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Continuous-Time Gauss-Markov Processes

with Fixed Reciprocal Dynamics
�
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Abstract

Continuing the work started in [11], in this paper we examine

the construction of Gauss-Markov processes with �xed reciprocal

dynamics. We show how to construct Gauss-Markov processes, de-

�ned on a �nite interval, having �xed initial and end-point densities

and belonging to a given reciprocal class. The problem of changing

the end-point density of a Markov process, while remaining in the

same reciprocal class, is also considered. A stochastic interpretation

of the results in terms of an optimal control problem is given.
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1 Introduction

In this paper we describe a procedure for constructing continuous-time
Gauss-Markov processes with �xed reciprocal dynamics. An analogous
study for the discrete-time case has been presented in [11]. A IRn valued
stochastic process x(t) de�ned for t 2 I = [0; T ] is reciprocal if for any
[t1; t2] � I the process in the interior of [t1; t2] is conditionally independent
of the process in I � [t1; t2] given x(t1) and x(t2). The time-reversibility
of the Markov property implies that Markov processes are necessarily re-
ciprocal, while the converse is false [7]. A motivation for investigating the
relations between Markov and reciprocal processes can be found in the
work of Schr�odinger [17]. In his attempt of giving a probabilistic inter-
pretation to his results in quantum mechanics, Schr�odinger had to deal
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A. BEGHI

with Markov processes living on a �nite interval, with positive transition
density q(s; x; t; y) and with the property of having preassigned both the
initial probability density p0(x) and the �nal one, pT (x). Clearly, from the
knowledge of the transition density and of the initial one we can predict
that at the time t = T the �nal probability density is

p(T; x) =

Z
q(�; �;T; x)p0(�)d� : (1.1)

An interesting question arises when pT (x) is di�erent from p(T; x): which
is the Markov process x�(t) that has p0(x) and pT (x) as initial and �nal
densities, and is in some way the closest to x(t)? In
uenced by this problem,
Bernstein in 1932 introduced the class of reciprocal processes [1]. In his
fundamental contribution to the theory of reciprocal processes, Jamison
[7, 8, 9] showed that, similarly to what happens for Markov processes, the
�nite joint densities of a reciprocal process x(t) can be determined by only
two functions, namely the joint density �(x0; 0;xT ; T ) of the process at two
points and the reciprocal (or three-point) transition density q(r; x; s; y; t; w),
whereZ

A

Z
B

q(r; x; s; y; t; w)dxdw= Prob (x(s) = yjx(r) 2 A; x(t) 2 B) : (1.2)

Two processes having the same three-point transition density are said lo-

cally equivalent [8], [3], and then the assignment of the function
q(r; x; s; y; t; w) de�nes an equivalence class of processes. Jamison also
showed that the reciprocal transition density of a Markov process can be
obtained from its Markov transition density via the following factorization:

q(s; x; t; y;u;w) =
p(s; x; t; y)p(t; y;u;w)

p(s; x;u;w)
; 0 � s < t < u � T : (1.3)

The factorization (1.3) is not unique. In fact, there are many Markovian
transition densities p that give the same reciprocal transition density q, i.e.
there are manyMarkov processes having the same reciprocal description. In
this paper we study how these Markov processes are related to each other.
We will limit our discussion to the Gaussian context, where an interesting
characterization of reciprocal processes is available. In fact, it has been
shown by Krener, Levy and Frezza [12], [10] that all the Gaussian reciprocal
processes in a given class can be obtained varying the boundary conditions
of a self-adjoint, second-order stochastic boundary-value problem (SBVP).

The main goal of this paper is to show how to construct a Markov
process belonging to a given reciprocal class with prescribed initial and �nal
densities. We present a method that requires the solution of an algebraic
Riccati equation, which is obtained by studying the properties of the set
of boundary conditions for the SBVP characterizing the reciprocal class
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MARKOV PROCESSES WITH FIXED RECIPROCAL DYNAMICS

that yield Markov processes. We consider also the problem of changing the
�nal density of a Markov process while remaining in the same reciprocal
class. Recently, di�erent authors [19, 5, 2] have proposed a formulation
of Schr�odinger's problem in terms of a stochastic optimal control problem.
More speci�cally, the process x�(t) which has �nal probability density pT (x)
is considered to be obtained by applying to x(t) a minimum energy control.
We show that our results are in agreement with these previous ones.

The paper is organized as follows. In Section 2 we review the charac-
terization of Gaussian reciprocal processes proposed by Krener, Frezza and
Levy [10], and in Section 3 we introduce an alternative set of boundary con-
ditions for the SBVP considered in [10]. The procedure for constructing a
Markov process with given end-point marginal densities and reciprocal dy-
namics is presented in Section 4. In Section 5 we address the related prob-
lem of changing the end-point density of a Markov process while remaining
in the same reciprocal class. Finally, we conclude giving an interpretation
of the results in terms of a stochastic optimal control problem.

