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Abstract

We present necessary and su�cient conditions for the existence

of worst case controllers and estimators for nonlinear systems. These

are also called H1 suboptimal controllers and estimators. We con-

sider a�ne and more general nonlinear systems, both time varying

and autonomous over �nite, semi-in�nite and in�nite intervals. In

particular, we give necessary and su�cient conditions for the solv-

ability of a standard H1 suboptimal control problem by measure-

ment feedback that involve the solvability of a pair of partial dif-

ferential equations of the Hamilton-Jacobi type. The �rst is the

one associated with the problem of H1 suboptimal control by state

feedback that has appeared previously in the work of several authors.

The second is a new Hamilton-Jacobi equation associated with H1
suboptimal estimation.

Key words: nonlinear H1 control, nonlinear H1 estimation, nonlinear worst

case control, nonlinear worst case estimation

AMS Subject Classi�cations: 93C10, 49A40

1 Introduction

Over the past decade, two of the most active areas of system theory have
been linear H1 control and nonlinear control. Recently several groups
of authors including van der Schaft [14], [15], Ba�sar-Bernhard [2], Ball-
Helton-Walker [1], Isidori-Astol� [6] and James-Baras-Elliott [8], [9] have
addressed the nonlinearH1 control problem and made signi�cant progress.
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yResearch supported in part by AFOSR-91-0050.

1



A.J. KRENER

This paper builds on their work and presents new necessary and su�-
cient conditions for the solvability of the nonlinear H1 control problem by
measurement feedback (Theorem 2.1).

The linearH1 control problem in state space form is known to be equiv-
alent to the solvability of a pair of Riccati inequalities either in uncoupled
form with a compatibility condition [3] or in coupled form [13]. The non-
linear generalization of the �rst of the Riccati inequalities is an integral
dissipation inequality in the sense of Willems [17]. Assuming di�erentia-
bility, this reduces to a Hamilton-Jacobi partial di�erential inequality [14],
[6], [2], [1]. Several di�erent nonlinear generalizations of the second Riccati
inequality have been proposed, including a linear-quadratic approximation
[6] and a partial di�erential inequality [2], [15] which generalizes the second
Riccati inequality of [3]. In this paper, we present a new generalization of
the second Riccati inequality in the coupled form of Tadmor [13]. It is a
conditional integral dissipation inequality for a nonlinear estimator. It is
called conditional because it is conditioned on the measurements. Along
with a solution of the �rst Hamilton-Jacobi PDE, it yields necessary and
su�cient conditions for H1 suboptimal control (Theorem 2.4). Under cer-
tain assumptions, the conditional integral dissipation inequality becomes a
partial di�erential inequality of Hamilton-Jacobi type and the solvability
of this and the �rst Hamilton-Jacobi inequality lead to su�cient conditions
for H1 suboptimal control (Theorem 2.5).

The rest of the paper is organized as follows. In Section 2 we present
�ve theorems which give necessary and su�cient conditions for nonlinear
H1 control of a standard system. Two of these are well-known, theorems
2.2 and 2.3, and three are new. In Section 3, we specialize these theorems to
linear systems. In Section 4, we treat various generalizations and extensions
of these theorems. Section 5 concludes the paper and discusses future
directions of research.

2 A Standard Worst Case Control Problem

Consider a nonlinear time varying system of the form

�

x= a(x; t) + b (x; t)u+ g (x; t)w (2.1)

y = c(x; t) + v (2.2)

z =

�
h (x; t)
u

�
(2.3)

x (t0) = x0: (2.4)

The input u (t) is a control while the inputs w(t) and v (t) are noises. The
output y (t) is measurable and the other output z (t) is to be regulated, i.e.,
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CONTROL AND ESTIMATION

kept close to zero. The goal is to design a compensator which processes the
past measurements, y (� ) ; t0 � � � t; and the estimate bx0 of the initial
state, x0; to obtain a control action, u (t) : The compensator is chosen to
minimize the worst case e�ect of the initial state, x0; driving noise, w (t)
and observation noise, v (t) ; on the regulated output, z (t) ; in an L2 sense.
Notice that z (t) contains the control, u (t) ; and this discourages the use of
large control actions.

More precisely, assume that x0; ex0 = x0�bx0; w (t) and v (t) are bounded
in the standard L2 norm, e.g.

��x0��2 + ��ex0��2 + Z tf

t0

jw (t)j
2
dt+ jv (t)j

2
dt � 1: (2.5)

We seek a compensator that in�mizes the supremum ofZ tf

t0

jz (t)j
2
dt (2.6)

over all tf � t0 and all x0; ex0; w (t) ; v (t) satisfying (2.5).
The problem as stated is in a standard form, later in Section 4, we shall

discuss various generalizations. The standard problem is not easy to solve
even if the system is linear. The usual approach is to seek a suboptimal
compensator. Given a 
 > 0; we seek compensator such that for all tf � t0;

and all x0; ex0; w (t) ; and v (t)Z tf

t0

jz (t)j
2
dt � 
2

���x0��2 + ��ex0��2 + Z tf

t0

jw (t)j
2
dt+ jv (t)j

2
dt

�
: (2.7)

A compensator which satis�es (2.7) is said to achieve an L2 gain less than
or equal to 
: By iteration on 
; one hopes to converge to an optimal
compensator.

We have not speci�ed the form of the compensator except to require
that it be a causal mapping� bx0

y (� )

�
7�! u (t) ; t0 � � � t (2.8)

from the initial state estimate bx0 and the past observations, y (t) ; to the
current control, u (t) : More precisely, for each bx0 and y (t) there is a u (t)
with the following property. If bx0; y (t) and bx0; y (t) lead to controls u (t)
and u (t) respectively and y (� ) = y (� ) for t0 � � � t then u (� ) = u (� )
for t0 � � � t:

Theorem 2.1 A compensator (2.8) achieves an L2 gain � 
 i� there exists
a causal mapping � bx0

y (� )

�
7�! S (x; t) ; t0 � � � t (2.9)
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such that for all t0 � t1 � t2 and all x0; x1

S
�
x0; t0

�
�


2

2

���x0��2 + ��ex0��2� (2.10)

S
�
x1; t1

�
� 0 (2.11)

S (x (t) ; t)]
t2
t1
�

Z t2

t1


2

2

���� w (t)
v (t)

����
2

�
1

2
jz (t)j

2
dt: (2.12)

Remarks:

(i) S (x; t) is causal in the same sense as u (t); for each bx0 and y (� ) there
exists S (x; t) : If bx0; y (� ) and bx0; y (� ) lead to S (x; t) and S (x; t) respec-
tively and y (� ) = y (� ) for t0 � � � t then S (x; � ) = S (x; � ) for all x and
for t0 � � � t:

(ii) We have not made precise the spaces where x; u; w; v; y; z live, for con-
venience, we assume that they are Euclidean spaces of varying dimensions.
The inequality (2.12) should hold along any trajectory of the closed loop
system. If the actual inputs are known to be bounded as in (2.5) then S

need only be de�ned and satisfy (2.10 to 2.12) where such trajectories are
possible.

