1 coincides with the usual one based on (2.12) and (2.13). More precisely,
an analytic (coanalytic) spectral factor W1(s) is minimal (in accordance to
Def. 3.1) if and only if equation (2.12) (equation (2.13)) is satis�ed.

Proof: Let W1(s) be an analytic spectral factor minimal (in the sense
of (2.12)). We can associate to W1(s) a spectral factor W (s) such that
(W (s);W (s)) is a minimal L.P. pair. Then, in the notation of De�nition
3.1, we can simply take U (s) = K(s) and V (s) = I, and this proves that
W1(s) is minimal in the sense of De�nition 3.1.

Conversely, let W1(s) be analytic and minimal (in the sense of de�ni-
tion 3.1). Thus there exists a minimal L.P. pair (W (s);W (s)) such that
equations (3.1) hold. Moreover there exists an inner function Q1(s) such

that W1(s) = W�(s)Q1(s). Let (K(s); Q(s); Q
�

(s)) be the inner triplet
related to (W (s);W (s)), we recall that

(K;Q)
R
= I (3.12a)

(K;Q
�
)
L
= I: (3.12b)

Using the same notation of De�nition 3.1 and taking into account the
de�nition of Q(s) we have V (s) = W�1

1 (s)W (s) = Q�1(s)Q(s): Thus by

12
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(3.12a) V (s) is a constant orthogonal matrix that we identify with the
identity as our spectral factors are de�ned up to right multiplication by
a constant orthogonal matrix. We have proved that W1(s) = W (s). But
W (s) is the analytic element of a minimal L.P. pair and then it is minimal
in the sense of (2.12). The proof for coanalytic spectral factors is similar.

De�nition 3.2 Let (W (s);W (s)) be a, nonnecessarily minimal, L.P. pair,
and let du and du be the corresponding Wiener processes. Let W1(s) be a
spectral factor such that the matrix functions U (s) and V (s) de�ned by
(3.1b) and (3.1a) are inner.

Set:

X0 :=

Z +1

�1

H(V (s))dû � S = H�(du); (3.13a)

X00 :=

Z +1

�1

H(U�(s))dû � S = H+(du): (3.13b)

We de�ne the state space X1 of W1(s) by

X1 := X0 _X00: (3.14)

In Proposition 3.3 below we show that the sum in equation (3.14) is ac-
tually orthogonal. In this de�nition the spectral factor W1(s) may have
singularities in both the left and the right half planes.

Proposition 3.3 Suppose that X is the state space of (W (s);W (s)) [equa-
tions (2.11)], where (W (s);W (s)) is as in De�nition 3.2. Then relation

X = X1 = X0 �X00 (3.15)

holds true. Moreover X 0 � H+(du1) and X00 � H�(du1), where du1is the
Wiener process corresponding to W1(s): dû1 := W�1

1 (s)dŷ.

Proof: Since the structural function K(s) of the pair (W (s);W (s)) can be
factored as: K(s) = U (s)V (s), it is clear that H2

mK(s) = H2
mU (s)V (s) �

H2
mV (s). Consequently H(K(s)) � H(V (s)). This inclusion, together

with equations (2.11a) and (3.13a), implies that X � X 0. Similarly it can
be proved that X � X 00. It can be easily checked that dû = V �(s)dû1 and
dû = U (s)dû1. We can then write:

X0 =

Z +1

�1

H(V (s))V �(s)dû1 � H+(du1); (3.16a)

X00 =

Z +1

�1

H(U�(s))U (s)dû1;� H�(du1) (3.16b)

13
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where the two inclusions are due to the fact that H(V (s))V �(s) � H
2
m

and, symmetrically, H(U�(s))U (s) � H2
m. Hence X

0?X00. We now prove
that X 	X 0 = X00. From the de�nitions of X and X 0 we have:

X 	X0 =

Z +1

�1

[H(K(s)) 	H(V (s))]dû: (3.17)

It is easy to see that H(K(s)) 	H(V (s)) = H2
mV (s) 	H2

mK(s) Plugging
this equation into (3.17) and using the fact that dû = K�(s)dû we get:

X 	X 0 =

Z +1

�1

[H2
mV (s) 	H2

mK(s)]K�(s)dû: (3.18)

Denoting by h:; :i the scalar product in L2
m(I) we get:

[H2
mV (s) 	H2

mK(s)]K�(s) =

fh(s)V (s)K�(s) = h(s)U�(s) :

h(s) 2 H2
m; hh(s)V (s); k(s)K(s)i = 0 8k(s) 2 H2

mg =

fh(s)U�(s) 2 H
2
m : h(s) 2 H2

mg =

fj(s) 2 H
2
m : j(s)U (s) 2 H2

mg = H(U�(s)):

(3.19)

The assertion now follows by comparing this equation and equation
(3.17) to the de�nition of X 00.

This proposition gives a system theoretic justi�cation of De�nition 3.1.
In fact, equation (3.15), using De�nition 3.2, implies that a spectral factor
is minimal if and only if its state space is so.