2 Models of Gaussian Reciprocal Processes

Krener, Frezza and Levy showed in [10] that, under suitable assumptions
which we will discuss later on, a IRn valued, zero mean, Gaussian process
x(t) de�ned on the interval I = [0; T ] is reciprocal if and only if its co-
variance function R(t; s) solves the linear second-order matrix di�erential
equation

Lt[R(t; s)] = I�(t � s) (2.1a)

with boundary conditions�
R(0; 0) R(0; T )
R(T; 0) R(T; T )

�
= P ; (2.1b)

where L is a self adjoint, positive de�nite di�erential operator of second
order with no pair of conjugate points on [0; T ]

L = Q�1(t)(�
d2

dt2
+G(t)

d

dt
+ F (t)) : (2.2)

The n� n matrices Q(t), G(t) and F (t) are related to R(t; s) as follows

Q(t) =
@R(t; t+)

@t
�
@R(t; t�)

@t
(2.3a)

G(t) = (
@2R(t; t+)

@t2
�
@2R(t; t�)

@t2
)Q�1(t) (2.3b)

F (t) = (
@2R(t; t+)

@t2
� G(t)

@R(t; t+)

@t
)R�1(t; t): (2.3c)

The assumptions under which this result holds are the following:
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A. BEGHI

A. The covariance functionR(t; s) of x(t) is piecewise C2 on [0; T ]�[0; T ].

B. The variance R(t; t) of x(t) is invertible for any t 2 (0; T ).

C. The matrix Q(t) given by (2.3a) is invertible for any t 2 (0; T ).

In the sequel we will also assume that

D. The matrix

P (t0; t1) =

�
R(t0; t0) R(t0; t1)
R(t1; t0) R(t1; t1)

�
(2.4)

is invertible for all t0; t1 2 I.

The third assumption, which is the most restrictive one, can be relaxed [6]
considering higher order models and the concept of higher order reciprocal
processes introduced by Miroshin [14].

Since x(t) is Gaussian, it is completely determined by its second-order
description. Thus, the knowledge of F (t); G(t); Q(t); T and of the boundary
data P determines R(t; s) and hence x(t). In [10] Krener showed that x(t)
can also be characterized as the solution of the second-order stochastic
di�erential equation

L[x(t)] = �(t) (2.5a)

with Dirichlet boundary conditions�
x(0)
x(T )

�
= b � N (0; P ) (2.5b)

where �(t) is a zero mean, generalized, Gaussian process, independent of
the boundary conditions b, with covariance

E[�(t)�T (s)] = LI�(t� s) : (2.6)

The driving process �(t) in (2.5a) has the property that the random vari-

ables spanned by �(�) and x(�) on disjointed subintervals are orthogonal,
and is called the conjugate process [16] of x(t). We refer to [10] for a rig-
orous de�nition of the meaning of the di�erential equation (2.5a) in terms
of second-order analogs of Feller's postulates for Markov di�usions. The
di�erential equation (2.5a) is a dynamical model for x(t), and we will say
that a process that solves (2.5a) has reciprocal dynamics (2.5a). It is also
possible to express the solution x(t) of (2.5a) as

x(t) = 	(t)b+

Z T

0

�(t; s)�(s) ds (2.7)

4
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where �(t; s) is the Green's function of the operator L on [0; T ] and the
boundary transition matrix 	(t) = [	1(t) 	2(t)] solves the deterministic
boundary value problem

�
d2	

dt2
(t) + F (t)	(t) + G(t)

d	

dt
(t) = 0 (2.8a)

�
	1(0) 	2(0)
	1(T ) 	2(T )

�
=

�
I 0
0 I

�
: (2.8b)

Observing that x(t) can be decomposed in the orthogonal sum

x(t) = ~x(t) + x̂(t) (2.9)

where
x̂(t) = E[x(t)jx(0); x(T )] (2.10)

and
~x(t) = x(t) � x̂(t) ; (2.11)

we see that R(t; s) splits in the sum of two components R̂(t; s) and ~R(t; s),
where R̂ and ~R are respectively the covariances of the processes x̂(t) and
~x(t) [10]. Expressions for the covariances R̂(t; s) and ~R(t; s) in terms of the
matrix 	(t) are given in the following two lemmas.

Lemma 2.1 [10]

R̂(t; s) =
�
	1(t) 	2(t)

� � R(0; 0) R(0; T )
R(T; 0) R(T; T )

��
	T
1 (s)

	T
2 (s)

�
(2.12)

Lemma 2.2 [4]

~R(t; s) =

�
	2(t)K	T

1
(s) t � s

	1(t)K
T	T

2 (s) s � t
(2.13)

where the matrix K is constant in t and s but depends in general on F;G;Q

and T .

Observe that the matrix K is the same for every process in the reciprocal
class, then, in accordance with Jamison [8] and Clark [3], it is a reciprocal

invariant. K has a variety of representations, that can be obtained using
Green's functions construction techniques; in the sequel we will use the
following ones [4]

K = _	�1
2
(0)Q(0) (2.14a)

K = �Q(T ) _	�T
1

(T ): (2.14b)
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We also notice that ~R(t; s) is in fact the Green's function �(t; s). The
decomposition introduced above is important for the discussion of the fol-
lowing sections since it provides a way to separate the component of x(t)
that is common to all the processes in the reciprocal class from the com-
ponent that is actually determined by the boundary conditions.

