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Modeling and Control of a Multiple

Component Structure�

Belinda B. Kingy

Abstract

In this paper, a mathematical model is presented for a multi-

ple component structure (MCS) composed of two Euler-Bernoulli

beams, two distributed masses, and a rotating hub through which
a torque control is applied. Imposition of a control of this type re-

sults in a bounded control operator. Since the control is bounded,

damping in the beam model is required to stabilize the system. The
Kelvin-Voigt damping model is assumed. The weak formulation is

used to show the model is wellposed. A convergent Galerkin �nite

element approximation scheme is constructed for the model and is
used to compute a sequence of controls which approximate an op-

timal control for the structure. This control is the solution to the

linear quadratic regulator (LQR) problem for the MCS.

Key words: distributed parameter system, multiple component structure, linear

quadratic regulator, approximation
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1 Introduction

Throughout the past decade, increased interest in the development
of sophisticated space structures such as a permanent space station and
space based military structures has stimulated research in the mathemat-
ics and engineering communities. To handle these tasks, structures com-
posed of several interconnected components are designed; generally, these
are termed multiple component structures (MCSs). Composite materials
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B.B. KING

are used in the construction of some components, and hence, these com-
ponents are more 
exible than those constructed of traditional materials.
Development of schemes to control vibrations inherent in these structures
is crucial to the success of these projects.

The mathematical models for MCSs contain coupled partial and ordi-
nary di�erential equations. Much of the theory for modeling and control
of distributed parameter systems has been developed recently and applied
to single component structures, MCSs with only one 
exible component,
or 
exible components and no rigid components [8, 9, 13, 19, 20]. In his
dissertation, Bontsema considers stabilization via frequency domain meth-
ods of a satellite modeled by two 
exible beams connected at a rigid hub.
This is one of the few reports concerning a MCS with more than one 
exi-
ble component and rigid components [7]. MCS models which include both
rigid and 
exible components have more complex dynamics as evidenced
by the equations of elastic deformation and the boundary conditions. The

exible components modify the behavior of the rigid bodies, and vice versa,
especially when rotations are considered.

Once a mathematical model is posed, it is necessary to prove the ex-
istence of a unique solution depending continuously on initial conditions
and other parameters, i.e., the wellposedness of the model. One method
to prove these models are wellposed relies on the weak formulation of the
problem. The theory is described in several texts [2, 15, 16, 18] though all
are inadequate for some second order initial value problems arising from
MCS control problems. In their paper [4] (see also [2]), Banks, Ito, and
Wang provide a theorem which gives conditions for wellposedness of weak
solutions for such models. Once wellposedness of the models is established,
other aspects such as stability and control can be addressed.

The abstract LQR problem for MCSs cannot be numerically imple-
mented directly since the mathematical models are in�nite dimensional.
Consequently, an approximating sequence of �nite dimensional LQR prob-
lems is constructed. The approximation scheme developed in this paper to
obtain the sequence is formulated so that the sequence of optimal controls
for the approximating LQR problems converges to the optimal control for
the MCS. Fundamental results on solution of the LQR problem can be
found in [2, 11, 13].

In this paper, modeling, wellposedness, development of a convergent
approximation scheme, and solution of the LQR problem for a MCS are
discussed. This MCS is composed of two 
exible beams and three rigid
bodies. The control for the system is the application of a torque at the
hub, resulting in a compact feedback operator. Gibson [11] showed that to
obtain uniform exponential stabilizability under such conditions, damping
must be included in the model; the Kelvin-Voigt damping model is used for
both beams. A mathematical model for the structure written in terms of
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coupled partial and ordinary di�erential equations is presented in Section
2. After this model is shown to be wellposed in Section 3, the abstract
LQR problem is discussed in Section 4. In Section 5, a Galerkin �nite
element approximation scheme for the model is given along with a proof
that the optimal controls for the resulting approximations converge to the
optimal control for the MCS. It is demonstrated in Section 6 that optimal
controls can be computed for a MCS with more than one 
exible component
coupled with rigid bodies. The need for results in this area of MCSs has
been recognized and is addressed in the Report on Future Directions in
Control [10].

2 A Mathematical Model for the MCS

This section contains a mathematical model for two serially connected
Euler-Bernoulli beams with distributed masses at the ends and a rigid
rotating hub through which the actuating torque is applied. A distributed
mass is one which has length as opposed to the more commonly considered
point mass.

beam 1 beam 2

mass 1
mass 2

Figure 2.1: MCS

The following notation is used: beam i has length li, corresponding
Young's modulus Ei, moment of inertia Ii, density �i, and cross sectional
area Ai (for brevity, the quantities �iAi and EiIi are denoted as (�A)i and
(EI)i respectively). Additionally, lmi

is the length of mass i, i = 1; 2, Ji is
moment of inertia for mass i, i = 0; 1; 2 where 0 refers to the hub, 
i is the
coe�cient of Kelvin-Voigt damping for beam i, �(t) is angle of rotation of
the hub, and u(t) is the external torque applied to the hub, u : [0;1]! <.

To derive the mathematical model corresponding to this MCS, de�ne
v1(t; x1) to be the vertical displacement of beam one measured from the
unde
ected position of the beam at time t, position x1, 0 � x1 � l1. De�ne
v2(t; x2) to be the vertical displacement of beam two measured from the
unde
ected position of beam two as determined from the de
ected position
of mass one at time t. Measurement of the displacement of beam two
with respect to this coordinate system rather than the equilibrium position
in Figure 2.1 results in cantilevered boundary conditions on beam two,
simplifying e�orts in the approximation scheme. The system of equations
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describing this MCS contains the standard Euler-Bernoulli beam equations
with additional terms due to Kelvin-Voigt damping and hub rotations, and
boundary conditions which include the dynamics of the distributed masses
and the hub. Unless otherwise noted, i = 1; 2.

The equations describing elastic deformations of the beams for 0 � t,
0 � xi � li, are

(�A)1[
@2v1

@t2
(t; x1) + x1��(t)] + (
I)1

@5v1

@t@x4
(t; x1) + (EI)1

@4v1

@x4
(t; x1) = 0;

(2.1)

(�A)2[
@2v2

@t2
(t; x2) +

@2v1

@t2
(t; l1) + (x2 + lm1

)
@3v1

@x@t2
(t; l1)

+ (x2 + l1 + lm1
)��(t)] + (
I)2

@5v2

@t@x4
(t; x2) + (EI)2

@4v2

@x4
(t; x2) = 0: (2.2)

At the hub there are three boundary conditions: the two cantilevered
conditions for beam one, and one for bending moment which states that
the external applied torque is equal to the di�erence between the moment
on the hub and the moment at the left end of beam one:

v1(t; 0) = 0; (2.3)

@v1

@x
(t; 0) = 0; (2.4)

J0��(t) � (
I)1
@3v1

@t@x2
(t; 0)� (EI)1

@2v1

@x2
(t; 0) = u(t): (2.5)