(iii) The proof of this theorem is similar to those found in Willems [17],
where functions such as S (x; t) are called storage functions. Because
S (x; t) depends on the initial estimate and past observations we call it
a conditional storage function. In a loose sense, S (x; t) measures the
\energy" stored in the closed loop system when x (t) = x assuming the
initial estimate bx0 and observation y (� ) : The initial \energy" S

�
x0; t0

�
is

bounded above by (2.10). The integrand on the right side of (2.12) is called
the supply rate and can be thought of as the net \power" supplied to the
system. The noises, w (t) and v (t), supply \power" to the system and the
regulated output, z (t) ; extracts \power" from the system. The inequality
(2.12) is called the integral dissipation inequality and postulates that the
system always dissipates \energy".

(iv) James-Baras-Elliott [8] and James-Baras [9] have introduced the con-
cept of the information state which is closely relaed to the concept of a
conditional storage function. The conditional storage function de�ned by
(2.13) below is essentially the negative of their information state. In [9]
they give a similar result for discrete time systems.

Proof: Suppose a compensator (2.8) and a conditional supply function
(2.9) satisfy (2.10-2.12) for the closed loop system, then by (2.12) for any
tf � t0 and x0; bx0; w (t) ; v (t)

S (x (tf ) ; tf )+
1

2

Z tf

t0

jz (t)j
2
dt � S (x (t0) ; t0)+


2

2

Z tf

t0

jw (t)j
2
+ jv (t)j

2
dt:
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Using (2.10, 2.11) this implies (2.7).
On the other hand suppose (2.7) holds for all tf � t0 and x0; bx0; w (t),

v (t) for the closed loop system with compensator (2.8). For each bx0
y (� ) ;
t0 � � � t we de�ne the conditional required supply

S
�
x1; t1

�
= inf

�

2

2

���x0��2 + ��ex0��2�

+

Z t1

t0


2

2

�
jw (t)j

2
+ jv (t)j

2
�
�

1

2
jz (t)j

2
dt

�
(2.13)

where the in�mum is over all x0; w (t) ; v (t) consistent with the observa-
tions, y (t) ; and such that x (t1) = x1: Clearly S satis�es (2.10) with equal-
ity and (2.11) follows from (2.7). To verify (2.12) suppose t0 � t1 � t2;

then

S
�
x2; t2

�
= inf

x(t2)=x2

�

2

2

���x0��2 + ��ex0��2�

+

Z t2

t0


2

2

�
jw (t)j

2
+ jv (t)j

2
�
�

1

2
jz (t)j

2
dt

�

� inf
x(t1)=x1

x(t2)=x2

�

2

2

�
jxj

0
+
��ex0��2�+ Z t1

t0


2

2

�
jw (t)j

2
+ jv (t)j

2
�
�

1

2
jz (t)j

2
dt

+

Z t2

t1


2

2

�
jw (t)j

2
+ jv (t)j

2
�
�

1

2
jz (t)j

2
dt

�
:

Hence for any trajectory consistent with the observation and satisfying
x (t1) = x1 and x (t2) = x2

S
�
x2; t2

�
� S

�
x1; t1

�
+

Z t2

t1


2

2

�
jw (t)j

2
+ jv (t)j

2
�
�

1

2
jz (t)j

2
dt:

Q.E.D.

The next two theorems are slight variations of those found in Willems
[17], Ba�sar-Bernhard [2], van der Schaft [14] and Isidori-Astol� [6]. We
assume that the state is directly measurable with no observation noise and
we seek to �nd a state feedback that achieves an L2 gain � 
; i.e., for all
tf � t0 and all x0; w (t)

Z tf

t0

jz (t)j2 dt � 
2
���x0��2 + Z tf

t0

jw (t)j2 dt

�
: (2.14)
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Theorem 2.2 The state feedback u = k (x; t) achieves an L2 gain � 
 in
the sense of (2.14) i� there exists a storage function P (x; t) such that for
all t0 � t1 � t2 and all x0; x1

P
�
x0; t0

�
�


2

2

��x0��2 (2.15)

P
�
x1; t1

�
� 0 (2.16)

P (x (t) ; t)]
t2
t1
�

Z t2

t1


2

2
jw (t)j

2
�

1

2
jz (t)j

2
dt: (2.17)

Remarks: Notice that P (x; t) does not depend on bx0 or y (� ). The proof
is omitted as it is essentially the same as Theorem 2.1. In particular, one
such P (x; t) is de�ned by

P
�
x1; t1

�
= inf

�

2

2

��x0��2 + Z t1

t0


2

2
jw (t)j

2
�

1

2
jz (t)j

2
dt

�
(2.18)

where the in�mum is over all x0 and w (t) such that x (t1) = x1: This
particularly P (x; t) is called the required supply by Willems [17]. In most
other treatments of nonlinear H1 control, a di�erent storage function,
called the available storage, is used instead. However the required supply
seems more natural as it satis�es an initial condition (2.15 with equality).
The available storage satis�es a terminal condition and therefore requires
a �xed terminal time.

Theorem 2.3 Suppose P (x; t) is C1 and satis�es (2.15, 2.16) and (2.19)

Pt + Pxa+
1

2
Px

�
1


2
gg0 � bb0

�
P 0

x +
1

2
jhj

2
� 0 (2.19)

then the state feedback

u = k (x; t) = �b0 (x; t)P 0

x (x; t) (2.20)

achieves L2 gain � 
: The \worst case" driving noise is

w = d (x; t) =
1


2
g0 (x; t)P 0

x (x; t) : (2.21)

Proof: If P satis�es (2.19) then adding

�

2

2
jw � dj

2
+

1

2
ju� kj

2

to both sides yields
Pt + Px (a+ bu+ gw)
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�

2

2
jwj

2
�

1

2
jhj

2
�

1

2
juj

2
�

2

2
jw � dj

2 +
1

2
ju� kj

2
: (2.22)

Therefore if u (t) = k (x (t) ; t) then P (x (t) ; t) satis�es the integral
dissipation inequality (2.17) and the result follows from Theorem 2.1.