As already mentioned in the introduction, Markov processes are a sub-
class of reciprocal processes. Then, Markov processes whose covariances
satisfy assumptions (A){(C) previously introduced must satisfy also a se-
cond-order model like (2.5a). It is well known that a Gauss-Markov process
x(t), whose covariance R(t; s) satis�es the assumptions (A){(B), solves a
causal �rst order model like the following

dx(t)

dt
= A(t)x(t) + B(t)�(t) (2.15a)

x(0) = x0 � N (0;�(0)) (2.15b)

where �(t) is Gaussian white noise, i.e. E[�(t)�T(s)] = I�(t � s) and the
matrices A(t) and B(t) are given by

B(t)BT (t) =
@R(t; t+)

@t
�
@R(t; t�)

@t
(2.16a)

A(t) =
@R(t; t�)

@t
R�1(t; t): (2.16b)

Clearly, if B(t)BT (t) is invertible then also assumption (C) is satis�ed and
x(t) must also be the solution of a second order model. As a consequence
of (2.3a) and (2.16a), Q(t) = B(t)BT (t), and it was shown in [10], that
(2.3b),(2.3c) and (2.16b) imply that F (t) and G(t) are determined by the
following relations

G(t)Q(t) = A(t)Q(t) �Q(t)AT (t) + dQ(t)

dt
(2.17a)

F (t) +G(t)A(t) = dA(t)

dt
+A2(t) : (2.17b)

3 Cyclic Boundary Conditions for Second-Order Mod-

els of Reciprocal Processes

We have seen in the previous section that Gaussian reciprocal processes
can be characterized either specifying the covariance function R(t; s) via
(2.1a) or using the stochastic di�erential equation (2.5a). In both cases,
it is necessary to impose some boundary conditions to describe completely
the process x(t) over the whole interval I. This can be accomplished sat-
isfactorily in more than one way. In [12], in the discrete-time context, it
has been shown that, besides Dirichlet boundary conditions of the kind
(2.1b), (2.5b), it is possible to assign cyclic boundary conditions to the
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MARKOV PROCESSES WITH FIXED RECIPROCAL DYNAMICS

second-order model describing the process. This set of conditions can be
seen as having the e�ect of wrapping the interval I onto a circle, extending
the second-order description of the process x(k) to the whole interval I.
In this way, a coupling between the dynamics of the process x(k) at the
boundaries of the interval I is introduced. In this section, we investigate
the possibility of formulating a similar concept in the continuous-time con-
text. We consider the covariance function of a reciprocal process and we
study how it behaves at the boundaries of I. We show that, similarly to
what happens in the discrete-time case, a coupling between the covariances
R(0; s) and R(T; s) can be found. As a consequence of this fact, it is possi-
ble to introduce an alternative way of assigning the boundary conditions to
the di�erential equation (2.1a), which is presented in the following lemma.

Lemma 3.1 Let R(t; s) be the covariance function of a zero-mean Gaus-

sian reciprocal process de�ned on the interval I satisfying assumptions A-D.

Then it satis�es the boundary conditions�
@R
@t
(0; s)

@R
@t
(T; s)

�
=

�
M00 M0T

MT0 MTT

� �
R(0; s)
R(T; s)

�
=M

�
R(0; s)
R(T; s)

�
; (3.1)

where the constant matrix M is given by�
M00 M0T

MT0 MTT

�
=

� �
@R
@t

�
(0; 0)

�
@R
@t

�
(0; T )�

@R
@t

�
(T; 0)

�
@R
@t

�
(T; T )

�
P�1 : (3.2)

Proof: Given t0 2 I and t 2 [0; t0]; s 2 [t0; T ], the reciprocal property of
x(t) implies that

R(t; s) =
�
R(t; t0) R(t; T )

�
P�1(t0; T )

�
R(t0; s)
R(T; s)

�
: (3.3)

Di�erentiating (3.3) with respect to t and letting t0 and t go to 0 we obtain

@R

@t
(0; s) =

� �
@R
@t

�
(0; 0)

�
@R
@t

�
(0; T )

�
P�1

�
R(0; s)
R(T; s)

�
: (3.4)

In a similar way, taking s 2 [0; t0] and t 2 [t0; T ], we can write

R(t; s) =
�
R(t; 0) R(t; t0)

�
P�1(0; t0)

�
R(0; s)
R(t0; s)

�
: (3.5)

By di�erentiating with respect to t and letting t0 and t go to T we obtain

@R

@t
(T; s) =

� �
@R
@t

�
(T; 0)

�
@R
@t

�
(T; T )

�
P�1

�
R(0; s)
R(T; s)

�
: (3.6)
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A. BEGHI

Relations (3.4) and (3.6) can be written more compactly as (3.1), where
expression (3.2) for the matrix M is obtained by taking s = 0 and s = T

in (3.4), (3.6).

Thus, the covariances R(0; s) and R(T; s) at the boundaries of I are
related to each other by the fact that they each satisfy a �rst-order non-
homogeneous linear di�erential equation where the other appears as a forc-
ing term. These di�erential equations can be seen as boundary conditions
for the equation (2.1a), which are known once we have assigned the matrix
M . Thus, according to the motivation that led us to the coupled di�er-
ential equations (3.1), we will say that the matrix M speci�es the cyclic

boundary conditions for the equation (2.1a). As we have seen, the matrix
M can be computed via (3.2) starting from P and the second order descrip-
tion of x(t) (i.e. the di�erential equation (2.1a) for the covariance R(t; s)).
It is also possible to do the converse, that is to obtain P (more precisely,
its inverse) from M by only using quantities that are given as data. In
fact, let the matrix M be given. Using lemmas 2.1 and 2.2 it is possible to
compute the partial derivatives of the covariance R(t; s) of x(t). For t � s�

@R

@t

�
(t; s) =

�
_	1(t) _	2(t)

� � R(0; 0) R(0; T )
R(T; 0) R(T; T )

� �
	T
1 (s)

	T
2 (s)

�
+ _	2(t)K	T

1 (s) (3.7)

while for t � s�
@R

@t

�
(t; s) =

�
_	1(t) _	2(t)

� � R(0; 0) R(0; T )
R(T; 0) R(T; T )