At the connection between the two beams, i.e., at mass one, there are
four boundary conditions: the two cantilevered conditions for beam two and
conditions on bending moment and shear force. The boundary condition
for bending moment states that the di�erence of moments on the left end
of beam two and the right end of beam one equals the moment generated
by the rotation of mass one. The boundary condition for shear force states
that the di�erence of shear forces on the left end of beam one and the right
end of beam two equals the force generated by the acceleration of mass
one:

v2(t; 0) = 0; (2.6)

@v2

@x
(t; 0) = 0; (2.7)

(
I)1[
@3v1

@t@x2
(t; l1) +

lm1

2

@4v1

@t@x3
(t; l1)] + (EI)1[

@2v1

@x2
(t; l1) +

lm1

2

@3v1

@x3
(t; l1)]

� (
I)2[
@3v2

@t@x2
(t; 0)�

lm1

2

@4v2

@t@x3
(t; 0)]� (EI)2[

@2v2

@x2
(t; 0)�

lm1

2

@3v2

@x3
(t; 0)]
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= �J1[
@3v1

@x@t2
(t; l1) + ��(t)]; (2.8)

(
I)1
@4v1

@t@x3
(t; l1) + (EI)1

@3v1

@x3
(t; l1) � (
I)2

@4v2

@t@x3
(t; 0)� (EI)2

@3v2

@x3
(t; 0)

= m1[
@2v1

@t2
(t; l1) +

lm1

2

@3v1

@x@t2
(t; l1) + (l1 +

lm1

2
)��(t)]: (2.9)

At mass two there are two boundary conditions: one for bending mo-
ment and one for shear force which are similar to those described above.
The boundary condition for moment states that the moment on the left
end of beam two equals the moment generated by the rotation of mass
two. The boundary condition for shear force states that the shear force on
the left end of beam two equals the force generated by the acceleration of
mass two:

(
I)2[
@3v2

@t@x2
(t; l2) +

lm2

2

@4v2

@t@x3
(t; l2)] + (EI)2[

@2v2

@x2
(t; l2) +

lm2

2

@3v2

@x3
(t; l2)]

= �J2[
@3v2

@x@t2
(t; l2) +

@3v1

@x@t2
(t; l1) + ��(t)]; (2.10)

(
I)2
@4v2

@t@x3
(t; l2) + (EI)2

@3v2

@x3
(t; l2) = m2[

@2v2

@t2
(t; l2) +

@2v1

@t2
(t; l1)

+
lm2

2

@3v2

@x@t2
(t; l2) + (lm1

+
lm2

2
+ l2)

@3v1

@x@t2
(t; l1)

+(l1 + lm1
+
lm2

2
+ l2)��(t)]: (2.11)

3 Wellposedness of the Mathematical Model

One way to show the wellposedness of the model in the previous section
is to use a weak formulation of the problem based upon sesquilinear forms
and Gelfand triples. This framework can be found in [2, 4, 15, 16, 18]. In
this section, necessary wellposedness theorems are presented and applied
to show that the MCS model from the previous section is wellposed.

Let V , H be complex Hilbert spaces with norms j � jV and j � jH respec-
tively; let h�; �iH denote the inner product on H. Assume V is densely and
continuously embedded in H, i.e., V is a dense subset of H and a positive
constant c exists such that for � 2 V , j�jH � cj�jV . By applying the Riesz
representation theorem, H is identi�ed with H�, the conjugate dual of H.
For each z 2 H, we can de�ne an element  (z) 2 V � by  (z)(�) = hz; �iH
for � 2 V . The mapping  : H ! V � is continuous, linear, and one-to-one;
it may be shown that  (H) is dense in V � with respect to the V � norm.
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Thus, H is densely and continuously embedded in V �. This construction
is called a Gelfand triple and is denoted

V ,! H �= H� ,! V �

with H referred to as the pivot space.
Let �1 be a continuous sesquilinear form on V . Since �1 is continuous,

for each z 2 V , the mapping � ! �1(z; �) is in V
�. Consequently, there

exists a continuous linear operator A : V ! V � de�ned by

(Az)(�) = �1(z; �) z; � 2 V:

Conversely, given a continuous linear operator A 2 L(V; V �), one can de�ne
a continuous sesquilinear form on V by �1(z; �) = (Az)(�). Thus there is
a one-to-one correspondence between continuous sesquilinear forms on V

and operators in L(V; V �) which can be written as

�1(z; �) = (Az)(�) = hAz; �iV �;V : (3.1)

By h�; �iV �;V , we refer to the duality pairing on V �; V , i.e., the extension
by continuity of h�; �iH from H � V to V � � V . If the restricted domain of
A is de�ned by

D(A) = fz 2 V : Az 2 Hg

de�ne
A = Aj

D(A)
D(A) = D(A):

Then A : D(A) � V � H ! H, and for z 2 D(A), � 2 V

Az(�) = Az(�) = �1(z; �) = hAz; �iH : (3.2)

A sesquilinear form �1 on V is V-elliptic if there exists a constant c > 0
such that for all � 2 V

Re �1(�; �) � cj�j2V

and V-coercive if there exist constants c > 0 and � � 0 such that for all
� 2 V

Re �1(�; �) � cj�j2V � �j�j2H:

Let �2 be a continuous sesquilinear form on V with

�2(z; �) = (Dz)(�) = hDz; �iV �;V : (3.3)

The operator D is de�ned in a manner similar to that of the operator A,
that is, if the restricted domain of D is de�ned by

D(D) = f� 2 V :D� 2 Hg;
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de�ne
D = Dj

D(D)
D(D) = D(D):

Then D : D(D) � V � H ! H, and for z 2 D(D), � 2 V ,

Dz(�) = Dz(�) = �2(z; �) = hDz; �iH : (3.4)

A weak formulation of a general second order initial value problem can
be written as

h�z(t); �iH + �2( _z(t); �) + �1(z(t); �) = hf(t); �iH for all � 2 V

z(0) = z0; _z(0) = z1: (3.5)

Assuming �1 and �2 are continuous and V -coercive, the corresponding
abstract equation is given by

�z(t) +D _z(t) + Az(t) = f(t) inH

z(0) = z0; _z(0) = z1 (3.6)

where A and D are given by (3.2) and (3.4) respectively.
To show the wellposedness of a second order system, it is written in �rst

order form and shown to meet the wellposedness conditions for �rst order
systems. If the weak formulation of a generic �rst order system is written
as

h _y(t); �i
H
+ �(y(t); �) = hF (t); �i

H
for all � 2 V

y(0) = y0 (3.7)

where F : [0; T ]!H and the corresponding abstract form on H is

_y(t) = �Ay(t) + F (t)

y(0) = y0; (3.8)

then the following theorem from [2] can be used to establish the wellposed-
ness of the system.