Q.E.D.

Remarks:

(i) The equivalent partial di�erential inequalities (2.22) and (2.19) are
called the di�erential dissipation inequality and the Hamilton-Jacobi-Issacs
partial di�erential inequality.

(ii) If P (x; t) is called a C1 function satisfying (2.15) and (2.19) both with
equality then P

�
x1; t1

�
is the value function of the di�erential game whose

payo� is

sup
k

inf
x0;w(t)

�

2

2

��x0��2 + Z t1

t0


2

2
jw (t)j

2
�

1

2
jz (t)j

2
dt

�

= inf
x0;w(t)

sup
k

�

2

2

��x0��2 + Z t1

t0


2

2
jw (t)j

2
�

1

2
jz (t)j

2
dt

�
: (2.23)

The value of the game given that x (t1) = x1 is P
�
x1; t1

�
and the saddle

point solution is u (t) ; w (t) given by (2.20, 2.21). The saddle point initial
condition x0 is obtained by integrating the closed loop system backwards
in time from x (t1) = x1: For more details, see Ba�sar-Bernhard [2]. The
next theorem is a reformulation of necessary and su�cient conditions of
Theorem 2.1 given that the di�erential game (2.23) admits a saddle point
solution with smooth value function.

Theorem 2.4 Suppose there exists a smooth P (x; t) satisfying (2.15) and
(2.19) both with equality and let k (x; t) ; d (x; t) be de�ned by (2.20,2.21).

A measurement feedback compensator (2.8) achieves an L2 gain � 
 i�
there exists a causal mapping���� bx0

y (� )

���� 7�! Q (x; t) t0 � � � t (2.24)

such that for t0 � t1 � t2 and all x0; x1;

Q
�
x0; t0

�
�


2

2

��ex0��2 (2.25)

P
�
x1; t1

�
+ Q

�
x1; t1

�
� 0 (2.26)

Q (x (t) ; t)]t2t1 �

Z t2

t1


2

2
jw � dj

2
+

2

2
jvj

2
�

1

2
ju� kj

2
dt (2.27)

for all t0 � t1 � t2 and x0; w (t) ; v (t) consistent with y (t) :
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(Note P (x; t) need not satisfy (2.16).)

Proof: Since P (x; t) satis�es (2.15) with equality, it satis�es (2.22) with
equality and therefore for any x0; w (t) ; u (t)

P (x (t) ; t)]t2t1

=

Z t2

t1


2

2
jwj

2
�

1

2
jhj

2
�

1

2
juj

2
�

2

2
jw � dj

2
+

1

2
ju� kj

2
dt: (2.28)

In particular (2.28) holds for u (t) given by the compensator (2.8).
If there exists Q (x; t) satisfying (2.25, 2.26, 2.27) then it is straightfor-

ward to verify that S (x; t) = P (x; t) + Q (x; t) satis�es (2.10, 2.11, 2.12)
and so (2.7) follows from Theorem 2.1.

On the other hand if (2.7) holds then, by Theorem 2.1, there exists
S (x; t) satisfying (2.10, 2.11, 2.12). De�ne Q (x; t) = S (x; t) � P (x; t)
then (2.25, 2.26, 2.27) hold.

Q.E.D.

The next theorem gives su�cient conditions for existence of a mea-
surement feedback compensator achieving a L2 gain � 
 and suggests an
explicit method for constructing an in�nite dimensional compensator.

Theorem 2.5 Suppose

(i) there exists a smooth P (x; t) satisfying (2.15) and (
k (x; t) ; d (x; t) are de�ned by (2.20,2.21),

(ii) there exists a smooth Q (x; t) satisfying (2.25) with unique minimum
at bx (t) bx (t) =argmin

x

Q (x; t) (2.29)

and satisfying the partial di�erential inequality

Qt +Qx (a+ bbu+ gd) +
1

2
2
Qxgg

0Q0

x

�

2

2
jy � cj

2
+

1

2
jk � buj2 � 0 (2.30)

where y = y (t) is the observation and bu = bu (t) is given by

bu (t) = k (bx (t) ; t) ; (2.31)

(iii)
P (x; t) + Q (x; t) � 0:

Then the compensator de�ned by (2.29-2.31) achieves an L2 gain � 
 in
the sense of (2.7).
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Proof: De�ne S (x; t) = P (x; t) + Q (x; t) then S (x; t) clearly satis�es
(2.10, 2.11). The integral forms of (2.19) (more precisely (2.22)) and (2.30)
yield (2.12).

Q.E.D.

Remarks:

(i) While P (x; t) may be computed o�-line, the computation of Q (x; t)
requires y (t) and so must be done on-line. Hence the compensator is in�nite
dimensional with state Q (�; t) at time t:

(ii) As we shall discuss in Section 4.5, bx (t) can be thought of as a worst case
(H1) estimate of x (t) generalizing the maximum likelihood and minimum
energy estimates of Mortenson [12] and Hijab [4]. Following [4] we can
derive a di�erential equation for bx (t) when Q (x; t) satis�es (2.30) with
equality. By di�erentiating the relation

Qx (bx (t) ; t) = 0

with respect to t and di�erentiating (2.30) with respect to x and evaluating
at bx (t) we obtain

:bx= a(bx; t) + b (bx; t) k (bx; t) + g (bx; t)d (bx; t)
+ 
2Q�1

xx (bx (t) ; t) c0x (bx; t) (y � c (bx; t)) (2.32)

which is similar to (108) of [15]. By di�erentiating (2.30) twice with respect
to x and evaluating at bx (t) we obtain an ordinary di�erential equation for
Q�1

xx (bx (t) ; t) that is driven by y (t) and Q�1
xxx (bx (t) ; t). By continuing to

di�erentiate (2.30)with respect to x and evaluating at bx (t), one obtains an
in�nte sequence of coupled ODE's driven by y (t) that is formally equivalent
to the PDE (2.30). As in extended Kalman �ltering, these ODE's can be
truncated at degree two by assuming that Q (x; t) is approximately of the
form

q (t) +
1

2
(x� bx (t))0Q (t) (x� bx (t))

where bx (t) satis�es (2.32) andQ (t) is a matrix approximatingQ�1
xx (bx (t) ; t)

obtained by linearizing the system around the trajectory bx (t). Then Q (t)
satis�es the Riccati di�erential equation

�

Q +A
0

Q+QA +
1


2
QGG0Q� 
2C0C +K0K = 0

where A;C;K;D are the Jacobians with respect to x of a; c; k; d evaluated
at bx (t), A = A+GD and G (t) = g (bx (t) ; t)
(iii) Formula (2.31) is called a certainty equivalence controller because it
is the controller we would use if we were certain that bx (t) = x (t) asuming
that the state feedback (2.20) achieves an L2 gain � 
.