Remark 3.1 Let (W (s);W (s)) be a minimal L.P. pair with state space
X, and let W1(s) be a minimal spectral factor related to (W (s);W (s))
by equations (3.1). The state space X, which is a space of random vari-
ables, is the same for W (s), W (s) and W1(s), [Proposition 3.3], but the
Wiener process corresponding to each spectral factor mapsX into di�erent
function spaces. More precisely, the Wiener process du (corresponding to
W (s)) establishes a correspondence between the space X and the space of
analytic functions H(K(s)); [equation (2.11a)]. Similarly the Wiener pro-
cess du (corresponding to W (s)) establishes a correspondence between X
and the space of coanalytic functions H(K�(s)), [equation (2.11b)]. The
spectral factor W1(s) has singularities in both the left and the right half
planes, and the corresponding Wiener processes du1 maps the state space

14
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X into a suitable pair of function spaces (H(V (s)) and H(U�(s))), the
�rst being a space of analytic functions, the second being a space of coana-
lytic functions, [equations (3.13)]. It is then natural to embed the function
spaces corresponding to W (s) and W (s) into the pairs (H(K(s)); f0g) and
(f0g;H(K�(s))) respectively.

It is well-known that, in a Hilbert space setting, both in the determin-
istic and in the stochastic case, the state space, as a function space,is the
orthogonal complement of an invariant subspace, see [5], [10] and [11]. For
example, to the analytic spectral factor W (s), there corresponds the space
of analytic functions H(K(s)) which is the orthogonal complement in H2

m

of the invariant subspace H2
mK(s). Symmetrically, to W (s) there corre-

sponds the space of coanalytic functions H(K�(s)) which is the orthogonal

complement, in H
2
m, of H

2
mK

�(s). In the general case, the state space, as
a function space, may be decomposed into the orthogonal complement of
an invariant subspace of H2, due to the analytic part of the spectral factor,

and the orthogonal complement of an invariant subspace of H
2
, due to the

coanalytic part. In the extreme cases (analytic and coanalytic) one of the
two spaces vanishes.

4 Main Result

To state our main result, it is useful to introduce the inner function

UM (s) := W�(s)
�1W+(s): (4.1)

This function plays a role similar to that of the multivariate phase func-
tion T0(s) = W+(s)�1W�(s). In fact both UM (s) and T0(s) are all-pass
function and carry all the information about singularities and zeroes (i.e.
singularity of the inverse) of the spectral density �(s). In contrast to the
phase function, however, UM (s) is analytic on the closed right half plane
i.e. it is an inner function, and this will be of fundamental importance
below.

If A is a square matrix we shall denote by jAj the determinant of A.

Theorem 4.1 Let y(t) be a real, m-dimensional, mean square continuous
process with stationary increments and let �(s) be spectral density of dy
which is assumed to be coercive. Assume that dy is strictly noncyclic and
that jK+(s)j and jQ+(s)j are coprime:

(jK+(s)j; jQ+(s)j) = I: (4.2)

Then there is a one to one correspondence between the set U of left inner
divisors of UM (s) and the set F of minimal spectral factors of �(s). More
precisely, we have:

F = fW (s) = W�(s)U (s) : U (s) 2 Ug: (4.3)

15
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We �rst prove the inclusion

F � fW (s) = W�(s)U (s) : U (s) 2 Ug: (4.4)

Proof of (4.4): By de�nition there exists a minimal analytic spectral
factor W (s) such that the matrix V (s) de�ned by:

V (s) := W�1
1 (s)W (s) (4.5)

is inner. Every minimal analytic spectral factor W (s) can be written as in
(2.15) and Q(s) is a left inner divisor of Q+(s) [10, prop 7.2]. Substitut-
ing (2.15) in (4.5) we get W�(s) = W1(s)V (s)Q�(s) and multiplying this
equation on the right side by Q+(s) =W�1

� W+ we get

W+(s) = W1(s)V (s)Q
�(s)Q+(s) =W1(s)V1(s); (4.6)

where V1(s), de�ned by V1(s) = Q�(s)Q+(s), is inner because Q(s) is a
left inner divisor of Q+(s). In a completely symmetric way we can �nd an
inner function U1(s) such that:

W1(s) =W�(s)U1(s): (4.7)

Comparing equations (4.6) and (4.7) with the de�nition of UM (s), it follows
immediately that U1(s) is a left inner divisor of UM (s).

The inclusion

F � fW (s) =W�(s)U (s) : U (s) 2 Ug (4.8)

is quite di�cult to prove. To this end we shall establish some preliminary
results which, however, appear to be of independent interest. Before doing
this we collect below some relevant observations.

Remark 4.1 The correspondence (4.3) between minimal spectral factors
and left inner divisors of UM (s) was �rst established, for rational spectral
densities, in [3], where the following theorem was proved.