� �
	T
1 (s)

	T
2 (s)

�
+ _	1(t)K

T	T
2
(s) : (3.8)

Specializing (3.7) and (3.8) for (t; s) = (0; 0); (0; T ); (T; 0); (T; T ), we �nd
that � �

@R
@t

�
(0; 0)

�
@R
@t

�
(0; T )�

@R
@t

�
(T; 0)

�
@R
@t

�
(T; T )

�
=

�
_	1(0) _	2(0)
_	1(T ) _	2(T )

�
P +

�
_	2(0)K 0

0 _	1(T )K
T

�
; (3.9)

where it follows from (2.14a){(2.14b) that

_	2(0)K = Q(0) _	1(T )K
T = �Q(T ) : (3.10)

Premultiplying (3.9) by �
Q�1(0) 0

0 �Q�1(T )

�
(3.11)
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and then using (3.2) and again (2.14a){(2.14b), the following equation for
the inverse of the boundary matrix P can be found

P�1 =

�
Q�1(0)M00 Q�1(0)M0T

�Q�1(T )MT0 �Q�1(T )MTT

�

�

�
Q�1(0) _	1(0) K�1

K�T �Q�1(T ) _	2(T )

�
: (3.12)

Note that the inverse of a symmetric matrix is itself a symmetric matrix,
hence (3.12) yields the following symmetry constraint for M :

Q�1(0)M0T = �MT
T0Q

�1(T ) : (3.13)

The symmetry structure of the cyclic boundary conditions can be empha-
sized normalizing (3.1) by premultiplication by the matrix (3.11). This
yields the following expression for the cyclic boundary conditions�

Q�1(0)@R
@t
(0; s)

�Q�1(T )@R
@t
(T; s)

�
= N

�
R(0; s)
R(T; s)

�
; (3.14)

where

N =

�
N00 N0T

NT0 NTT

�
=

�
Q�1(0) 0

0 �Q�1(T )

�
M (3.15)

and (3.13) implies that N is symmetric, i.e. N0T = NT
T0. Thus, inde-

pendently of whether we assign the boundary conditions via P or M (or
equivalently,N ), we have exactly the same number of degrees of freedom in
specifying a process x(t) in the reciprocal class de�ned by the di�erential
equation (2.1a).

Relation (3.2) assumes a particular form when x(t) is a Markov process
with state-space model (2.15a){(2.15b). The covariance R(t; s) of a Markov
process satis�es the relation

R(t; s) =

�
�(t; s)�(s); t � s

�(t)�T (s; t); t � s
(3.16)

where �(t; s) is the state-transition matrix solution of�
@�(t;s)

@t
= A(t)�(t; s)

�(s; s) = I
(3.17)

and �(t) is the state variance satisfying the Lyapunov equation

_�(t) = A(t)�(t) + �(t)AT (t) +Q(t): (3.18)

9



A. BEGHI

When t � s, we have that

@R

@t
(t; s) = _�(t)�T (s; t) + �(t)

@�T

@t
(s; t)

= (A(t)�(t) +Q(t))�T (s; t) ; (3.19)

where we have used the fact that

@�

@t
(s; t) = ��(s; t)A(t): (3.20)

Recalling that for a Markov process

P =

�
�(0) �(0)�T (T; 0)

�(T; 0)�(0) �(T )

�
; (3.21)

we have from (3.2) that

(A(0) + Q(0)��1(0))
�
�(0) �(0)�T (T; 0)

�
=�

M00 M0T

� � �(0) �(0)�T (T; 0)
�(T; 0)�(0) �(T )

�
: (3.22)

Observing that the n�2n matrix
�
�(0) �(0)�T (T; 0)

�
on the left hand

side of (3.22) is the �rst row block of P , and since the matrix P is full rank,
(3.22) shows that

M00 = (A(0) + Q(0)��1(0)); M0T = 0: (3.23)

For t � s

@R

@t
(t; s) =

@�

@t
(t; s)�(s) = A(t)�(t; s)�(s) = A(t)R(t; s) (3.24)

and using again (3.2) and the full rank property of P , we see that

A(T )
�
�(T; 0)�(0) �(T )

�
=�

MT0 MTT

� � �(0) �(0)�T (T; 0)
�(T; 0)�(0) �(T )

�
(3.25)

which implies
MT0 = 0; MTT = A(T ): (3.26)

Relations (3.23) and (3.26) show that for a Markov process the cyclic
boundary conditions are separable, in the sense that since M0T =MT0 = 0
the covariances at each end of the interval I = [0; T ] are decoupled. The
particular expressions of M00 and MTT in (3.23) and (3.26) are not unex-
pected. In fact, taking t = T in (3.24) we immediately obtain

@R

@t
(T; s) = A(T )R(T; s) : (3.27)

10
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Then, we notice that the backward model for a Markov process x(t) with
state-space model (2.15a){(2.15b) is [13],[18]

�
d

dt
x(t) = �[A(t) +Q(t)��1(t)]x(t)� B(t)~u(t)

= �Ab(t)x(t)� B(t)~u(t) (3.28a)

E[x(T )xT (T )] = �(T ) E[~u(t)~uT (s)] = I�(t � s) : (3.28b)

Since the driving noise ~u(t) in the backward model is uncorrelated with
the \past" states x(s) for t � s � T , we have that the covariance R(t; s)
satis�es for t � s

@R

@t
(t; s) = Ab(t)R(t; s) : (3.29)

Taking t = 0 in (3.29) and considering the expression for Ab(t) in (3.28a)
we get

@R

@t
(0; s) = (A(0) +Q(0)��1(0))R(0; s) : (3.30)

Expressions (3.27) and (3.30) correspond exactly to (3.1) considering (3.23)
and (3.26).