9
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The certainty equivalence principle asserts that if there exists a mea-
surement feedback controller achieving an L2 gain � 
 then there exist a
state feedback controller and a corresponding certainty equivalence con-
troller that also achieve an L2 gain � 
. But Theorem 2.5 only give suf-
�cient conditions for the existence of a measurement feedback, certainty
equivalence controller achieving an L2 gain � 
.

The certainty equivalence principle holds in the linear case [2], [13] but
it is not known whether the certainty equivalence principle holds in the
general nonlinear setting. But the nonlinear certainty equivalence control
(2.31) is motivated by the fact that it maximizes

d

dt
Q (bx (t) ; t) = 
2

2
jy (t)� c (bx (t) ; t)j2 � 1

2
jk (bx (t) ; t)� u (t)j

2
: (2.33)

(iv) A function P (x; t) satisfying (2.19) is a potential Lyapunov function
for the system (2.1) under the state feedback (2.20) if the driving noise
w (t) = 0 because

d

dt
P (x (t) ; t) � �


2

2
jd (x (t) ; t)j

2

�
1

2

���� h (x (t) ; t)k (x (t) ; t)

����
2

:

If a (0; t) = 0, h (0; t) = 0,

�1 (jxj) � P (x; t) � �2 (jxj) (2.34)

where �i are functions of class K1 and the system is zero state detectable
through the output h (x (t) ; t) with zero inputs then the system under state
feedback is asymptotically stable to x = 0. Recall a real valued function is
of class K1 if it continuous, monotone increasing, �i (0) = 0 and �i (s)!
1 as s!1. A state x0 is detectable with respect to the output h (x (t) ; t)
with zero inputs if

��x0 (t)� x1 (t)
��! 0 whenever h

�
x0 (t) ; t

�
= h

�
x1 (t) ; t

�
where xi (t) is the trajectory satisfying xi (t0) = xi with zero inputs.

If Q (x; t) satis�es the inequality (2.30) with equality at x = bx (t) then
eQ (x; t) = Q (x; t)� Q (bx (t) ; t)

is a potential Lyapunov function for state estimation problem under the
measurement feedback bu (t) = k (bx (t) ; t), the worst case driving noise
w (t) = d (x (t) ; t) and zero observation noise v (t) = 0 because

d

dt
eQ (x (t) ; t) � �

1

2
2
Qxgg

0Q0

x
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�
1

2
jbu (t) � k (x (t) ; t)j2 �


2

2
jy (t)� c (bx (t) ; t)j2 :

If eQ (x; t) is uniformlybounded below and above by functions of classK1 as
in (2.34) then jbu (t)� k (x (t) ; t)j ! 0. If every state is detectable through
c (x (t) ; t) with inputs (2.20) and (2.21) then jbx (t) � x (t)j ! 0.
Finally we note that

eS (x; t) = P (x; t) + eQ (x; t)

is a potential Lyapunov function for the system under measurement feed-
back bu (t) = k (bx (t) ; t) with w (t) = 0 and v (t) = 0 because

d

dt
eS (x (t) ; t) � �1

2

���� h (x (t) ; t)k (bx (t) ; t)
����
2

:

�

2

2
jy (t)� c (bx (t) ; t)j2 :

If a (0; t) = 0, h (0; t) = 0, eS (x; t) is uniformly bounded below and above by
functions of class K1 as in (2.34) and the system is zero state detectable
through the output h (x (t) ; t) with zero inputs then jx (t)j ! 0. If the
system is also zero state detectable through the output c (x (t) ; t) with
zero inputs then jbx (t)j ! 0.

3 Linear Worst Case Control

We study the implications of Theorem 2.5 for linear time varying systems
of the form

�

x= A (t)x+B (t)u+ G (t)w (3.1)

y = C (t)x+ v (3.2)

z =

�
H (t)x

u

�
(3.3)

x (t0) = x0: (3.4)

As before the goal is to �nd a measurement feedback compensator that
achieves an L2 gain less than or equal to 
 in the sense of (2.7) for the
closed loop system. Because (3.1-3.4) is linear and (2.7) is quadratic we
expect that, when it exists, the compensator will be linear and the storage
functions, S; P and Q will be quadratic in x. Also because of the linear-
quadratic structure, the compensator will be �nite dimensional, optimal in
a game theoretic sense and each of the supply functions P (x; t) ; Q (x; t)
will be nonnegative. We shall derive only su�cient conditions based on
Theorem 2.5 but similar conditions are already known to be both necessary
and su�cient. See for example, Ba�sar-Bernhard [2] and Tadmor [13].

11
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Theorem 3.1 Suppose

(i) there exists a smooth

P (x; t) =
1

2
x0P (t)x

(please excuse the abuse of notation, P (x; t) is a scalar function, while
P (t) is n� n matrix) such that

P (t0) � 
2I (3.5)

P (t) � 0 for t � t0 (3.6)

�

P +A0P + PA+ P

�
1


2
GG0

� BB0

�
P +H0H � 0 (3.7)

K = �B0P (3.8)

D =
1


2
G0P (3.9)

(ii) there exists a smooth

Q (x; t) = q (t) +
1

2
(x� bx (t))0Q (t) (x� bx (t))

(Q (x; t) is a scalar function while Q (t) is a n � n matrix function) such
that

q (t0) = 0; Q (t0) � 
2I (3.10)

q (t) � 0; Q (t) > 0 for t � t0 (3.11)

�

q=

2

2
jy � Cbxj2 (3.12)

:bx= �A +BK
� bx+ 
2Q�1C0 (y �Cbx) (3.13)

�

Q +A
0

Q+QA +
1


2
QGG0Q� 
2C0C +K0K � 0 (3.14)

where
A = A+ GD (3.15)

then the �nite dimensional compensator de�ned by (3.13, 3.14) and

bu = Kbx (3.16)

achieves an L2 gain less than or equal to 
:

12
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The proof is a straightforward specialization of Theorem 2.5 and is
omitted.