Theorem 3.1 If �A is the in�nitesimal generator of an analytic semi-
group S(t) and F : [0; T ]!H is uniformly H�older continuous, i.e.,

jF (t)� F (s)j
H
� Kjt� sj�; 0 � s � t; 0 < � � 1;

then for each y0 2 H, (3.8) has a unique strong solution y 2 C([0; T ];H)\
C1((0; T ];H) given by

y(t) = S(t)y0 +

Z t

0

S(t� s)F (s)ds: (3.9)

This solution depends continuously on y0 and F .
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To write the second order system in �rst order form, de�ne the product
spaces V = V � V and H = V � H with inner products h�; �i

V
= h�; �iV +

h�; �iV and h�; �i
H
= h�; �iV +h�; �iH respectively. De�ne the sesquilinear form

� on V given by

�((�;  ); (�; �)) = �h ; �iV + �1(�; �) + �2( ; �):

Then (3.5) can be written as

h _y(t); �i
H
+ �(y(t); �) = hF (t); �i

H
for all � 2 V

y(0) = y0 (3.10)

where y(t) = (z(t); _z(t)); y0 = (z0; z1); � = (�;  ) and F (t) = (0; f(t)).
Using this notation, one can write (3.6) in �rst order form on H

_y(t) = �Ay(t) + F (t)

y(0) = y0 (3.11)

where

A =

�
0 �I

A D

�

is de�ned on the restricted domain

D(A) = f(�;  ) 2 V : A�+D 2 Hg � V:

If � is continuous and V-coercive, then D(A) is dense inH and the operator
�A associated with � as

�(�; �) = h�A�; �i
H

� 2 D(A); � 2 V

is the generator of an analytic semigroup S(t) 2 L(H); t � 0. The following
theorem gives the wellposedness and form of the solution for (3.6).

Theorem 3.2 If �1 and �2 are continuous and V -coercive and f : [0; T ]!
H is uniformly H�older continuous, then for each y0 2 V, (3.6) has a unique
strong solution y = (z; _z) given by

y(t) = S(t)y0 +

Z t

0

S(t � s)F (s)ds (3.12)

such that z2C([0; T ];V )\C1([0; T ];V ) and _z2C((0; T );V )\C1((0; T );V ).

Proof: Since �1 and �2 are continuous and V -coercive, there exist c�1 > 0,
c�2 > 0, ��1 � 0, ��2 � 0, k�1 > 0, and k�2 > 0 such that

Re �1(�; �) � c�1 j�j
2
V � ��1 j�j

2
H;

Re �2(�; �) � c�2 j�j
2
V � ��2 j�j

2
H;

j�1(�;  )j � k�1 j�jV j jV ;

j�2(�;  )j � k�2 j�jV j jV ;

8
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for � = (�;  ) 2 V. The continuity of � follows from the continuity of �1,
�2 and the inner product on V . To see that � is V-coercive, choose � > 0
so that c�2 � � > 0. Then

Re �(�; �) = Re(�h ; �iV + �1(�;  ) + �2( ;  ))

� �jh ; �iV j � j�1(�;  )j+ Re �2( ;  )

� �j jV j�jV � k�1 j�jV j jV + c�2 j j
2
V � ��2 j j

2
H

� ��j j2V �
(1 + k�1 )

2

4�
j�j2V + c�2 j j

2
V � ��2 j j

2
H

= �(
(1 + k�1)

2

4�
+ 1)j�j2V + j�j2V + (c�2 � �)j j2V � ��2 j j

2
H

� c(j�j2V + j j2V ) � �(j�j2V + j j2H)

= cj�j2
V
� �j�j2

H

where c = min(1; c�2 � �), � = max((
1+k�1 )

2

4�
+ 1; ��2). Thus, � is V-

coercive and �A is the generator of an analytic semigroup S(t) in H,
t � 0.The result and continuous dependence of y on y0 and F follow from
Theorem 3.1. 2

To use this framework to establish the wellposedness of the MCS model,
the operators A and D, the sesquilinear forms �1 and �2, and the spaces H
and V must be determined. Gibson and Adamian note that to make the
necessary identi�cations, the operator A must be H-coercive (see [13]). If
not, then they explain if A has a �nite number of nonpositive eigenvalues,
a bounded self-adjoint linear operator A1 on H can be chosen so that
~A = A+A1 is H-elliptic. This choice can be made by selecting an operator
whose null space is the orthogonal complement in H of the eigenspace
of A corresponding to nonpositive eigenvalues. Once A1 is chosen, V is
de�ned to be the completion of D(A) with respect to the inner product
hz; ~ziV = h ~Az; ~ziH for z; ~z 2 D(A). Consequently, V = D( ~A1=2), and
hz; ~ziV = h ~A1=2z; ~A1=2~ziH for z; ~z 2 V . Since V is expressed as the square
root of an operator, it cannot always be written explicitly.

Once H and V are chosen in this way, one can de�ne the total energy
space E = V � H with inner product hz; ~ziE = hz1; ~z1iV + hz2; ~z2iH for
z = (z1; z2); ~z = (~z1; ~z2) 2 E. If z(t) is the solution to the problem under
consideration, the kinetic energy for the system is 1

2
h _z(t); _z(t)iH and, in the

case that A is H-coercive, 1
2
hz(t); z(t)iV is the strain energy for the system

and 1
2
h(z(t); _z(t)); (z(t); _z(t))iE is the total energy in the system. Although

H and V need not be chosen in this fashion to obtain wellposedness results,
this choice is attractive because of the physical signi�cance.

After establishing that the abstract system corresponding to ~A is well-
posed, the wellposedness of the original system is obtained by observing
that the original system given by A is a bounded perturbation of the well-

9
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posed system, i.e., A = ~A � A1. Applying a theorem from Pazy [17, page
76], one can show that the original problem is wellposed.

Referring to the model for the MCS, the state space H and the state z(t)
are chosen to be H = <� L2[0; l1]� L2[0; l2]�<

4 and z(t) = (z1(t); z2(t);
z3(t); z4(t); z5(t); z6(t); z7(t)) in H where

z1(t) = �(t)

(z2(t))(x1) = v1(t; x1) + x1�(t)

(z3(t))(x2) = v2(t; x2) + v1(t; l1) + (x2 + lm1
)v1x(t; l1)

+(x2 + l1 + lm1
)�(t)

z4(t) = v1x(t; l1) + �(t)

z5(t) = v1(t; l1) +
lm1

2
v1x(t; l1) + (l1 +

lm1

2
)�(t)

z6(t) = v1x(t; l1) + v2x(t; l2) + �(t)

z7(t) = v1(t; l1) + v2(t; l2) + (lm1
+
lm2

2
+ l2)v1x(t; l1)

+
lm2

2
v2x(t; l2) + (l1 + lm1

+
lm2

2
+ l2)�(t): (3.13)