Theorem 4.2 Let �(s) be a rational coercive spectral density and let

W�(s) = C(sI + AT )�1B +D (4.9)

be a minimal realization of the spectral factor W�(s), and � := �AT �
BD�1C be its zero matrix. Assume that A and � have nonintersecting
spectra:

�(A) \ �(�) = ;: (4.10)

Then there is a one to one correspondence between the set U of left inner
divisors of UM (s) and the set F of minimal spectral factors of �(s). More
precisely, we have:

F = fW (s) = W�(s)U (s) : U (s) 2 Ug: (4.11)
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It is worth noticing that, in the rational case, condition (4.2) has been
recently proved to be also necessary, [2]. Precisely, if it fails, there always
exist left inner divisors of UM (s) such that the corresponding spectral fac-
tors are not minimal.

Theorem (4.2) is very similar to Theorem (4.1) except for the condition
(4.10) which does not apply in the nonrational setup where the realization
(4.9) is no longer available. It is also worth noticing that, in the rational
case, strict noncyclicity is not a restrictive condition. In fact, in that case,
T0(s) is rational and therefore it is strictly noncyclic.

Although, at the �rst glance, the two conditions (4.10) and (4.2) seem
very di�erent they are strictly connected. In fact, in the next proposition
we see that (4.2), in the rational case coincides exactly with (4.10).

Proposition 4.1 In the rational case the two conditions (4.2) and (4.10)
coincide.

Proof: Let (4.9) be a minimal realization of W�(s). Then we know
from [3] that the inner functions K�(s) and Q+(s) have the following
minimal realizations: K�(s) = I + BT (sI � A)�1QMB and Q+(s) =
I � R�1=2H(sI � �)�1PMHTR�1=2, where QM is the unique symmetric
negative de�nite solution of the ARE:

� AQ�QAT +QBBTQ = 0: (4.12)

PM the unique symmetric positive de�nite solution of the ARE:

�P + P�T + PHTR�1HP = 0 (4.13)

and H := R1=2BTQM + C. The determinants of K�(s) and of Q+(s) are
clearly �nite Blaschke products and we have

fPoles(jK�(s)j)g � fPoles(K�(s))g � f�(A)g; (4.14)

similarly
fPoles(jQ+(s)j)g � fPoles(Q+(s))g � f�(�)g: (4.15)

And then, taking into account the well-known fact that jK�(s)j = jK+(s)j
[10], condition (4.10) implies condition (4.2).

Conversely we have that condition (4.2) implies equation (4.3). Of
course this fact still holds when specialized to the case of rational spectral
density, therefore, in particular in the rational case, we have that condition
(4.2) implies equation (4.11). But we have already noticed that condition
(4.10) is equivalent to equation (4.11).

Remark 4.2 In the proof of the �rst part of the previous theorem we have
not used condition (4.2). Hence, clearly, the inclusion (4.4) holds true also
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if condition (4.2) fails. Conversely, there are examples in which condition
(4.2) fails and there exist left inner divisors of UM (s) producing spectral
factors that are not minimal. Consider the following case taken from [3]:

�(s) =

"
s2�1
s2�4 0

0 s2�4
s2�1

#
W�(s) =

� s+1
s�2 0

0 s+2
s�1

�
(4.16)

and

UM (s) =
(s � 2)(s � 1)

(s + 2)(s + 1)
I2 U1(s) =

1

s + 1

�
s 1
1 s

�
: (4.17)

U1(s) is a left inner divisor of UM (s) but

W1(s) = W�(s)U1(s) =

"
s

s�2
1

s�2
s+2
s2�1

s(s+2)
s2�1

#
(4.18)

is not minimal. Thus condition (4.2) may perhaps be weakened but cer-
tainly not left out to prove the second part of Theorem 4.1.

Remark 4.3 In the scalar case (m = 1) condition (4.2) is automatically
satis�ed. In fact, in this situation jK+(s)j = K+(s) and jQ+(s)j = Q+(s)
and it is well-known [10] that K+(s) and Q+(s) are coprime.

5 Lemmas on Inner Functions

Lemma 5.1 Let u(s), q(s) and k(s)be scalar inner functions and suppose
that u(s) is coprime with both q(s) and k(s). Then u(s) is coprime with
the product q(s)k(s).

Proof: It is well-known that two inner function j(s) and v(s) are coprime
if and only if j(s)H2 _ v(s)H2 = H2. Therefore we have:

q(s)H2 _ u(s)H2 = H2 (5.1a)

k(s)H2 _ u(s)H2 = H2: (5.1b)

From (5.1a)it readily follows that

q(s)k(s)H2 _ u(s)k(s)H2 = k(s)H2: (5.2)

Plugging (5.2) into (5.1b) we get

q(s)k(s)H2 _ u(s)k(s)H2 _ u(s)H2 = H2; (5.3)

18



NONRATIONAL SPECTRAL DENSITY

where we have used the fact that (q(s)k(s)H2 _ u(s)k(s)H2) _ u(s)H2 =
q(s)k(s)H2_(u(s)k(s)H2_u(s)H2). Since k(s)H2 � H2, and consequently
u(s)k(s)H2 _ u(s)H2 = u(s)H2, (5.3) gives:

q(s)k(s)H2 _ u(s)H2 = H2; (5.4)

and this yields the assertion.