Remarks:

(i) Notice that Q (t) does not depend on the observation, y (t) ; and can
be computed o�-line as in Kalman �ltering. The other parts of Q (x; t) ;
namely q (t) and bx (t) do depend on the observation y (t) : In the linear case,
the certainty equivalence control (3.16) is optimal because it maximizes
�

q (t) and hence q (t) ; see (2.33). Since Q (t) does not depend on y (t) and is
assumed to be positive de�nite, the certainty equivalence control maximizes
(over u (t)) the minimum (over x) of Q (x; t) :

(ii) In Theorem 3.1, P (t) is assumed to be nonnegative de�nite and Q (t)
is assumed to be positive de�nite while in Theorem 2.5, only the sum
S (x; t) = P (x; t)+Q (x; t) is required to be nonnegative. The discrepancy
is explained as follows. In (2.9) we assumed that Q (x; t) had a unique
minimum in x for each t. In the linear quadratic context of Theorem 3.1
this implies that Q (t) must be positive de�nite. Moreover in this context
we have

S (x; t) =
1

2
x0P (t)x+ q (t) +

1

2
(x� bx (t))0Q (t) (x� bx (t)) :

Now suppose y (t) = C (t) bx (t) then q (t) = 0 and bx (t) satis�es
:bx= �A+ BK

� bx
bx (0) = bx0:

It follows immediately that if S (x; t) � 0 for all x; t and bx0 then both P (t)
and Q (t) must be nonnegative de�nite. Neither depend on y (t) or bx0.
4 Extensions and Generalizations

Extensions and Generalizations of the Standard Worst Case

Control Problem

In this section we shall discuss several extensions and modi�cations of
the standard worst case control problem treated in Section 2. Some of
these can be handled by more or less straightforward modi�cations of the
previous results while others lead to open research topics.

4.1 Finite time interval

We consider a system on a �nite time interval [t0; tf ] and seek a causal
compensator that achieves an L2 gain less than or equal to 
 for the map-

13
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ping 2
664
x0ex0
w (t)
v (t)

3
775 7�!

2
4 x (tf )ex (tf )

z (t)

3
5 : (4.1.1)

In other words we seek a compensator that processes the initial state es-
timate bx0 and the past observations y (� ) ; t0 � � � t to obtain a control
action u (t) and �nal state estimate bx (tf ) so that for all x0; w (t) ; v (t)

jx (tf )j
2
+ jex (tf )j2 +

Z tf

t0

jz (t)j
2
dt

� 
2
���x0��2 + ��ex0��2 + Z tf

t0

jw (t)j
2
+ jv (t)j

2
dt

�
: (4.1.2)

We omit the proofs of the following theorems as they are slight modi-
�cations of those in Section 2. This problem has also been considered by
Lu [11].

Theorem 4.1 A causal compensator� bx0
y (� )

�
7�!

� bx (tf )
u (t)

�
t0 � � � t � tf (4.1.3)

achieves an L2 gain � 
 on [t0; tf ] i� there exists a causal mapping� bx0
y (� )

�
7�! S (x; t) t0 � � � t � tf (4.1.4)

such that for t0 � t1 � t2 � tf and all x0; xf

S
�
x0; t0

�
�


2

2

���x0��2 + ��ex0��2� (4.1.5)

S
�
xf ; tf

�
�

1

2

���xf ��2 + ��exf ��2� (4.1.6)

S (x (t) ; t)]t2t1 �

Z t2

t1


2

2

���� w (t)
v (t)

����
2

�
1

2
jz (t)j

2
dt: (4.1.7)

If exact state measurements are possible then we seek a state feedback
u = k (x (t) ; t) so that the closed loop system has L2 gain less than or equal
to 
 for the mapping �

x0

w (t)

�
7�!

�
x (tf )
z (t)

�
: (4.1.8)

14
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Theorem 4.2 The state feedback u = k (x; t) achieves an L2 gain � 
 on
[t0; tf ] i� there exists a P (x; t) such that for all t0 � t1 � t2 � tf and all
x0; xf

P
�
x0; t0

�
�


2

2

��x0��2 (4.1.9)

P
�
xf ; tf

�
�

1

2

��xf ��2 (4.1.10)

P (x (t) ; t)]t2t1 �

Z t2

t1


2

2
jw (t)j

2
�

1

2
jz (t)j

2
dt: (4.1.11)

Theorem 4.3 Suppose P (x; t) is C1 and satis�es (4.1.9) and (4.1.10) and
(2.19), then the state feedback (2.20) achieves an L2 gain � 
 on [t0; tf ]
for the mapping (4.1.8).

Theorem 4.4 Suppose there exists a smooth P (x; t) satisfying (4.1.9) and
(2.19) both with equality and let k (x; t) ; d (x; t) be as in (2.20,2.21). A
compensator (4.1.3) achieves an L2 gain � 
 for the measurement feedback
problem on [t0; tf ] in the sense of (4.1.2) i� there exists a causal conditional
storage function (2.24) such that

Q
�
x0; t0

�
�


2

2

��ex0��2 (4.1.12)

P
�
xf ; tf

�
+Q

�
xf ; tf

�
�

1

2

���xf ��2 + ��exf ��2� (4.1.13)

Q (x (t) ; t)]t2t1 �

Z t2

t1


2

2
jw � dj

2
+

2

2
jvj

2
�

1

2
ju� kj

2
dt: (4.1.14)

Note: In (4.1.13) exf = x (tf ) � bx (tf ) where bx (tf ) is given by (4.1.3)
and need not be the argmin of Q

�
xf ; tf

�
:

Theorem 4.5 Suppose for t 2 [t0; tf ]
(i) there exists a smooth P (x; t) satisfying (4.1.9) and (2.19) and

k (x; t) ; d (x; t) are de�ned by (2.20,2.21),
(ii) there exists a smooth Q (x; t) satisfying (4.1.12) with unique mini-

mum at bx (t) (2.29) and satisfying (2.30) with bu (t) given by (2.31),
(iii) P and Q satisfy (4.1.13).

Then the compensator (2.29-2.31) achieves an L2 gain � 
 on [t0; tf ] in
the sense of (4.1.2).