The inner product on H is taken to be

hz; ~ziH = J0z1~z1 + (�A)1hz2; ~z2iL2[0;l1 ] + (�A)2hz3; ~z3iL2[0;l2]

+J1z4~z4 +m1z5~z5 + J2z6~z6 +m2z7~z7: (3.14)

The mathematical model can be written in abstract form

�z(t) +D _z(t) +Az(t) = B0u(t) in H

where A, D, and B are de�ned as follows:

Az =

2
666666666666666666664

�
(EI)1
J0

z2xx (0)

(EI)1
(�A)1

z2xxxx (�)

(EI)2
(�A)2

z3xxxx (�)

(EI)1
J1

(z2xx (l1) +
lm1

2
z2xxx (l1))�

(EI)2
J1

(z3xx (0)�
lm1

2
z3xxx (0))

1
m1

[(EI)2z3xxx (0)� (EI)1z2xxx (l1)]

(EI)2
J2

[z3xx (l2) +
lm2

2
z3xxx (l2)]

�
(EI)2
m2

z3xxx (l2)

3
777777777777777777775
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Dz =

2
666666666666666666664

�
(
I)1
J0

z2xx (0)

(
I)1
(�A)1

z2xxxx (�)

(
I)2
(�A)2

z3xxxx (�)

(
I)1
J1

(z2xx (l1) +
lm1

2
z2xxx (l1)) �

(
I)2
J1

(z3xx (0) �
lm1

2
z3xxx (0))

1
m1

[(
I)2z3xxx (0)� (
I)1z2xxx (l1)]

(
I)2
J2

[z3xx (l2) +
lm2

2
z3xxx (l2)]

�
(
I)2
m2

z3xxx (l2)

3
777777777777777777775

where

D(A) = fz 2 H : z2 2 H
4[0; l1]; z3 2 H

4[0; l2]; z2(0) = 0;

z2(l1) = z5 �
lm1

2
z4; z2x (0) = z1; z2x(l1) = z4 = z3x (0);

z3(0) = z5 +
lm1

2
z4; z3(l2) = z7 �

lm2

2
z6; z3x(l2) = z6g; (3.15)

D(D) = D(A), and B0 = [1 0 0 0 0 0 0]T is de�ned on <.
The rigid body rotation of the hub induces a zero eigenvalue for A,

hence A is not H-coercive. By choosing a bounded operator A1 such that
hA1z; ~ziH = J0z1~z1, we de�ne an ~A = A + A1 which is H-coercive. Then
V = D( ~A1=2) = D(A1=2) and is contained in the set

fz 2 H : z2 2 H
2[0; l1]; z3 2 H

2[0; l2]; z2(0) = 0;

z2(l1) = z5 �
lm1

2
z4; z2x (0) = z1; z2x(l1) = z4 = z3x (0);

z3(0) = z5 +
lm1

2
z4; z3(l2) = z7 �

lm2

2
z6; z3x (l2) = z6g: (3.16)

The inner product on V is taken to be

hz; ~ziV = h ~A1=2z; ~A1=2~ziH

= (EI)1hz2xx ; ~z2xx iL2[0;l1] + (EI)2hz3xx ; ~z3xxiL2[0;l2 ]

+hA1z; ~ziH : (3.17)

To obtain the wellposedness results, de�ne ~D = D + A1 where A1 is
de�ned above. To prove that the problem is wellposed, the sesquilinear
forms associated with ~A and ~D must be determined. Consider h ~Az;�iH

11
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for z 2 D(A);� 2 V . Integrating by parts and using the fact that � 2 V ,
we obtain the sesquilinear form ~�1

~�1(z;�) = h ~Az;�iH

= (EI)1hz2xx ; �2xxiL2[0;l1 ] + (EI)2hz3xx ; �3xxiL2[0;l2 ] + J0z1�1

= �1(z;�) + hA1z;�iH : (3.18)

Similarly, the sesquilinear form ~�2 can be written as

~�2(z;�) = h ~Dz;�iH

= (
I)1hz2xx ; �2xxiL2[0;l1 ] + (
I)2hz3xx ; �3xxiL2[0;l2] + J0z1�1

= �2(z;�) + hA1z;�iH : (3.19)

A weak formulation of the mathematical model for the MCS is given by

h�z(t);  iH + �2( _z(t);  ) + �1(z(t);  ) = hB0u(t);  iH for all  2 V

z(0) = z0; _z(0) = z1: (3.20)

To show the MCS model is wellposed, Theorem 3.2 is applied to the
system

h�z(t);  iH + ~�2( _z(t);  ) + ~�1(z(t);  ) = hB0u(t);  iH

z(0) = z0; _z(0) = z1: (3.21)

Application of the theorem from Pazy shows that the mathematical model
for the MCS is wellposed.

Theorem 3.3 The sesquilinear forms ~�1 and ~�2 are continuous and V -
coercive; hence given initial conditions z0; z1 2 V , (3.21) is wellposed.
Since the MCS model is a bounded perturbation of (3.21), it is also well-
posed.

4 The LQR Control Problem

As previously mentioned, to compute a numerical control for an MCS
described by an in�nite dimensional system, it is necessary to have a scheme
to approximate the original system by a sequence of �nite dimensional
systems. Controls are then computed for this sequence. For the sequence
of controls to converge to the control for the in�nite dimensional system, the
approximation scheme must satisfy certain properties. The abstract LQR
problem is presented below and an approximation scheme and precise sense
of convergence is discussed in the following section.

12
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The LQR control problem can be formulated as follows. Assume a
system of the form

_y(t) = Ay(t) + Bu(t); t > 0

y(0) = y0

w(t) = Cy(t) (4.1)

where y(t) 2 H, A : D(A) � H ! H, B 2 L(U;H), C 2 L(H;W ), and the
state space H, the control space U , and the observation space W are real
Hilbert spaces. Assume A generates a C0-semigroup, S(t) on H.

The system in (4.1) has an associated cost functional

J(y0; u) =

Z
1

0

(hQy(t); y(t)iH + hRu(t); u(t)iU )dt (4.2)

where the control weighting, R 2 L(U ), is positive de�nite and self-adjoint.
Let the state weighting, Q 2 L(H) be given by Q = C�C. Then the
abstract LQR problem on H can be stated as:

min
u2L2((0;1);U)

J(y0; u);

subject to y(t) satisfying (4.1).

A function u 2 L2((0;1); U ) is an admissible control for y0 2 H if J(y0; u)
is �nite.