Corollary 5.1 Let u(s), q(s) and k(s)be scalar inner functions and sup-
pose that u(s) is an inner divisor of q(s)k(s). Then u(s) can be factored
as u(s) = uq(s)uk(s) where uq(s) is an inner divisor of q(s) and uk(s) is
an inner divisor of k(s).

Proof: Let uq be de�ned as follows:

uq(s) := g:c:i:d:(u(s); q(s)) (5.5)

and let u1(s) and q1(s) be the two inner functions de�ned by:

u1(s) := u(s)u�q (s); (5.6a)

q1(s) := q(s)u�q(s): (5.6b)

Obviously u1(s) and q1(s) are coprime. Now de�ne uk by:

uk(s) := g:c:i:d:(u1(s); k(s)): (5.7)

Again let u2 and k2 be the two coprime inner functions de�ned by:

u2(s) := u1(s)u
�

k(s); (5.8a)

k2(s) := k(s)u�k(s): (5.8b)

We then have
u(s) = uq(s)uk(s)u2(s): (5.9)

In view of the coprimeness between q1(s) and u1(s) we also have

(u2(s); q1(s)) = 1: (5.10)

By hypothesis, u(s) divides q(s)k(s) i.e. that there exists an inner function
j(s) such that u(s)j(s) = q(s)k(s). Substituting (5.9), (5.8b) and (5.6b) in
this equation we get:

u2(s)j(s) = q1(s)k2(s): (5.11)

We can now apply Lemma 5.1 to (5.11) concluding that u2(s) is a constant
of absolute value one. The conclusion then follows from (5.9).
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Lemma 5.2 Let T (s) 2 L1m�m be an all-pass matrix. Then T (s) admits a
coprime inner-coinner factorization:

T (s) = U (s)J�(s) U (s); J(s) inner and (U (s); J(s))
R
= I (5.12)

if and only if it admits a coprime coinner-inner factorization:

T (s) = K�(s)V (s) V (s);K(s)inner and (V (s);K(s))
L
= I: (5.13)

Moreover these two factorizations are unique up to constant orthogonal
matrices and the two relations jU (s)j = jV (s)j and jJ(s)j = jK(s)j hold.

Proof: Suppose that T (s) admits the coprime factorization (5.12). Then,
as it is shown in [5], the closure of the range of the Hankel operator with
symbol T is:

Range(HT ) = H2
m 	H2

mU (s): (5.14)

It follows that T (s) is strictly noncyclic, and hence it admits the coprime
factorization (5.13). The converse is similar. From (5.13) it follows that the

kernel of the Hankel operator with symbol T is KerHT = H
2
mV

�(s) and
then, in view of Beurling-Lax Theorem [5], [6], V (s) is unique up to multi-
plication on the left side by constant orthogonal matrices. In the same way,
from equation (5.14) it follows that the factorization (5.12) is essentially
unique. Finally suppose that T (s) admits the two coprime factorizations
(5.12) and (5.13). We can then write also K(s)U (s) = V (s)J(s) with
(U (s); J(s))

R
= I and (V (s);K(s))

L
= I. As it is shown in [8, Lemma 3]

this is the same as saying that U (s) and V (s) are quasi-equivalent. Hence
we have jU (s)j = jV (s)j. The condition jJ(s)j = jK(s)j is now obvious.

Lemma 5.3 Let J(s);K(s); U (s); V (s) be four inner matrix functions such
that: J(s) = U (s)K�(s)V (s) and K(s) is right coprime with U (s) and left
coprime with V (s). Then K(s) is a constant orthogonal matrix.

Proof: We have that K�(s)V (s) = U�(s)J(s) where the �rst factorization
is coprime, but the second need not be. Let then Ud(s) be the greatest
common left inner divisor of U (s) and J(s), and U1(s) and J1(s) the two
inner matrix functions (left inner coprime) such that: U (s) = Ud(s)U1(s)
and J(s) = Ud(s)J1(s) . With this notation, we have the two coprime
factorizations:

K�(s)V (s) = U�1 (s)J1(s): (5.15)

As the coprime coinner-inner factorization is unique up to constant orthog-
onal matrices (Lemma 5.2) we can assume U1(s) = K(s). But U1(s) is a
right inner divisor of U (s) and hence, in view of right coprimeness between
U (s) andK(s), U1(s) ( and then alsoK(s) ) must be a constant orthogonal
matrix.
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Corollary 5.2 Let J(s);K(s); U (s); V1(s); Q(s) be �ve inner matrix func-
tions such that J(s)Q�(s) = U (s)K�(s)V1(s) are two coprime factorization
of the same all pass matrix. Then U (s) is a left inner divisor of J(s).