4 Construction of Markov Processes with Fixed Re-

ciprocal Dynamics

In Section 2 we have seen that the second-order model (2.1a) for the co-
variance of x(t) needs a set of boundary conditions to be solved. In fact,
the assignment of the boundary conditions allow us to select a particular
process in the reciprocal family described by the second-order di�erential
operator (2.2). Then a question arises naturally: which are the choices of
boundary conditions that are such that the solution of the second-order
equation (2.1a) is the covariance of a Markov process? In this section we
give an answer to this question. More speci�cally, we address the problem
of building the Markov process belonging to the reciprocal class associated
to the operator (2.2) which has given marginal end-point densities

x(0) � N (0;�(0)) x(T ) � N (0;�(T )) : (4.1)

It is clear that to satisfy the constraint (4.1) on the variance of x(t) we
are no more free to choose as boundary data P an arbitrary symmetric
positive de�nite matrix. In fact, for a Markov process the covariance R(t; s)
is determined by the relations (3.16) and (3.18), and in particular the value
of R(0; T ) = RT (T; 0) in P is �xed by the data. Then, as a starting point
we investigate the properties of the end-point covariance matrix P of a

11
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Markov process. The results we obtain yield a procedure for computing
Dirichlet and cyclic boundary conditions in function of the given reciprocal
dynamics (2.5a) and end-point variances (4.1).

Combining (3.2) with the expressions for M00;MTT in (3.23),(3.26) we
obtain that for Markov processes the inverse of the end-point covariance
matrix P has the following expression�

J0 J1
J2 JT

�
= P�1 (4.2)

where

J0 = �(Q�1(0) _	1(0)�Q�1(0)A(0)� ��1(0)) (4.3a)

J1 = �Q�1(0) _	2(0) = (inverting (2.14a)) = �K�1 (4.3b)

J2 = Q�1(T ) _	1(T ) = (inverting (2.14b)) = �K�T (4.3c)

JT = Q�1(T ) _	2(T ) �Q�1(T )A(T ): (4.3d)

As we have already remarked, the matrix K is a reciprocal invariant, i.e.
it doesn't depend on the boundary conditions. Thus, the problem of �nd-
ing the required Dirichlet boundary conditions can be formulated as the
problem of �nding a positive de�nite matrix P such that

P =

�
�(0) �
� �(T )

�
P�1 =

�
� �K�1

�K�T �

�
(4.4)

where the entries � need to be determined. A solution of this problem has
been given in [11]. We give a sketch of this method referring to [11] for
further details. The procedure is based on the LDU factorization of P

P =

�
I 0
Z I

� �
X 0
0 Y

� �
I ZT

0 I

�
; (4.5)

which implies

P�1 =

�
I �ZT

0 I

��
X�1 0
0 Y �1

� �
I 0
�Z I

�
: (4.6)

Comparing the expressions (4.4),(4.5) and(4.6) for P and its inverse we can
identify

�(0) = X (4.7a)

�(T ) = ZXZT + Y (4.7b)

K�1 = ZTY �1 : (4.7c)

Substituting (4.7a) and (4.7c) inside (4.7b) yields the algebraic Riccati
equation (ARE)

�(T ) = Y K�T�(0)K�1Y + Y : (4.8)

12
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Once we have found a positive de�nite solution Y of the ARE (4.8), all the
blocks in the LDU factorization of P are known, since ZT is given by

ZT = K�1Y : (4.9)

Provided that �(0) > 0, the condition Y > 0 ensures that the matrix P is
positive de�nite. The existence of a positive de�nite solution of (4.8) can
be established thanks to standard results of linear control theory [20],[21].
In [11] it is also described a numerically stable method for computing a pos-
itive de�nite solution of the ARE (4.8), which is based on the computation
of the stable eigenspaces of the Hamiltonian matrix

H =

�
�I=2 �K�T�(0)K�1

��(T ) I=2

�
: (4.10)

The knowledge of the solution Y of the ARE (4.8) is su�cient to derive
both Dirichlet and cyclic boundary conditions for the model. In fact, the
covariance R(0; T ) = RT (T; 0) is given by

R(0; T ) = �(0)K�1Y ; (4.11)

and thus the covariance matrix P in the Dirichlet boundary conditions is
completely speci�ed since R(0; 0) = �(0) and R(T; T ) = �(T ) are already
given as data. We can also relate Y to the state-space dynamics in terms of
the state transition matrix �(t; s). From (4.11) and the expression (3.21)
for P we can identify

�(T; 0) = Y K�T ; (4.12)

and from the following closed-form expression for �(T )

�(T ) = �(T; 0)�(0)�T (T; 0) +

Z T

0

�(T; s)Q(s)�T (T; s) ds

= �(T; 0)�(0)�T (T; 0) + �(T j0) (4.13)

and again (4.11) we desume that

Y = �(T j0) : (4.14)

The knowledge of Y is also su�cient to obtain the cyclic boundary con-
ditions. In fact, the blocks J0 and JT in P�1 can be obtained from Y

as

J0 = ��1(0) +K�1Y K�T

= ��1(0) + �T (T; 0)��1(T j0)�(T; 0) (4.15a)

JT = Y �1 = ��1(T j0) : (4.15b)