15
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4.2 Autonomous systems on in�nite time interval

Consider an autonomous version of the nonlinear system (2.1-2.4) such that
a (x) ; c (x) and h (x) are all zero at x = 0: Assume that for each pair of
noises w (t) ; v (t) ; there exists a t0 such that w (t) = 0; v (t) = 0; x (t) =
0; bx (t) = 0 for t � t0; and so y (t) = 0; z (t) = 0 for t � t0.

We seek a causal compensator

y (� ) 7! u (t) ; t0 � � � t (4.2.1)

which achieves an L2 gain � 


Z t1

t0

jz (t)j
2
dt � 
2

Z t1

t0

���� w (t)
v (t)

����
2

dt (4.2.2)

on any interval [t0; t1] over all pairs of noises w (t) ; v (t) with support
bounded below by t0.

Theorem 4.6 A causal compensator (4.2.1) achieves an L2 gain � 
 for
an autonomous version of (2.1-2.4) on (�1;1) i� there exists a causal
conditional storage

y (� ) 7! S (x; t) ; t0 � � � t (4.2.3)

such that for all t0 � t1 � t2 and all x1

S (0; t0) = 0 (4.2.4)

S
�
x1; t1

�
� 0 (4.2.5)

S (x (t) ; t)]t2t1 �

Z t2

t1


2

2

���� w (t)
v (t)

����
2

�
1

2
jz (t)j

2
dt: (4.2.6)

Proof: Suppose there exists S satisfying (4.2.4,4.2.5) then for any noises
w (t) ; v (t) and trajectory x (t) ; whose support is bounded below by t0 we
have

1

2

Z t1

t0

jz (t)j2 dt � S (x (t1) ; t1) +

2

2

Z t1

t0

���� w (t)
v (t)

����
2

dt

� S (x (t0) ; t0) +

2

2

Z t1

t0

���� w (t)
v (t)

����
2

dt

=

2

2

Z t1

0

���� w (t)
v (t)

����
2

dt:

On the other hand suppose, there exists a causal compensator (4.2.1)
which achieves an L2 gain � 
: That is, for each y (t) with support bounded

16
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below by some t0 there exists a causal u (t) also with support bounded below
by t0 such that for any t1 � t0 and any w (t) ; v (t) with support bounded
below by t0 and compatible with y (t)

0 �

Z t1

t0


2

2

���� w (t)
v (t)

����
2

�
1

2
jz (t)j

2
dt (4.2.7)

along the trajectories of the autonomous system and compensator start-
ing from x (t0) = bx (t0) = 0: For each measurement history y (t) ; de�ne
S
�
x1; t1

�
to be the in�mum of (4.2.7) over all w (t) ; v (t) compatible with

y (t) ; etc. It is straightforward to verify that S (x; t) satis�es (4.2.4, 4.2.5,
4.2.6).

Q.E.D.

If the state of the system is exactly measurable then it may be possible
to achieve an L2 gain for the mapping

w (t) 7�! z (t) (4.2.8)

by state feedback. Necessary and su�cient conditions for these to be pos-
sible follow immediately from the work of Willems [17] as extended by van
der Schaft [14],-[15] and Isidori Astol� [6].

Theorem 4.7 (Willems [17]) The autonomous state feedback u = k (x)
achieves an L2 gain � 
 for an autonomous version of (2.1-2.4) on (�1;1)
i� there exists a P (x) such that

P (0) = 0 (4.2.9)

P (x) � 0 (4.2.10)

P (x (t))]t2t1 �

Z t2

t1


2

2
jw (t)j2 �

1

2
jz (t)j2 dt: (4.2.11)

Proof: If there exists a P (x) satisfying (4.2.9-4.2.11) then clearly u = k (x)
achieves an L2 gain � 
: De�ne

P (x) = inf

Z t1

t0


2

2
jw (t)j

2
�

1

2
jz (t)j

2
dt: (4.2.12)

where the in�mum is taken over all t0 and all w (t) with support bounded
below by t0 and all t1 � t0 such that x (t1) = x: If no such w (t) ; t0; t1
exist then P (x) =1: It is straightforward to verify that P satis�es (4.2.9-
4.2.11).

Q.E.D.
Remarks: Willems calls the function P (x) de�ned by (4.2.12) the required
supply. An autonomous version of (2.1-2.4) is said to be reachable from zero
if for every x there exists a w (t) and t1 such that x (t0) = 0 and x (t1) = x:

The function P (x) de�ned by (4.2.12) is reachable i� P (x) <1; [17].

17
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Theorem 4.8 [14], [6]. Suppose P (x) is C1 and satis�es (4.2.9, 4.2.10)
and

Pxa+
1

2
Px

�
1


2
gg0 � bb0

�
P 0

x +
1

2
jhj

2
� 0 (4.2.13)

then
u = k (x) = �b0 (x)P 0

x (x) (4.2.14)

achieves L2 gain � 
 for the autonomous version of (2.1-2.4) on (�1;1) :
The \worst case" driving noise is

w = d (x) =
1


2
g0 (x)P 0

x (x) : (4.2.15)

The proof is omitted as it is very similar to that of Theorem 2.3. The
solvability of the partial di�erential inequality (4.2.13) and the correspond-
ing equality are discussed by van der Schaft [15].

Theorem 4.9 Suppose there exists a smooth P (x) satisfying
(4.2.9, 4.2.13) both with equality and let k (x) ; d (x) be de�ned by (4.2.14-
4.2.15). A measurement feedback compensator (4.2.1) achieves an L2 gain
� 
 for an autonomous version of (2.1-2.2) on (�1;1) i� there exists a
causal mapping

y (� ) 7! Q (x; t) t0 � � � t (4.2.16)

such that for all t0 � t1 � t2, all xw (t) ; v (t) with support bounded below
by t0

Q (0; t0) = 0 (4.2.17)

P (x) + Q (x; t) � 0 (4.2.18)

Q (x (t) ; t)]t2t1 �

Z t2

t1


2

2
jw � dj

2
+

2

2
jvj

2
�

1

2
ju� kj

2
dt: (4.2.19)

Again the proof is omitted as it follows closely the proof of Theorem

2.4.