Proof: It is easy to see that the function U (s)K�(s)V1(s)Q(s) is inner. We
have that U (s) and K(s) are right coprime and then, in view of previous
lemma, K(s) is a left inner divisor of V1(s)Q(s). The conclusion is now
clear because K�(s)V1(s)Q(s) is inner.

Lemma 5.4 Let U (s) be an (m �m) inner matrix function. Then U (s)
admits the inner factorization U (s) = Q(s)K(s) if and only if the scalar
inner function jU (s)j admits the inner factorization jU (s)j = q(s)k(s) with
jQ(s)j = q(s) and jK(s)j = k(s).

Proof: If U (s) = Q(s)K(s), it is obvious that jU (s)j = jQ(s)jjK(s)j =
q(s)k(s). Conversely, let jU (s)j = q(s)k(s). U (s) is quasi-equivalent to a
diagonal matrix

�(s) = diag(�1(s); �2(s); : : : �m(s)); (5.16)

where �i(s) are the invariant factors of U (s) [5]. We have

jU (s)j = j�(s)j = �1(s)�2(s) : : : �m(s) = q(s)k(s): (5.17)

It now follows from Corollary 5.1 that each �i(s) admits the inner factoriza-
tion �i(s) = qi(s)ki(s) where qi(s) and ki(s) are inner divisors respectively
of q(s) and k(s). De�ne two diagonal inner matrices

�q(s) = diag(q1(s); q2(s); : : : qm(s)); (5.18a)

�k(s) = diag(k1(s); k2(s); : : :km(s)): (5.18b)

It is clear that j�q(s)j = q(s), j�k(s)j = k(s) and

�(s) = �q(s)�k(s): (5.19)

Quasi equivalence between U (s) and �(s) = �q(s)�k(s) implies that there
exist two matrix functions A(s); B(s) 2 H1

m�m such that:

A(s)U (s) = �q(s)�k(s)B(s); (5.20a)

(A(s);�q(s)�k(s))L = I; (U (s); B(s))
R
= I: (5.20b)

Let us now de�ne the inner matrixUk(s) as the greatest commonright inner
divisor of U (s) and �k(s)B(s). Then there exist a matrix function Uq(s)
(inner) and C(s) (in H1) such that U (s) = Uq(s)Uk(s) and �k(s)B(s) =
C(s)Uk(s). Hence:

A(s)Uq(s) = �q(s)C(s); (A(s);�q(s))L = I; (Uq(s); C(s))R = I:
(5.21)
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The last equation with the coprimeness conditions implies that Uq(s) is
quasi-equivalent to �q(s) [8], and hence jUq(s)j = j�q(s)j = q(s). Obvi-
ously, we also have jUk(s)j = k(s):

6 Completion of Proof of Theorem 4.1

We now prove the second part of Theorem 4.1 using the previous results.

Proof of inclusion (4.8): Let U1(s) be a left inner divisor of UM (s)
and let W1 := W�(s)U1(s). Then jU1(s)j is an inner divisor of jUM (s)j =

jQ
�

�
(s)jjK+(s)j. In view of Corollary 5.1, jU1(s)j = q1(s)k1(s) where q1(s)

divides jQ
�

�(s)j and k1(s) divides jK+(s)j. We are now under the hypothe-
ses of Lemma 5.4. We then know that U1(s) admits the inner factorization

U1(s) = Uq(s)Uk(s); (6.1)

where jUq(s)j = q1(s) and jUk(s)j = k1(s). Thus we have the coprimeness:

(jUk(s)j; jQ+(s)j = jQ
�

�(s)j) = I: (6.2)

The next step is to show that Uq(s) is a left inner divisor of Q
�

�
(s). As

U1(s) is a left inner divisor of UM (s), there exists an inner matrix function

V1(s) such that: UM (s) = Q
�

�(s)K
+(s) = U1(s)V1(s): Multiplying this

equation on the left side by U�q (s) we get:

U�q (s)Q
�

�(s)K+(s) = Uk(s)V1(s): (6.3)

Let us now de�ne the inner matrix Ud(s) as the greatest common left

inner divisor of Uq(s) and Q
�

�(s), and Qr(s) and Ur(s) the two inner
matrix functions (left inner coprime) such that Uq(s) = Ud(s)Ur(s) and

Q
�

�
(s) = Ud(s)Qr(s). With this notation the all-pass function U�q (s)Q

�

�
(s)

admits the coprime coinner-inner factorization: U�q (s)Q
�

�
(s) = U�r (s)Qr(s).