13
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Since K and 	(t) are reciprocal invariants, they can be determined from
the data. Thus, combining expressions (4.3a), (4.3d) for J0 and JT with
expressions (3.23), (3.26) for M00;MTT , it easy to see that the following
relations hold:

M00 = _	1(0) +Q(0)J0 (4.16a)

MTT = _	2(T ) �Q(T )JT ; (4.16b)

or equivalently in terms of the matrix N :

N00 = J0 + Q�1(0) _	1(0) (4.17a)

NTT = JT �Q�1(T ) _	2(T ) : (4.17b)

A state-space model can also be built taking as B(t) a square root of
Q(t) and de�ning implicitly A(t) by the relations

@R

@t
(t; 0) = A(t)R(t; 0) (4.18a)

R(t; 0) = 	1(t)�(0) + 	2(t)R(T; 0) (4.18b)

where R(T; 0) = RT (0; T ) is given in terms of known quantities in (4.11).

5 Change of End-point Density for a Markov Process:

A Stochastic Optimal Control Problem

The procedure described in the previous section provides a way to solve
Schr�odinger's problem in the Gaussian case. However, we can also use a
di�erent perspective and view Schr�odinger's problem as the one of changing
the �nal density of a Markov process x(t), with the constraint of having
�xed reciprocal dynamics. Clearly, the technique of Section 4 can still be
used. In fact, we can obtain the second-order model for x(t) using relations
(2.17a){(2.17b) and then construct the Markov process in the reciprocal
class obtained in such a way with the same initial-density of x(t) and the
new prescribed end-density. However, using a di�erent approach which
is related to the methods originally used by Schr�odinger, we will be able
to give an interesting interpretation of the results in terms of an optimal
control problem.

Let x(t) be a Markov process with state-space model (2.15a){(2.15b).
The variance of the �nal state x(T ) is given by �(T ), where �(T ) is as in
(4.13). We want the process to reach a di�erent �nal state variance, say
��(T ). We have the following theorem.

14
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Theorem 5.1 Let x(t) be the Markov process with state-space model

(2.15a){(2.15b). Then the Markov process x�(t) belongs to the same re-

ciprocal class of x(t) if and only if it admits the state-space representation

dx�(t)

dt
= �A(t)x�(t) + �B(t)�(t) (5.1a)

x�(0) � N (0;�(0)) (5.1b)

where

�A(t) = A(t) � Q(t)S(t) (5.2a)

�B(t) = B(t)U (t) ; (5.2b)

U (t) is a unitary matrix and S(t) solves the following homogeneous Riccati

di�erential equation

dS(t)

dt
+ AT (t)S(t) + S(t)A(t) � S(t)Q(t)S(t) = 0: (5.3)

Proof: It is clear that if U (t) is unitary we have that �B(t) �BT (t) = Q(t).
The relations between the coe�cients of the �rst and second order descrip-
tion of a Markov process are given in (2.17a){(2.17b). Simple computations
show that if ( �A(t); �B(t)) satisfy (5.2a){(5.2b), then ( �A(t); �B(t)) is a solution
of (2.17a){(2.17b), i.e. x�(t) has the same reciprocal representation as x(t).
Conversely, assume that both (A(t); B(t)) and ( �A(t); �B(t)) are solution of
(2.17a){(2.17b). Let us de�ne

S(t)
4

= Q�1(t)(A(t) � �A(t)): (5.4)

Then it is straightforward to verify that the matrix function S(t) solves the
di�erential Riccati equation (5.3).

Theorem 5.1 shows that two Markov processes in the same reciprocal
class can be obtained one from the other by means of a state feedback.
The di�erential Riccati equation (5.3) needs a terminal condition S(T ) to
be solved. The assignment of the appropriate terminal condition will allow
us to select the Markov process with the prescribed end-state variance
��(T ). The value of S(T ) can be obtained considering the algebraic Riccati
equation (4.8). Relation (4.3d) and (4.15b) imply that the solution of the
ARE (4.8) with coe�cients (�(0);��(T )) is such that

Y �
�1

= Q�1(T ) _	2(T )� Q�1(T ) �A(T ) =

Q�1(T ) _	2(T )� Q�1(T )(A(T ) � Q(T )S(T )) (5.5)

that is
S(T ) = Y �

�1 + Q�1(T )(A(T ) � _	2(T )): (5.6)

15
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But since for the solution of the ARE (4.8) for (�(0);�(T )) it holds that

Y �1 = Q�1(T ) _	2(T ) � Q�1(T )A(T ) ; (5.7)

we have that
S(T ) = Y �

�1 � Y �1: (5.8)

It is easy to check that a necessary and su�cient condition for having
S(T ) > 0 is ��(T ) < �(T ). In the special case when the system starts
from a deterministic initial condition (i.e. �(0) = 0), we have that Y =
�(T ) ,Y � = ��(T ) and then S(T ) = ���1(T )���1(T ). We illustrate the
procedure with the following example.

Example: Change of end-point density for a scalar process.