Consider the system given by (4.1). The pair (A;B) is stabilizable
if there exists an operator K 2 L(H;U ) such that (A � BK) generates
a uniformly exponentially stable C0-semigroup on H. The pair (A;C)
is detectable if there exists an operator F 2 L(W;H) such that (A � FC)
generates a uniformly exponentially stable C0-semigroup on H. It is known
if (4.1) is stabilizable and detectable, then there exists a unique control
uopt 2 L2((0;1); U ) such that

J(y0; uopt) = min
u2L2((0;1);U)

J(y0; u);

(see [12]). This control can be written in the feedback form

uopt(t) = �R�1B��y(t) (4.3)

where � 2 L(H), � : D(A) ! D(A�) is the nonnegative self-adjoint solu-
tion of the algebraic Riccati equation

A��+ �A� �BR�1B��+Q = 0 (4.4)

on H. To assure the existence of such an optimal control for (4.1), the
following result from [13] can be used.

13
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Theorem 4.1 Let the operators A, B, Q, and R be as previously de�ned.
The algebraic Riccati equation (4.4) has a unique nonnegative self-adjoint
solution if and only if for each y0 2 H there exists an admissible control
u(t). If such a � exists, the unique control which minimizes J(y0; �) is
given by equation (4.3) and the corresponding optimal trajectory yopt(t) is
given by

yopt(t) = T (t)y0

where T (t) is the uniformly exponentially stable C0-semigroup generated by
A� BR�1B��. Furthermore,

J(y0; uopt) = min
u2L2((0;1);U)

J(y0; u) = h�y0; y0iH : (4.5)

In general, (4.4) is a nonlinear partial functional di�erential equation
for which a direct analytical solution is usually impossible. Therefore, one
seeks computational solutions requiring approximation of the entire control
problem. The next section addresses issues of developing a convergent
approximation method for the MCS control problem.

5 An Approximation Scheme

The objective of an approximation scheme is to produce a sequence
of suboptimal controls, uNopt(t), such that uNopt(t) converges to uopt(t) in an

appropriate sense and if uNopt(t) is applied to the in�nite dimensional system
in (4.1), the closed loop system response is nearly optimal for any initial
condition. A convergent approximation scheme is one satisfying these two
conditions. One way to construct the approximations is to project the
in�nite dimensional control problem de�ned on H onto a series of �nite
dimensional subspaces HN ; N = 1; 2; : : :.

Let PN denote a sequence of orthogonal projections PN : H ! HN �

H. Let AN 2 L(HN ) be the in�nitesimal generators of the C0-semigroups
SN (t) on HN . Given operators BN 2 L(U;HN ), and QN 2 L(HN ), the
associated sequence of �nite dimensional LQR problems on HN is given by

min
u2L2((0;1);U)

JN (yN0 ; u) subject to

_yN (t) = ANy(t) +BNu(t); t > 0

yN (0) = yN0 = PNy0

wN (t) = CNy(t) (5.1)

where

JN (yN0 ; u) =

Z
1

0

(hQNyN (t); yN (t)iH + hRu(t); u(t)iU)dt: (5.2)

14
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By applying the previously cited result of [12] to (5.1), we see that if the
pairs (AN ; BN ) and (AN ; CN ) are stabilizable and detectable, then there
is a unique optimal control uNopt(t) 2 L2((0;1;U ) of the form

uNopt(t) = �R�1BN��NyNopt(t) (5.3)

where �N 2 L(HN ) is the unique nonnegative self-adjoint solution of the
algebraic Riccati equation on HN

AN��N +�NAN ��NBNR�1BN��N + QN = 0: (5.4)

The trajectory yNopt(t) is the corresponding solution of (5.1) with u = uNopt.
To establish convergence of the approximation scheme for the second

order system de�ned on V and H, one might attempt to write the prob-
lem as a �rst order system on the product spaces V and H and apply the
fundamental convergence theorem from [6]. However, one condition of that
theorem is that V be compactly embedded in H. Banks and Ito point out
in [3] that for the �rst order form, the condition that V is compactly em-
bedded inH would imply that V is compactly embedded in V which is false
for in�nite dimensional spaces. Thus, they provide the following theorem
which is applicable to second order systems. Note that the notation in the
theorem is the same as that used previously in Section 3.

Theorem 5.1 Suppose (A;B) is stabilizable, (A; C) is detectable, and the
following hold:

(C1) For each z 2 V , there exists an element ~zN in HN such that

jz � ~zN jV � �(N ); where �(N )! 0 as N !1;

(C2) The embedding of V into H is compact.

Let T (t) be the C0-semigroup generated by A � BR�1B�� and T N (t) be
the sequence of C0-semigroups generated by AN�BNR�1BN��N where the
approximations are obtained by a Galerkin �nite element scheme. Then

�NPN� ! �� for every � 2 H;

T N (t)PN� ! T (t)� for every � 2 H;

where convergence is uniform in t on bounded subsets of [0;1) and

jT (t)j �M1e
�!t for t � 0:

Moreover, uNopt(t)! uopt(t) in U and yNopt(t)! yopt(t) in V, uniformly on
[0; T ].

15
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For N � 1, assume a general Galerkin �nite element approximation of
the form

zN (t) =

NX
j=1

�Nj (t)eNj ; (5.5)

where feN1 ; e
N
2 ; : : : ; e

N
Ng is a basis for the approximating space HN 2 V .

If we require that (3.20) hold for z = zN and � 2 HN , it is clear that
�N (t) = [�N1 (t); �N2 (t); : : : ; �NN (t)]T satis�es a system of the form

MN ��N (t) +DN _�N (t) +KN �N (t) = BN
0 u(t) (5.6)

where the mass matrix MN , damping matrix DN , sti�ness matrix KN ,
and actuator in
uence matrix BN

0 are given by

MN
ij = heNi ; e

N
j iH ;

DN
ij = �2(e

N
i ; e

N
j );

KN
ij = �1(e

N
i ; e

N
j );

BN
0ij = heNi ; B0jiH : (5.7)

To proceed, equation (5.6) is written in �rst order form by letting �N =
(�N ; _�N ):

_�N = AN�N +BNu; (5.8)

where

AN =

�
0 I

�(MN )�1KN �(MN )�1DN

�
;

BN =

�
0

�(MN )�1BN
0

�
:

Since eNi 2 V , it is a vector of seven components denoted

eNi = (eNi1; e
N
i2; e

N
i3; e

N
i4; e

N
i5; e

N
i6; e

N
i7) 2 < �H2[0; l1]�H2[0; l2]�<

4:

If we refer to (3.16), we see that the following must hold:

eNi2(0) = 0; eNi2(l1) = eNi5 �
lm1

2
eNi4; e

N
i2x

(0) = eNi1;

eNi2x(l1) = eNi4 = eNi3x(0); e
N
i3x

(l2) = eNi6; e
N
i3(0) = eNi5 +

lm1

2
eNi4;

eNi3(l2) = eNi7 �
lm2

2
eNi6: (5.9)

Cubic B-splines will be used to represent the displacements of beams
one and two. Given an interval I = [0; L] and h = L

N
, de�ne the uniform

partition of I,
�N = f0; h; 2h; : : : ; Nh = Lg:
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De�ne the set

SN3 (I) = f� 2 C2[0; L] : � is a cubic polynomial on

[jh; (j + 1)h]; j = 0; : : : ; N � 1g:

We want to approximate H2[0; li] by S
N
3 (Ii) where Ii = [0; li]. Let B

N
i (x)

be the ith cubic B-spline de�ned as:
BN
i (x) =8>>>>>>>><
>>>>>>>>:

1
h3
(x � xi�2)

3 x 2 [xi�2; xi�1]

1 + 3
h
(x�xi�1) +

3
h2
(x�xi�1)

2 � 3
h3
(x�xi�1)

3 x 2 [xi�1; xi]

1 + 3
h
(xi+1�x) +

3
h2
(xi+1�x)

2 � 3
h3
(xi+1�x)

3 x 2 [xi; xi+1]

1
h3
(xi+2 � x)3 x 2 [xi+1; xi+2]

0 otherwise:

Then BN
�1; B

N
0 ; : : : ; B

N
N+1 provide an N + 3 dimensional basis for SN3 (I).