It then admits also the corresponding inner-coinner coprime factorization
(Lemma 5.2)

U�q (s)Q
�

�(s) = Ql(s)U
�

l (s): (6.4)

Plugging this equation into (6.3) yields:

Ql(s)U
�

l (s)K+(s) = Uk(s)V1(s): (6.5)

From Lemma 5.2, it follows that jUl(s)j = jUr(s)j: It is now apparent that
jUl(s)j is coprime with jK+(s)j. A fortiori Ul(s) and K+(s) must be right
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coprime. Moreover Uk(s)V1(s) is inner. We can then apply Lemma 5.3
to equation (6.5), concluding that Ul(s) is a constant orthogonal matrix
which is the same as saying that

Uq(s) is a left inner divisor of Q
�

�(s): (6.6)

In a completely symmetric way, we can prove that V1(s) admits the inner
factorization V1(s) = Vk(s)Vq (s) where Vq(s) is a right inner divisor of Q+

and jVkj divides jK+(s)j = jK�(s)j, and then the coprimeness:

(jVkj; jQ+(s)j = jQ�(s)j) = I (6.7)

holds.
We can now de�ne a couple (W (s);W (s)) of analytic and coanalytic

spectral factors in the following way:

W (s) :=W+(s)V
�

q (s) = W�(s)Q+(s)V
�

q (s) (6.8a)

W (s) :=W�(s)Uq (s) = W+(s)Q�(s)Uq(s): (6.8b)

The spectral factor W (s) is minimal and analytic because Vq(s) is a right
inner divisor of Q+(s). [10, Prop. 7.2]. In the same wayW (s) is a minimal

coanalytic spectral factor because Uq(s) is a left inner divisor of Q
�

�(s)

We now prove that the couple (W (s);W (s)) is a minimal L.P. pair. To

this end we de�ne the inner function K(s) by K(s) := W
�1
(s)W (s) =

Uk(s)Vk(s). It is clear that K(s) is a structural function and that the two
relations of coprimeness:

(K(s); U�q (s)Q
�

�(s))L = I (6.9a)

(K(s); Q+(s)V
�

q (s))R = I (6.9b)

follow respectively from (6.2) and (6.7).
It is now easy to show that W1(s) := W�(s)U1(s) is minimal in fact

W�1
1 (s)W (s) = Vk(s) and W

�1
(s)W1(s) = Uk(s) are inner and, as we

noticed above, (W (s);W (s)) is a minimal L.P. pair: Therefore W1(s) is
minimal by de�nition.

7 Some Ancillary Results

Let W1(s) be a minimal spectral factor of �(s). We have proved that
W1(s) is uniquely determined by a left inner divisor U1(s) of UM (s) such
that W1(s) = W�(s)U1(s) holds. The inner matrix function U1(s) is in
one-to-one correspondence with another inner V1(s) such that U1(s)V1(s) =
UM (s):Moreover U1(s) and V1(s) admit the two inner factorizations U1(s) =
Uq(s)Uk(s) and V1(s) = Vk(s)Vq (s) and the Lindquist-Picci pair associated
to W1(s) is given by (6.8a) and (6.8b).
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Lemma 7.1 The inner matrix function Uq(s) de�ned by (6.1) is the great-

est common left inner divisor of Q
�

�(s) and U1(s). Analogously, Vq(s) is
the greatest common right inner divisor of Q+(s) and V1(s).

Proof: The inner function Uq(s) is by de�nition a left inner divisor of
U1(s). As we showed before (eq. (6.6)) Uq(s) is also a left inner divisor of

Q
�

�
(s). De�ne the coinner function Q(s) by:

Q
�

�(s) = Uq(s)Q
�
(s): (7.1)

It remains to prove that Q
�

(s) and Uk(s) are left coprime: it is clear

that jQ
�
(s)j divides jQ

�

�(s)j and that jUk(s)j divides jK�(s)j which is co-

prime with jQ
�

�(s)j. Thus jQ
�
(s)j and jUk(s)j are coprime and, a for-

tiori, Q
�

(s) and Uk(s) are left coprime. Similarly, it can be shown that
Vq(s) = g:c:r:i:d:(Q+(s); V1(s)) de�ning Q(s) as the inner function such
that

Q+(s) = Q(s)Vq(s): (7.2)

We have already noticed that K(s) = Uk(s)Vk(s) is the structural func-
tion of the couple (W (s);W (s)), moreover, from (7.2), (7.1), (6.8a) and
(6.8b), it follows that Q(s) and Q(s) are respectively the inner and the
coinner factor in (2.15) and (2.16). Thus we can associate to U1(s) the in-

ner triplet (Q(s);K(s); Q
�
(s)) related to the state space X of all minimal

spectral factors fW (s) (W1(s) is one of these) such that W
�1
(s)fW (s) andfW�1(s)W (s) are inner. Conversely any inner triplet (Q(s);K(s); Q

�
(s))

with an inner factorization of the structural function K(s) de�nes via a
straightforward calculation the inner function U1(s). We have then proved
the following proposition.

Proposition 7.1 Suppose that �(s) is strictly noncyclic. Then under con-
dition (4.2) there exists a one-to-one correspondence between minimal spec-
tral factors of �(s) (or equivalently left inner divisors of UM (s)) and inner

quadruples (Q(s); Uk(s); Vk(s); Q
�
(s)) where Q(s) and Q

�
(s) are the inner

and coinner factor of a minimal L.P. pair and Uk(s)Vk(s) is an inner fac-
torization of the structural function K(s) of the same minimal L.P. pair.