Theorem 4.10 Suppose
(i) there exists a smooth storage function P (x) satisfying (4.2.9, 4.2.13)

and let k (x) and d (x) be de�ned by (4.2.14,4.2.15),
(ii) there exists a smooth conditional storage function Q (x; t) satisfying

(4.2.17) for all w (t) ; v (t) with support bounded below by t0 with a unique
minimum at bx (t) (2.29) and satisfying the partial di�erential inequality
(2.30) with control given by (2.31),

(iii)
P (x) +Q (x; t) � 0:

Then the compensator de�ned by (2.29-2.31) achieves an L2 gain � 
 for
an autonomous version of (2.1-2.4) on (�1;1) :

18
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The proof is omitted as it follows closely the proof of Theorem 2.5.

Remarks: The compensator de�ned by (2.29-2.30) is in�nite dimensional
and autonomous. Since the system (2.1-2.4be autonomous and k; d are au-
tonomous, the partial di�erential inequality (2.30) is autonomous except
for Q(x; t) ; y (t) and bu (t) : It is an autonomous in�nite dimensional com-
pensator. Further research is needed on �nite dimensional compensators
which approximate this in�nite dimensional compensator.

4.3 More general systems

Consider a nonlinear system of the form

�

x= a (x; t; u; w) (4.3.1)

y = c (x; t; u; w) (4.3.2)

z = h(x; t; u; w) (4.3.3)

x (t0) = x0: (4.3.4)

We present the generalization of the theorems of Section 2, drawing on
work of Ba�sar-Bernhard [2] and Isidori-Kang [7]. Previously we considered
quadratic supply rates of the form

s (x; t; u; w; v) =

2

2

���� wv
����
2

�
1

2

���� h (x; t)u

����
2

but in this more general context we allow any function s (x; t; u; w) : We
are primarily interested in supply rates which are concave in u, convex in
w and satisfy several additional conditions which shall be apparent in the
later development.

Following Willems [17], a state feedback

u = k (x; t) (4.3.5)

is dissipative on [t0;1) with respect to supply rate s (x; t; u; w) and initial
storage P 0

�
x0
�
if for every t1 � t0 and every x0; u (t) ; w (t)

0 � P 0
�
x0
�
+

Z t1

t0

s (x (t) ; t; u (t) ; w (t)) dt: (4.3.6)

A causal, measurement feedback compensator� bx0
y (� )

�
7! u (t) t0 � � � t (4.3.7)
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is dissipative on [t0;1] with respect to supply rate s (x; t; u; w) and initial
conditional storage S0

�
x0; bx0� if for every t1 � t0 and every x

0; u (t) ; w (t)

0 � S0
�
x0; bx0� + Z t1

t0

s (x (t) ; t; u (t) ; w (t)) dt: (4.3.8)

The following theorems are presented without proof as they are very
similar to those of Section 2.

Theorem 4.11 A measurement feedback compensator (4.3.7) is dissipa-
tive on [t0;1) with respect to supply rate s (x; t; u; w) and initial conditional
storage S0

�
x0; bx0� i� there exists a causal conditional storage� bx0

y (� )

�
7! S (x; t) t0 � � � t (4.3.9)

such that for all t0 � t1 � t2; and x0; x1; w (t) consistent with the observa-
tions y (t)

S
�
x0; t0

�
� S0

�
x0; bx0� (4.3.10)

S
�
x1; t1

�
� 0 (4.3.11)

S (x (t) ; t)]t2t1 �

Z t2

t1

s (x (t) ; t; u (t) ; w (t)) dt: (4.3.12)

Theorem 4.12 The state feedback (4.3.5) is dissipative on [t0;1) with
respect to the supply rate s (x; t; u; w) and the initial supply P 0

�
x0
�
i�

there exists a storage function P (x; t) such that for all t0 � t1 � t2; all
x0; x1; w (t)

P
�
x0; t0

�
� P 0

�
x0
�

(4.3.13)

P
�
x1; t1

�
� 0 (4.3.14)

P (x (t) ; t)]t2t1 �

Z t2

t1

s (x (t) ; t; u (t) ; w (t)) dt: (4.3.15)

Theorem 4.13 Suppose P (x; t) is C1 and satis�es (4.3.13, 4.3.14) and
suppose

u = k (x; t) (4.3.16)

w = d (x; t) (4.3.17)

satisfy for each x; t � t0

0 � inf
u

sup
w

(Pt + Pxa� s) = (Pt + Pxa� s)
j

u = k (x; t)
w = d (x; t)

: (4.3.18)

Then the state feedback (4.3.16) is dissipative on [t0;1) with respect to
supply rate s (x; t; u; w) and initial storage P 0

�
x0
�
:
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Theorem 4.14 Suppose there exists a smooth P (x; t) satisfying (4.3.13)
and (4.3.18) with equality for k (x; t) ; d (x; t) de�ned by (4.3.16-4.3.17). A
measurement feedback compensator (4.3.7) is dissipative on [t0;1) with
respect to supply rate s (x; t; u; w) and initial conditional storage

S0
�
x0; bx0� = P 0

�
x0
�
+ Q0

�ex0� (4.3.19)

i� there exists a causal conditional storage� bx0
y (� )

�
7! Q (x; t) t0 � � � t

such that for and t0 � t1 � t2; all x
0; x1; w (t) consistent with the observa-

tions y (t)
Q
�
x0; t0

�
� Q0

�ex0� (4.3.20)

P
�
x1; t1

�
+ Q

�
x1; t1

�
� 0 (4.3.21)

Q (x (t) ; t)]t2t1 �

Z t2

t1

es (x (t) ; t; u (t) ; w (t)) dt (4.3.22)

where

es (x; t; u; w) = s (x; t; u; w)� s (x; t; k (x; t) ; d (x; t)) : (4.3.23)

Theorem 4.15 Suppose

(i) there exists smooth P (x; t) and k (x; t) ; d (x; t) satisfying (4.3.13) and
(4.3.18),

(ii) there exists a smooth Q (x; t) satisfying (4.3.20) with unique minimum
at bx (t) bx (t) =arg

x

minQ (x; t) (4.3.24)

and satisfying the partial di�erential inequality

inf
w

(Qt +Qxa� es)j
u = bu (t) � 0 (4.3.25)

where the in�mum is overall w (t) consistent with the observations y (t) and

bu (t) = k (bx (t) ; t) ; (4.3.26)

(iii)
P (x; t) + Q (x; t) � 0:

Then the in�nite dimensional compensator (4.3.24-4.3.26) is dissipative on
[t0;1) with respect to the supply rate s (x; t; u; w) initial conditional storage
function S0