Let faNi g
N+1
i=�1 denote the N+3 cubic B-splines on the interval [0; l1] and

fbNi g
N+1
i=�1 denote the N +3 cubic B-splines on the interval [0; l2], i.e., fa

N
i g

and fbNi g will be used to approximate the displacements of beams one and
two, respectively. It was noted in Section 2 that the coordinate system for
the MCS was chosen so that the essential boundary conditions are zero for
both beams. To accommodate these boundary conditions, the set of splines
used for the �rst beam and their derivatives must be zero at x1 = 0 and the
set of splines used for the second beam and their derivatives must be zero
at x2 = 0. For each of faNi g and fb

N
i g, if we take the last N splines and

an appropriate linear combination of the �rst three splines, we obtain a set
of N + 1 splines which satis�es the essential boundary conditions. Thus,
the elements of the basis functions corresponding to the displacements of
beams one and two are

�Ni =

�
aN0 � 2aN

�1 � 2aN1 i = 1
aNi i = 2; : : : ; N + 1

�Ni =

�
bN0 � 2bN

�1 � 2bN1 i = 1
bNi i = 2; : : : ; N + 1

:

If we denote the space spanned by �Ni as HN
1 and the space spanned by �Ni

as HN
2 , we can write HN

1 = SN3 (I1)\H
2[0; l1] with the essential boundary

conditions for beam one, and HN
2 = SN3 (I2) \H

2[0; l2] with the essential
boundary conditions for beam two.
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To approximate V , 2N + 3 total basis functions feN1 ; :::; e
N
2N+3g are

chosen as follows:

eN1 (x) =

2
666666664

1
x1

x2 + l1 + lm1

1

l1 +
lm1

2

1

l1 + lm1
+ l2 +

lm2

2

3
777777775

eNi (x) =

2
666666666666664

0

�Ni�1

�Ni�1(l1) + (x2 + lm1
)(�Ni�1)x(l1)

(�Ni�1)x(l1)

�Ni�1(l1) +
lm1

2
(�Ni�1)x(l1)

(�Ni�1)x(l1)

�Ni�1(l1) + (lm1
+ l2 +

lm2

2
)(�Ni�1)x(l1)

3
777777777777775

eNj (x) =

2
6666666664

0
0

�Nj�N�1
0
0

(�Nj�N�1)x(l2)

�Nj�N�1(l2) +
lm2

2
(�Nj�N�1)x(l2)

3
7777777775

where i = 2; : : : ; N+2, and j = N+3; : : : ; 2N+3. Thus, the approximation
space is HN = < �HN

1 �HN
2 �<4.

To complete the formulation of the sequence of �nite dimensional LQR
problems, QN and R must be speci�ed. We take Q = I which corresponds
to observing all states. In the context of this problem, this choice corre-
sponds to the state weighting term hQz; ziV being twice the total energy
in the structure plus the square of the rigid body rotation [13]. The Gram-
mian matrix ~WN is the matrix representation of Q on HN where

~WN =

2
4 J0 0 0

0 KN 0
0 0 MN

3
5 :

For this MCS, the control input space, U , is <. Since there is only one
control input to the problem, the control weighting, R, is taken to be 1.
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To obtain the sequence of controls solving the LQR problem, a system of
Matlab subroutines can be used. To generate the system matrices, the L2

inner products of the basis functions and their second derivatives must be
computed to determine the elements ofMN , KN and DN . These matrices
are used to form the matricesAN , BN , QN , which along with R are used by
the LQR subroutine in the Matlab Control Toolbox to compute the optimal
control for the �nite dimensional system. This control can be determined
from the gain matrix, K = R�1BN��N , which is the output of the LQR
routine.

The optimal control for the abstract LQR problem has the feedback
form

u(t) = �hf; z(t)iV � hg; _z(t)iH (5.10)

where z(t) is the state given in (3.13) and

f = (f1; f2; f3; f4; f5; f6; f7) 2 V;

g = (g1; g2; g3; g4; g5; g6; g7) 2 H:

By expanding (5.10) in terms of the inner products on V and H, we obtain
the control law

u(t) = �J0k1�(t) � (EI)1

Z l1

0

k2(x1)v1xx(t; x1)dx1

�(EI)2

Z l2

0

k3(x2)v2xx (t; x2)dx2 � J0k4 _�(t)

�(�A)1

Z l1

0

k5(x1)( _v1(t; x1) + x1 _�(t))dx1

�(�A)2

Z l2

0

k6(x2)( _v2(t; x2) + _v1(t; l1) + (x2 + lm1
) _v1x(t; l1)

+(x2 + l1 + lm1
) _�(t))dx2

�J1k7( _v1x(t; l1) +
_�(t)) �m1k8( _v1(t; l1) +

lm1

2
_v1x(t; l1)

+(l1 +
lm1

2
) _�(t))

�J2k9( _v2x(t; l2) + _v1x(t; l1) +
_�(t)) �m2k10( _v2(t; l2) + _v1(t; l1)

+
lm2

2
_v2x(t; l2) + (lm1

+
lm2

2
+ l2) _v1x (t; l1)

+(l1 + lm1
+
lm2

2
+ l2) _�(t)); (5.11)

where
k1 = f1; k2(x1) = f2xx (x1); k3(x2) = f3xx (x2);
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k4 = g1; k5(x1) = g2(x1); k6(x2) = g3(x2);

k7 = g4; k8 = g5; k9 = g6; k10 = g7: (5.12)

The functions k2 and k5 are the bending and velocity gains corresponding to
beam one, and k3 and k6 are the bending and velocity gains corresponding
to beam two. The discrete gains, k1; k4; k7; k8; k9 and k10 are the gains
corresponding to hub position, hub velocity, velocity of the slope of mass
one, velocity of mass one, velocity of the slope of mass two, and velocity of
mass two, respectively.