We have shown that U1(s) admits the inner factorization (6.1). In a
completely dual way it can be shown that U1(s) can be also factored as

U1(s) = eUk(s)eUq(s); (7.3)

where eUk(s) is a left inner divisor of K�(s) and jeUq(s)j divides jQ+(s)j.
Similarly the inner function V1(s) may be factored as

V1(s) = eVq(s)eVk(s); (7.4)
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where jeVq(s)j divides jQ+(s)j and eVk(s) is a right inner divisor of K+(s).

De�ne another pair, (fW�(s);fW+(s)), of minimal spectral factors:

fW�(s) :=W�(s)eUk(s); (7.5a)fW+(s) :=W+(s)eV �k (s): (7.5b)

We show now that the inverse of the spectral factor fW�(s) is analytic in

the open right half plane. In fact we have: fW�1
� (s) = eU�k (s)W�1

� (s) =eU�k (s)K�(s)W
�1
� (s) and this conclude the proof because eUk(s) is a left

inner divisor of K�(s) and W�(s) is analytic with its inverse in the open
right half plane. In the same way it can be proved that the inverse of the
spectral factor fW+(s) is analytic in the open left half plane.

Equations (7.3) and (7.4) relate each minimal spectral factor W1(s) (or

equivalently each left inner divisor of UM (s) ) to a couple (fW�(s);fW+(s))
de�ned by (7.5a) and (7.5b), via two inner matrix functions. More precisely

we have that the two matrix functions: fW�1
�

(s)W 1(s) = eUq andW�1
1
fW+ =eVq are inner. We can now associate to each minimal spectral factor W1(s)

the matrix function eQ(s) (which is obviously inner) de�ned by

eQ(s) := fW�1
�

(s)fW+(s) = eUq(s)eVq (s): (7.6)

We shall say that eQ(s) is the zero function of the spectral factor W1(s).
The following lemma is the dual version of Theorem 7.5 in [10].

Lemma 7.2 Suppose that �(s) is strictly noncyclic and that (4.2) holds.

Let eQ1(s) and eQ2(s) the zero functions of two minimal spectral factors.

Then eQ1(s) and eQ2(s) are quasi-equivalent. In particular each eQ(s) is

quasi-equivalent to Q+(s) and to Q
�

�(s).

Proof: On the one hand we have:

W
�1
� (s)fW+(s) = W

�1
� (s)W

�1
+ (s)W+(s)fW+(s) = Q

�

�(s)K+(s)eV �k (s)
(7.7)

On the other hand:

W
�1
�
(s)fW+(s) = W

�1
�
(s)fW�(s)fW�1

�
(s)fW+(s) = eUk(s) eQ(s) (7.8)

But we have already proved that eVk is a right inner divisor of K+(s), hence
the matrix function de�ned by:eK+(s) := K+(s)eV �k (s): (7.9)

is inner. Comparing these three equations we get:

Q
�

�
(s) eK+(s) = eUk(s) eQ(s): (7.10)
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As we have noted before eUk(s) is a left inner divisor of K�(s) and then

jeUk(s)j is coprime with jQ
�

�(s)j. A fortiori, eUk(s) and Q��(s) are left inner
coprime. On the other side eK+(s) is a right inner divisor of K+(s) and

then j eK+(s)j is coprime with jeUq(s)j and jeVq(s)j. In view of Lemma 5.1 we

can conclude that j eK+(s)j is coprime also with the product jeUq(s)jjeVq(s)j =eQ(s). In particular, this implies that eK+(s) and eQ(s) are right coprime. We

can now apply Lemma 3 in [8] and conclude that Q
�

�
(s) and eQ(s) are quasi-

equivalent. The proof now follows from the symmetry and transitivity of
the quasi-equivalence relation [5].

As straightforward consequences of this lemma we have the following
corollaries:

Corollary 7.1 Suppose that �(s) is scalar and strictly noncyclic. Then
all minimal spectral factors have the same zero function.

Notice that in the scalar case condition (4.2) is automatically guaranteed.

Corollary 7.2 To each minimal spectral factor W1(s) we can associate a

zero function eQ(s) and two inner matrix functions eK+(s) de�ned by (7.9)

and eK�(s) de�ned by:

eK�(s) := eU�k (s)K�(s): (7.11)

Among these inner functions the two following relations of coprimeness
hold:

( eK+(s); eQ(s))R = I and ( eK�(s); eQ(s))L = I: (7.12)

Thus, if W1(s) is minimal, the phase function T0(s) = W
�1
+ (s)W�(s) ad-

mits the coprime factorization:

T0(s) = eK+(s) eQ�(s) eK�(s): (7.13)

Notice that this factorization is dual respect to the one exhibited in
[10]. The following proposition, which is a dual version of Proposition 7.1,
summarizes the previous results.