�
x0; bx0� ; in the sense of (4.3.8).
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4.4 Worst case estimation

Embedded in the measurement feedback compensators of the previous sec-
tions are worst case estimators similar to those of Mortensen [12] and Hijab
[4]. Consider the system

:
x= a (x; t) + g (x; t)w (4.4.1)

y = c (x; t) + v (4.4.2)

u = k (x (t) ; t) (4.4.3)

x (t0) = x0: (4.4.4)

As before w (t) ; v (t) are driving and observation noises. But u (t) is no
longer an input but rather it is an output that is to be estimated from
the past measurements, y (� ) ; t0 � � � t and the initial state estimate bx0.
Linear versions of this problem have been treated by Khargonekar-Nagpal
[10] and Ba�sar-Bernhard [2]. In particular we seek a causal estimator� bx0

y (� )

�
7! bu (t) t0 � � � t (4.4.5)

with an L2 error gain � 
; i.e., for any t0 � t1 and any x0; w (t) ; v (t)
consistent with the observations, y (t)

Z t1

t0

jk (x (t) ; t)� bu (t)j2 � 
2

 ��ex0��2 + Z t1

t0

���� w (t)
v (t)

����
2

dt

!
: (4.4.6)

The following two theorems are essentially specializations of Theorems 2.4
and 2.5 and proven in a similar fashion.

Theorem 4.16 A causal estimator (4.4.5) has an L2 error gain � 
 on
[t0;1) i� there exists a causal conditional storage function� bx0

y (� )

�
7! Q (x; t) t0 � � � t (4.4.7)

such that for any t0 � t1 � t2 and any x0; w (t) ; v (t) consistent with the
observation y (t)

Q
�
x0; t0

�
�


2

2

��ex0��2 (4.4.8)

Q
�
x1; t1

�
� 0 (4.4.9)

Q (x (t) ; t)]t2t1 �

Z t2

t1


2

2

���� w (t)
v (t)

����
2

�
1

2
jk (x (t) ; t)� bu (t)j2 dt: (4.4.10)
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Theorem 4.17 Suppose there exists a smooth Q (x; t) satisfying (4.4.8,4.4.9)
with unique minimum at bx (t)

bx (t) = argminQ (x; t) (4.4.11)

and satisfying the partial di�erential inequality

Qt + Qxa+
1

2
2
Qxgg

0Q0

x �

2

2
jy � cj

2
+

1

2
jk � buj2 � 0 (4.4.12)

where y = y (t) is the observation and bu = bu (t) is given by

bu (t) = k (bx (t) ; t) (4.4.13)

then the in�nite dimensional estimator (4.4.11-4.4.13) achieves an L2 error
gain � 
:

Remarks: As before

eQ (x; t) = Q (x; t)� Q (bx (t) ; t)
is a potential Lyapunov function for state estimation problem. See Remark
(iv) following Theorem (2.5).

5 Conclusions and Questions

We have presented necessary and su�cient conditions for worst case (H�in�nity
suboptimal) compensators and estimators in a variety of settings. The
compensators and estimators are generally in�nite dimensional. There are
several open questions.

Are there nonlinear systems that admit �nite dimensional compen-
sators, [16]? Are there e�ective �nite dimensional approximations? The
compensators are based on certainty equivalence, are there other kinds of
compensators?

References

[1] J. Ball, J.W. Helton and M. Walker. H1 2a control for nonlinear
systems via output feedback, IEEE Trans. Auto. Con. 38 (1993), 546-
559.

[2] T. Ba�sar and P. Bernhard. H1 Optimal Control and Related Minimax
Design Problems. Boston: Birkh�auser, 1990.

[3] J.C. Doyle, K. Glover, P.P. Khargonekar and B.A. Francis. State space
solutions to standard H2 andH1control problems, IEEE Trans. Auto.
Con. 34 (1989), 831-846.

23



A.J. KRENER

[4] O.B. Hijab Minimum Energy Estimation, Ph.D. dissertation, Univ. of
Calif., Berkeley, 1980.

[5] D. Hill and P. Moylan. The stability of nonlinear dissipative systems,
IEEE Trans. Auto. Con. 21 (1976), 708-711.

[6] A. Isidori and A. Astol�. Nonlinear H1control via measurement feed-
back, J. Math Sys. Est. Con. 2 (1992), 31-44.

[7] A. Isidori and W. Kang. H1 control via measurement feedback for
general nonlinear systems, IEEE Trans. Auto. Con., to appear.

[8] M.R. James, J.S. Baras and R.J. Elliott. Output Feedback Risk{
Sensitive Control and Di�erential Games for Continuous{Time Non-
linear Systems, 32nd IEEE CDC, San Antonio, Dec. 1993.

[9] M.R. James and J.S. Baras. Robust Output Feedback Control for
Discrete-Time Nonlinear Systems, IEEE Trans. Auto. Con., to ap-
pear.

[10] P.P. Khargonekar and K.M. Nagpal, Filtering and smoothing in an
H1 setting. Proc. of 29th IEEE CDC (1989), 415-420.

[11] W.-M. Lu. H1 control of nonlinear time-varying systems with �-
nite time horizons, Control and Dynamical Systems, Caltech, 1993,
preprint.

[12] R.E. Mortensen. Maximum likelihood recursive nonlinear �ltering, J.
Optimization Theory and Applic. 2 (1968), 386-394.

[13] G. Tadmor. Worst-case design in the time domain: the Maximum
Principle and the standard H1 problem. Math. Con. Sign. Sys. 3
(1990), 301-324.

[14] A.J. van der Schaft. L2 gain analysis of nonlinear systems and non-
linear state feedback H1 control, IEEE Trans. Auto Con. 37 (1992),
770-784.

[15] A.J. van der Schaft. Nonlinear state space H1 control theory. In Es-
says on Control. H.L. Trentelman and J.C. Willems, eds. Boston:
Birkh�auser, (1993), 153-190.

[16] A.J. van der Schaft. Nonlinear systenms which have �nite-dimensional
H1 suboptimal central controllers. Proc of 33rd IEEE CDC, (1993).

[17] J.C. Willems. Dissipative dynamical systems, Part I: General Theory.
Arch. Rat. Mech. Anal. 45 (1992), 321-351.

24



CONTROL AND ESTIMATION

Department of Mathematics and Institute of Theoretical Dy-

namics, University of California, Davis, CA 95616-8633

Communicated by Clyde F. Martin

25