The feedback form of the optimal control for the approximating se-
quence of LQR problems has the same form, i.e.

uN (t) = �hfN ; zN (t)iV � hg
N ; _zN (t)iH (5.13)

with fN ! f in V , and gN ! g in H. If we let

~KN = R�1BN��N (MN )�1 = [~kN1 ; : : : ;
~kN4N+6];

the approximate gains can be written as

kN1 = ~kN1 (e
N
1 )1; kN2 =

N+2X
i=2

~kNi (D
2eNi )2; kN3 =

2N+3X
i=N+3

~kNi (D
2eNi )3;

kN4 = ~kN2N+4(e
N
i )1; kN5 =

N+2X
i=1

~kNi+2N+3(e
N
i )2; kN6 =

2N+3X
i=1

~kNi+2N+3(e
N
i )3;

kN7 =

N+2X
i=1

~kNi+2N+3(e
N
i )4; kN8 =

N+2X
i=1

~kNi+2N+3(e
N
i )5;

kN9 =

2N+3X
i=1

~kNi+2N+3(e
N
i )6; kN10 =

2N+3X
i=1

~kNi+2N+3(e
N
i )7; (5.14)

where (eNi )j denotes the j
th entry in the basis function eNi de�ned previ-

ously.
To show that this approximation scheme is convergent, the system de-

scribed by equations (3.5) and (3.6) must be shown to satisfy the conditions
of Theorem 5.1.

Lemma 5.1 The pair (A;B) is stabilizable.

Proof: We need to apply the following theorem from [2]:
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Given a sesquilinear form �1 which is V -elliptic, continuous,
and symmetric, and a sesquilinear form �2 which is H-elliptic,
continuous and symmetric, then A (see (3.11)) is the in�nitesi-
mal generator of an exponentially stable C0-semigroup in H =
V �H.

Recall from the wellposedness theorem that ~�1 and ~�2 are continuous
and V -elliptic; clearly, they are also symmetric. By the embedding struc-
ture of V andH, ~�2 is alsoH-elliptic. Thus, ~A is the in�nitesimal generator
of an exponentially stable C0-semigroup on H where

~A =

�
0 �I
~A ~D

�
=

�
0 �I

A D

�
+

�
0 0
A1 A1

�
:

Since A1z = z1 for z 2 D(A), A1 = B0. If we let K = [0; I], then
~A = A � BK and the pair (A;B) is stabilizable. 2

Lemma 5.2 The pair (A; C) is detectable.

Proof: Since C is the identity, the result follows. 2

Lemma 5.3 The approximation scheme satis�es (C1).

Proof: The crux of this proof relies on showing (C1) holds for the beam
components. Let INi denote the cubic B-spline interpolant operator for
beam i, i.e., INi � is the unique element in HN that agrees with � 2 V

at x = i
N
, i = 0; 1; : : :; N . Estimates for cubic spline interpolants can

be found in Appendix A.4 and Section III.2.2 of [5]. Let PN denote the
orthogonal projection of V onto HN and PN

1 and PN
2 denote the parts of

PN corresponding to beams one and two respectively. By (III.2.7) of [5],
we have for z 2 V ,

jPN
i z � zjV � jINi z � zjV �

ki

N2
jzjV :

Thus

jPNz � zjV � jPN
1 z � zjV + jPN

2 z � zjV �
k1 + k2

N2
jzjV ! 0 as N !1:

Letting ~zN = PNz yields (C1). 2

Lemma 5.4 V is compactly embedded in H.

Proof: The Rellich-Kondrachov Theorem in [1] gives the compact embed-
ding of H2[0; li] into L2[0; li]. Since <

n is compactly embedded in <n, the
lemma is true. 2

Theorem 5.2 The approximation scheme described in this section is con-
vergent.

Proof: Since the approximation scheme satis�es Lemmas 5.1, 5.2, 5.3, 5.4,
we have convergence by Theorem 5.1. 2
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6 Numerical Results

This section contains numerical results obtained by implementing the
approximation scheme developed in the previous section. An example was
constructed in which an aluminum beam and a steel beam were chosen
for beams one and two respectively. The speci�c parameter values used
for both beams and rigid bodies are listed in the following tables. The
beam dimensions were chosen to satisfy the basic assumptions of the Euler-
Bernoulli model.

Table 6.1: Rigid Body Parameters

parameter Hub Mass 1 Mass 2

J 1 kgm2 1 kgm2 1 kgm2

m 1 kg 1 kg

lm :25m :25m

Using the above parameters, the optimal controls for the �nite dimen-
sional LQR problems were computed using the Matlab Control Toolbox
on a Macintosh IIsi. Plots of the resulting functional gains for the �nite
dimensional approximating systems obtained for N = 8; 12; and 16 can be
found in Figures 6.1 and 6.2. The discrete gains can be found in Table 6.3.

The beams are the only components of the structure contributing to
strain (refer to (5.11), (5.12), (5.14)). Thus, in Figure 6.1, the �rst two
meters of the plot is the bending gain for the �rst beam (kN2 ) and the last
three meters is the bending gain for the second (kN3 ). The gain for beam
one is nearly identical to that obtained for a single Euler-Bernoulli beam
with a torque applied at the hub and a tip mass at the right end, using the
above parameters and omitting mass length. One might expect this as this
MCS could be interpreted as a perturbation of the single beam problem.
The largest value of the gain (in magnitude) occurs at the hub, where one
would expect that the greatest strain exists. The gains near the centers of
both beams are zero indicating those are the points of least strain.

Figure 6.2 shows velocity gains for both beams and both masses since
all components have associated velocity gains. The dotted boxes denote
the masses with the gain shown as a point in the center. As expected, the
gain at the hub is zero which re
ects the fact that beam one is �xed at the
hub. The velocity gains appear continuous over the entire structure, i.e., if
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Table 6.2: Beam Parameters

parameter Beam 1: Aluminum Beam 2: Steel

L 2m 3m

w 2:54 cm 3:81 cm

h 0:3175 cm :15875 cm

A 8:0645� 10�5m2 6:0483� 10�5m2

� 2700 kg
m3 7800 kg

m3

�A :21774 kg
m

:47177 kg
m

E 7:0� 1010 N
m2 2:0� 1011 N

m2

I 6:7746� 10�11m4 1:27� 10�11m4

EI 4:74222Nm2 2:54Nm2


I :01 kg
m sec

:01 kg
m sec

the gains for the structure were smoothly connected, the gains for masses
one and two would lie on that graph.

We want to emphasize that in the functional gain plots, gains for the
�nite dimensional approximating systems corresponding to values ofN = 8,
12, and 16 are plotted, though often only one graph is evident since the
gains converge rapidly. In general, the di�erence in the gain values at the
nodes for N = 8 and 16 is on the order of 10�5 or 10�6. This convergence
is also shown in the table of discrete gains below. The eigenvalues also
showed rapid convergence, though they are not presented here.