Proposition 7.2 Suppose that �(s) is strictly noncyclic. Then, under
condition (4.2), there exists a one-to-one correspondence between minimal
spectral factors of �(s) (or equivalently left inner divisors of UM (s)) and

inner quadruples ( eK�(s); eUq(s); eVq(s); eK+(s)) such that, de�ning eQ(s) :=eUq(s)eVq(s), the phase function T0(s) admits the doubly coprime factor-

ization T0(s) = eK+(s) eQ�(s) eK�(s) and there exists a couple of minimal

spectral factors (fW�(s);fW+(s)) whose inverse are analytic respectively in

the right and in the left open half plane, such that eQ(s) = fW�1
�

(s)fW+(s):
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Proof: Corollary 7.2 proves one direction. Conversely we have the two
coprime factorization of T0(s): T0(s) = eK+(s) eQ�(s) eK�(s) = K+(s)Q

�
+(s).

We can apply Corollary 5.2 and conclude that eK+(s) is a left inner di-

visor of K+(s). Symmetrically eK�(s) is a right inner divisor of K�(s).
This consideration proves that the function U1(s) de�ned by U1(s) :=

K�(s) eK�
�(s)eUq (s) is an inner function and it is an inner divisor of UM (s).

The set U of the left inner divisors of UM (s) is endowed with a partial
order which is naturally induced by the division relation. More precisely,
denoting with the symbol � this partial order, U1(s) � U2(s) means that
U1(s) is a left inner divisor of U2(s). (Here U1(s); U2(s) 2 U). It is well-
known that this partial ordering induces in U a lattice structure with a
maximal element UM (s) and a minimal one which is obviously the identity.
This structure is clearly inherited by the set F of the minimal spectral
factors of �(s): In this sense we can say thatW�(s) is the minimal element
of F andW+(s) is the maximal one. This lattice structure can be visualized
in the following commutative diagram which, in view of propositions 7.1
and 7.2, holds true for every element W1(s) in F :

W�(s)
Uq(s)

��������! W (s)
Q
�

(s)
��������! W+(s)

j j j??yeUk(s) ??yUk(s) ??yeK+(s)

fW�(s)
eUq(s)

��������! W1(s)
eVq(s)

��������! fW+(s)
j j j??yeK�(s) ??yVk(s) ??yeVk(s)
W�(s)

Q(s)
��������! W (s)

Vq(s)
��������! W+(s)

(7.14)

In this diagram the notation W1(s)
U2(s)
����! W3(s) means that U2(s)

is an inner function such that U2(s) = W�1
1 (s)W3(s) and it is inner. Hence,

in the partial order of the set F , W3(s) is greater then W1(s).

7.1 A geometric parametrization

In this section we give a parametrization of the subspaces generated by
the past and the future of the Wiener processes corresponding to minimal
spectral factors.
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Proposition 7.3 Suppose that dy is strictly noncyclic and that the co-
primeness relation (4.2) holds. Then the following three conditions are
equivalent:

(i) The spectral factor W1(s) is minimal.

(ii) The Wiener process du1 corresponding to W1(s) satis�es the condi-
tion

N� � H�(du1) � (N+)?: (7.15)

(iii) The Wiener process du1 corresponding to W1(s) satis�es the condi-
tion

N+ � H+(du1) � (N�)?: (7.16)

That condition (7.15) should be related to minimality in the general spec-
tral factor case was suggested to us by Prof. A. Lindquist [7].

Proof: (i))(ii): If W1(s) is minimal, then, in view of Theorem 4.1, we

have that U1(s) := W
�1
� (s)W1(s) and V1(s) := W�1

1 (s)W+(s) are inner
and consequently, as it is shown in [10, Lemma 6.1], we have the relation
H�(du�) � H�(du1) � H�(du+), which corresponds exactly to (7.15).
(ii))(i): Using again [10, Lemma 6.1], relation (7.15) implies that U1(s) :=

W
�1
� (s)W1(s) and V1(s) := W�1

1 (s)W+(s) are inner. Hence U1(s) is a left

inner divisor of UM (s), and consequently W1(s) = W�(s)U1(s) is minimal.
Equivalence (ii),(iii) is trivial.

This proposition gives two geometric versions of the diagram (7.14). In
particular, as we saw in the proof, the subspaces generated by the past
of the Wiener processes corresponding to the spectral factors in diagram
(7.14) satisfy the following relations:

H�(du�) � H�(du) � H�(du+)

\ \ \

H�(deu�) � H�(du1) � H�(deu+)
\ \ \

H�(du�) � H�(du) � H�(du+)

(7.17)

Hence, de�ning S� as the set of the subspaces generated by the past of
Wiener processes corresponding to minimal spectral factors, we have that
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H�(du+) and H
�(du�) are, respectively, the largest and the least element

of S� with respect to the partial order induced by inclusion. Inverse inclu-
sions clearly hold for the subspaces H+(du) generated by the future of the
Wiener processes.

More research is needed to understand the complete geometric picture
underlying the Wiener processes corresponding to these general spectral
factors.
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