Let x(t) be a scalar Gauss{Markov process de�ned on the interval I =
[0; T ], with state-space model

dx(t)

dt
= Ax(t) + �(t) (5.9a)

x(0) � N (0; �2
0
) (5.9b)

where A is a positive constant and �(t) is white noise with constant intensity
Q(t) � 1. The variance of x(t) is

�(t) = �2
0
e2At +

1

2A
e2At �

1

2A
: (5.10)

We want to change the variance of x(T ) to a value �2T < �(T ). The
di�erential Riccati equation (5.3) is in this case

dS(t)

dt
+ 2AS(t) � S2(t) = 0 (5.11)

and can be easily solved by separating the variables. Thus we obtain

S(t) =
2A

e2A(t+c) + 1
(5.12)

and the integration constant c can be determined using condition (5.8) for
S(t) at t = T . We need to compute the coe�cient K and then solve the
ARE (4.8) with coe�cients (�2

0
;�(T )) and (�2

0
; �2T ). Relations (2.17a){

(2.17b) give F (t) = A2 and G(t) = 0 in the second-order model for x(t),
and the boundary transition matrix solution of (2.8a){(2.8b) is

	(t) =

�
e�AT

e�AT � eAT
eAt +

eAT

eAT � e�AT
e�At

1

eAT � e�AT
eAt +

1

e�AT � eAT
e�At

�
: (5.13)

16
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From (2.14a) we obtain the value of K

K = _	�1
2
(0)Q(0) =

1

2A
(eAT � e�AT ) : (5.14)

The solutions of the AREs

�(T ) =
�2
0

K2
y2 + y (5.15a)

�2T =
�2
0

K2
y�2 + y� (5.15b)

are respectively

y =
K

2�2
0

�q
K2 + 4�2

0
�(T )�K

�
(5.16a)

y� =
K

2�2
0

�q
K2 + 4�2

0
�2T �K

�
: (5.16b)

Then the terminal condition for S(t) is

S(T ) = y��1 � y�1
4
=

1

�
: (5.17)

This �xes the value of c in (5.14) to

c =
1

2A
ln (2A� � 1)� T ; (5.18)

and �nally S(t) is

S(t) =
2A

e2A(t�T )(2A� � 1) + 1
: (5.19)

Thus, the new Markov process x�(t) satisfying the condition
E[x�(T )x�T (T )] = �2T has the following state-space model

dx�(t)

dt
= �A(t)x�(t) + �(t) (5.20a)

x�(0) � N (0; �20) (5.20b)

where

�A(t) = A� S(t) = A
e2A(t�T )(2A� � 1)� 1

e2A(t�T )(2A� � 1) + 1
: (5.21)

We analyse now with more detail how the feedback matrix S(t) is related
to the reciprocal description of the process x(t). To this aim, following the
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approach used by Schr�odinger [17], Jamison [9], and others [22, 15] for the
general case of arbitrary, i.e. not necessarily Gaussian, Markov processes,
we study the joint probability density of the process x�(t). The end-point
densities of x� in t = 0; T satisfy a system of two coupled integral equations
(which is often referred to as the Schr�odinger system) which in the Gaussian
case can be reduced to a system of two coupled AREs. The solutions of this
system are then used to �nd an expression for the terminal condition (5.8)
for S(t). This enables us to show that the matrix S(t) can be related to
the a posteriori distribution of x(t) given the observation of its �nal state
state x(T ).

Starting from results of Schr�odinger [17] and Jamison [8], in [11] a char-
acterization of the joint densities of the process x�(t) was discussed. We
state without proof the following theorem, which is the continuous-time
version of a result in [11].

Theorem 5.2 [11] Given a Markov process x(t) with state-space model

(2.15a){(2.15b) if x�(t) is a Markov process in the same reciprocal class,

with the same initial density, but with x�(T ) � N (0;��(T )), the joint

probability density of x� at the times t0 = 0; t1; : : : ; tk; : : : ; tN = T can be

expressed as

p�(x0; 0;x1; t1; : : : ;xT ; T ) =

N�1Y
k=0

G(xk; tk;xk+1; tk+1)qf (x0)qb(xT ) ;

(5.22)
where if

G(x0; 0;xT ; T ) =
1

(2�)n=2j�(T j0)j1=2

exp f�
1

2
(xT ��(T; 0)x0)

T��1(T j0)(xT � �(T; 0)x0)g (5.23)

denotes the transition density from t = 0 to t = T of the process x(t), with

�(T j0) as in (4.13), the end-point densities qf (x0) and qb(xT ) satisfy the

coupled integral equations

p(x0; 0) = qf (x0)

Z
G(x0; 0;xT ; T )qb(xT )dxT (5.24a)

p�(xT ; T ) = qb(xT )

Z
G(x0; 0;xT ; T )qf (x0)dx0 : (5.24b)

For Gaussian processes, we can assume that qf and qb have the form

qf (x0) = Cf exp f�
1

2
xT0�

�1

f x0g (5.25a)

qb(xN ) = Cb exp f�
1

2
xTT�

�1

b xTg ; (5.25b)
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where �f and �b are nonsingular symmetric, not necessarily positive de�-
nite, matrices. Then it is possible to show [11] that the integral equations
(5.24a){(5.24b) reduce to the coupled AREs

��1(0) = ��1f + �T (T; 0)[�b +�(T j0)]�1�(T; 0) (5.26a)

���1(T ) = ��1b + [�(T j0) + �(T; 0)�f�
T (T; 0)]�1 : (5.26b)

From (5.22) in Theorem 5.2, the joint probability density of x�(0) and
x�(T ) is given by

p�(x0; 0;xT ; T ) = G(x0; 0;xT ; T )qf(x0)qb(xT ) ; (5.27)

and (5.27) yields the following expression for the inverse of the covariance
P � of the boundary vector [x�T (0) x�T (N )]T :

P ��1 =

�
��1f 0

0 ��1b

�

+

�
��T (T; 0)

I

�
��1(T j0)

�
��(T; 0) I

�
: (5.28)