To verify the performance of the control scheme for the MCS, open and
closed loop simulations were performed for three initial conditions using the
LSIM routine of the Matlab Control Toolbox: one for an initial rotation of
the hub, one for an initial displacement of beam one, and one for an initial
displacement of beam two. Given a time array, LSIM computes the time
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Figure 6.1: Bending Gains, N = 8, 12, 16

response, w, to the input time history, u, for a given system of the form

_y = Ay +Bu

w = Cy +Du:

The open loop simulations were performed by sending the matrices
A;B; and C|where C is the matrix representation of identity|to the
LSIM routine with D and u equal to zero. To observe the e�ect of the LQR
control, the simulations were performed on the closed loop system with zero
input. For all simulations, N = 8. The following �gures show the results
of the simulations. The beams are represented by lines and the masses by
`+'. For these components, the vertical axis represents linear displacement,
i.e., meters from equilibrium. The hub is represented by `o'; in this case,
the vertical axis represents radian displacement from equilibrium.

To see the e�ect of the control scheme under initial rotation of the hub,
the initial condition was chosen in which �(0) = �

18
, and all other states

were equal to zero. Initial velocities of all states were chosen to be zero.
The behavior of the open loop system over 15 seconds is shown in Figure
6.3. As expected, with zero initial velocities and no control applied to the
system, the structure remained in the initial con�guration.

The behavior of the closed loop system is shown in Figures 6.4 and 6.5.
The initial de
ection of the structure is shown by the top line in Figure 6.4.
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Figure 6.2: Velocity Gains, N = 8, 12, 16

The plots represent the motion of the structure from 0 to 33 seconds with
each plot given at three second intervals. As time proceeds, the control
rotates the structure toward equilibrium. The last four plots show the
beginning of convergence to equilibrium. To view the subsequent behavior
more closely, the scale for the vertical axis is magni�ed in Figure 6.5 and
the motion of the structure is plotted from 36 to 66 seconds. The structure
has rotated past equilibrium and the control is bringing it back to zero. A
plot of the torque which was applied to control the structure in the closed
loop simulation is shown in Figure 6.6.

To see the e�ect of the control scheme on an initial displacement of
beam one, the initial condition v1(0; x1) =

1
72
x31 was speci�ed. All other

states (including velocities) were zero. This particular state was chosen
to support the small angle assumption of the Euler-Bernoulli beam model.
The behavior of the open loop system over 30 seconds is shown in Figure 6.7.
The initial con�guration is depicted by a dashed-dotted line. Subsequently,
the structure 
exes concavely and convexly, achieving no equilibrium.

In contrast, as shown by Figures 6.8, 6.9, and 6.10, the closed loop
system is driven to rest by the controller. In Figure 6.8, the initial de-

ection of the structure is represented by the dashed line. The second
plot, corresponding to three seconds shows that the control initially acts
by straightening beam one. The third plot, corresponding to six seconds,
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Table 6.3: Discrete Gains

N = 8 N = 12 N = 16

kN1 .999999996 .999999992 .999999941

kN4 2.4514488 2.4514491 2.4514492

kN7 .1190124 .1190145 .1190148

kN8 .8833131 .8833187 .8833197

kN9 -.2070311 -.2070289 -.2070286

kN10 .7566707 .7566699 .7566697

shows that beam one is slightly higher than in the previous plot, but the
structure is generally rotated toward equilibrium. In Figure 6.9, the motion
of the structure from 9 to 33 seconds is shown. The structure is essentially
straight as in the �rst simulation, and is gradually rotated toward equi-
librium and slightly past. To see the behavior in subsequent times, the
scale of the vertical axis is magni�ed in Figure 6.10 and the rotation of the
structure toward equilibrium is shown. A plot of the controlling torque for
the closed loop simulation is shown in Figure 6.11.

To see the e�ect of the control scheme on an initial displacement of beam
two, the initial condition v2(0; x2) =

1
90
x32 was chosen. Again, all other

states including velocities were equal to zero. The behavior for the open
loop system is illustrated in Figure 6.12. As in the previous simulation,
the initial con�guration of the structure is shown by a dashed-dotted line.
Subsequent plots over 30 seconds show the oscillation of the structure.

The behavior of the closed loop system is shown in Figures 6.13, 6.14,
and 6.15. In Figure 6.13, the initial de
ection of the structure is given by
the dashed line. The second plot, corresponding to three seconds and given
by the upper curve, shows the control initially 
exing the entire structure
concavely. The third plot, corresponding to six seconds, shows the same
shape but rotation of the structure toward equilibrium. The fourth plot,
representing the structure at nine seconds, shows the structure adopting a
convex shape. These four plots show a whip-like action of the beam. In
Figure 6.14, the motion of the structure from 12 to 24 seconds is shown.
The scale of the vertical axis is magni�ed slightly to show the decay of
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Figure 6.3: Open Loop Simulation, Hub Rotation

the whipping behavior. The structure is straightened and rotated toward
equilibrium and slightly past. Figure 6.15 shows the structure rotated back
toward, and achieving equilibrium. A plot of the controlling torque for the
third closed loop simulation is shown in Figure 6.16.
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Figure 6.4: Closed Loop Simulation, Hub Rotation, 0 to 33 Seconds
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Figure 6.5: Closed Loop Simulation, Hub Rotation, 36 to 66 Seconds
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Figure 6.6: Controlling Torque, Simulation 1
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Figure 6.7: Open Loop Simulation, De
ection of Beam 1, 0 to 30 Seconds
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Figure 6.8: Closed Loop Simulation, De
ection of Beam 1, 0 to 6 Seconds
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Figure 6.9: Closed Loop Simulation, De
ection of Beam 1, 9 to 33 Seconds
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Figure 6.10: Closed Loop Simulation, De
ection of Beam 1, 36 to 69 Sec-
onds
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Figure 6.11: Controlling Torque, Simulation 2
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Figure 6.12: Open Loop Simulation, De
ection of Beam 2, 0 to 30 Seconds
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Figure 6.13: Closed Loop Simulation, De
ection of Beam 2, 0 to 9 Seconds
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Figure 6.14: Closed Loop Simulation, De
ection of Beam 2, 12 to 24 Sec-
onds
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Figure 6.15: Closed Loop Simulation, De
ection of Beam 2, 27 to 63 Sec-
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Figure 6.16: Controlling Torque, Simulation 3
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7 Conclusions

In conclusion, the approximation scheme developed in Section 5 yields
gains and eigenvalues for which the convergence is clear. In most cases,
convergence is so rapid that it is not evident that the graphs of functional
gains corresponding to values for N of 8, 12, and 16 are distinct. The
simulations in Section 6 verify the performance of the computed control
for three initial conditions. Since computations of optimal controls solving
the LQR problem have not been previously reported for a MCS having more
than one 
exible component, these results show the viability of the method
described in this paper. Other numerical examples have been computed
for this structure in which beam and rigid body parameters are varied. A
complete description of those results can be found in [14].
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