Using identities (4.15a){(4.15b) to express the diagonal blocks of P ��1 in
terms of Y �, we �nd

J�
0 = ��1(0) +K�1Y �K�T

= ��1f +�T (T; 0)��1(T j0)�(T; 0) (5.29a)

J�T = Y ��1 = ��1b +��1(T j0) ; (5.29b)

so that

��1f = ��1(0) +K�1(Y � ��(N j0))K�T (5.30a)

��1b = Y ��1 ���1(T j0) : (5.30b)

But since the solution of the ARE (4.8) with coe�cients (�(0);�(T )) is
Y = �(0jT ), we conclude from (5.30b) and (5.8) that the initial condition
for the di�erential Riccati equation (5.3) is

S(T ) = ��1b : (5.31)

Consider now the function

qb(x; t) =

Z
G(x; t;xT ; T )qb(xT ) dxT ; (5.32a)

where

G(x; t;xT ; T ) =
1

(2�)n=2j�(T jt)j1=2

exp f�
1

2
(xT ��(T; t)x)T��1(T jt)(xT � �(T; t)xg (5.32b)
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is the probability density of x(T ) given that x(t) = x, with

�(T jt)
4
= �(T ) ��(T; t)�(t)�T (T; t) : (5.32c)

Since qb(x; t) is obtained by integrating two Gaussian distributions, it is
also Gaussian, i.e.

qb(x; t) = Cb(t) exp f�
1

2
xT��1b (t)xg ; (5.33a)

where some computations show that

��1b (t) = �T (T; t)[�b +�(T jt)]�1�(T; t) : (5.33b)

We can now prove the following lemma.

Lemma 5.1

S(t) = ��1b (t) : (5.34)

Proof: Obviously ��1b (T ) = ��1b . We show that ��1b (t) satis�es the
di�erential Riccati equation (5.3). In fact, using (3.20), we have

_��1b (t) = �AT (t)�T (T; t)[�b +�(T jt)]�1�(T; t)

��T (T; t)[�b +�(T jt)]�1 _�(T jt)[�b +�(T jt)]�1�(T; t)

��T (T; t)[�b +�(T jt)]�1�(T; t)A(t) : (5.35)

Using the Lyapunov equation (3.18) for �(t) and again (3.20) we obtain

_�(T jt) = ��(T; t)Q(t)�T (T; t) : (5.36)

Plugging (5.36) in (5.35) we see that

_��1b (t) = �AT (t)��1b (t) + ��1b (t)Q(t)��1b (t) ���1b (t)A(t) (5.37)

and then ��1b (t) is the required solution of (5.3).

The di�erential Riccati equation (5.3) is very well known in optimal
control theory. In fact, consider the following problem.

Problem 5.1 Find a control function u(t) that minimizes the performance

index

J = E

"
1

2

Z T

0

uT (s)(BT (s)B(s))�1u(s) ds + xTu (T )Wxu(T )

#
(5.38)

subject to the constraint

dxu(t)

dt
= A(t)xu(t) + u(t) +B(t)�(t) (5.39a)

xu(0) � N (0;�(0)) : (5.39b)
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Optimal control problems with performance index like (5.38) are often re-
ferred to as minimum energy control problems. The optimal control func-
tion that solves Problem 5.1 is the linear state feedback

u(t) = �Q(t)S(t)x(t) (5.40)

where S(t) solves the homogeneous Riccati di�erential equation (5.3) with
terminal condition S(T ) = W . Then, it follows from Theorem 5.1 that all
the Markov processes in the same reciprocal class of x(t) can be obtained
solving the control problem 5.1 for di�erent values of the matrixW . Equiv-
alently, we can say that the subclass of Markov processes in a reciprocal
class can be generated by giving one of the Markov processes, x(t), and
taking all the processes xu(t) obtained by solving for di�erent values of
�(0) and �(T ) the following stochastic optimal control problem

Problem 5.2 Find a control function u(t) that minimizes the performance

index

J = E

"
1

2

Z T

0

uT (s)(BT (s)B(s))�1u(s) ds

#
(5.41)

subject to the constraint

dxu(t)

dt
= A(t)xu(t) + u(t) +B(t)�(t) (5.42a)

xu(0) � N (0;�(0)) (5.42b)

xu(T ) � N (0;�(T )) : (5.42c)

The connection between reciprocal processes and stochastic optimal
control theory in the general non-Gaussian context has recently been the
object of the attention of di�erent authors [19, 2, 5], in connection to quan-
tum mechanics. In particular, the stochastic interpretation of the change of
end-point density for a Markov process given in this section can be viewed
as a special case of the results of Dai Pra, who has solved the analogue
of problem 5.2 for a generic di�usion process, deriving the optimal control
function starting from the transition density of the Markov process x(t)
and the coupled integral equations (5.24a){(5.24b).

6 Conclusions

In this paper we have shown how to construct Gauss-Markov processes,
de�ned on a �nite interval, having �xed initial and end-point densities
and reciprocal dynamics. Speci�cally, we have presented a procedure for
choosing the appropriate boundary conditions for the second-order model
characterizing the reciprocal class in order to achieve the aforementioned
goal. The method requires the solution of an algebraic Riccati equation.
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The strictly related problem of changing the end-point density of a Markov
process while remaining in the same reciprocal class was also considered.
The new process satisfying the constraint on the end-point density can be
obtained from the given one by means of a state feedback. This result can
also be interpreted in the framework of stochastic optimal control theory:
in fact, the state feedback changing in the desired way the variance of the
�nal state corresponds to a minimum energy control law.
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