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Abstract

This paper deals with exponential representations which provide

a uni�ed framework to study discrete-time and sampled dynamics.

This is illustrated by the study of the problems of linear and linear

feedback equivalences for nonlinear discrete-time as well as sampled

dynamics.
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1 Introduction

Nonlinear control theory has been initialized with the study of bilinear or

polynomial state dynamics which present the interest of involving matri-

ces algebra (see [3, 4], [23, 24], for example). In fact, at �rst, bilinear

equations were considered, in both continuous-time and discrete-time do-

mains, as rather general with respect to their nonlinearity but quite struc-

turally simple \nearly linear systems." This feeling was rapidly denied by

the di�culties already encountered when studying bilinear dynamics and

encouraged speci�c study in continuous-time and discrete-time contexts

respectively.

In spite of recent developments and an increasing interest (see in various

mathematical frameworks the references, [2], [5] - [7], [9, 10], [13] - [17],

[19], [21], related to the problem here studied), nonlinear control theory

in discrete time is still less understood than in continuous time. There

are many reasons for this, such as the di�culty of setting local concepts,
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extensively studied in the continuous-time case, and the loss of geometric

properties even assuming an a�ne structure of the state equations with

respect to the control.

In the linear context, many of the above-mentioned di�culties obviously

do not occur, since the linear structure is preserved under sampling. The

result is that digital control problems, set on the basis of continuous-time

models, are solved with respect to the sampled dynamics interpreted as a

discrete-time model. This is quite di�cult in a nonlinear context where

structural properties are generally not preserved under sampling. Bilinear

equations are transformed into state a�ne equations and linear analytic

equations are transformed into general nonlinear di�erence equations.

A recently developed orientation of research concerns sampled nonlinear

systems and the preservation of control properties under sampling ([1], [18],

[20], [25, 26]). The motivation is very practical since most of the physical

systems are modelled by di�erential equations while controlled by digital

computers.

The object of this paper is to associate an exponential representation

to nonlinear discrete-time and sampled dynamics. In both cases, these

representations are identical except with reference to the vector �elds in-

volved, referred to as canonical vector �elds. The terminology is due to

the fact that these canonical vector �elds and their Lie algebras have been

shown to characterize controllability, invariance and control properties of

the dynamics to which they are associated ([2], [15], [20, 21], [26]).

The uni�ed representation introduced here facilitates comparative stud-

ies between discrete-time, sampled and continuous-time dynamics.

The �rst results making use of vector �elds in the study of discrete time

systems were obtained in [7], [14], [17].

In [21], it has been shown how linear and bilinear dynamics re
ect in the

structure of these exponential representations. This analysis is reinforced

in the present paper and illustrated by the study of linear equivalence

and feedback linear equivalence of discrete-time systems as well as systems

under sampling.

In a discrete-time context, it is shown that necessary and su�cient

conditions for linear and linear feedback equivalences can be checked in

terms of the canonical vector �elds associated to the considered discrete-

time dynamics. A comparison between the stated results and those known

in a continuous-time domain enables to stress very strong analogies with

continuous linear equivalences of generally nonlinear di�erential equations

([27, 28]).

When sampled systems are considered, many properties of the associ-

ated canonical vector �elds can be stressed. This concerns their expressions

as series expansions in the sampling period � which satisfy combinatoric

recurrent relations ([20]). In particular, when linear analytic systems are
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sampled, these relations give peculiar conditions for solving linear, and lin-

ear feedback equivalences reinforcing a conjecture stated in [10] and solved

in [1] for n = 2: \linear feedback equivalence under sampling implies lin-
ear equivalence". With respect to this last problem, the results already

obtained in [1] are here expressed in terms of these canonical vector �elds.

The paper is organized as follows. The uni�ed exponential represen-

tation for drift invertible dynamics is introduced in Sections 2 and 3 for

discrete-time and sampled systems. Sections 4 and 5 deal with linear and

linear feedback equivalences in both discrete-time and sampled contexts.

Throughout the paper single input single output systems are investigated

but all the results can be extended to the multi input multi output case,

just requiring extended notations.

2 Exponential Representation of Discrete-Time Dy-

namics

Consider a nonlinear drift invertible discrete-time system

x(k + 1) = F (x(k); u(k)) (2.1)

y = H(x); (2.2)

where x 2 M is a smooth n-dimensional manifold, F : M � R! M and

H : M ! R are analytic functions. Assume the drift term F0(:) := F (:; 0)

invertible and denote by (xe; 0) a equilibrium point of F . Denoting by

\Id" the identity function and by I the identity operator, the following

main result can be stated:

Theorem 2.1 The discrete-time dynamics (2.1) admits the exponential
representation

x(k + 1) = eu(k)G
0(:;u(k))[Id]

���
F0(x(k))

; (2.3)

where G0(:; u) :=M ! TxM is a smooth vector �eld parametrized by u.

The proof follows from Propositions 2.1, 2.2 and 2.3 below. For this, let us

introduce the vector �eld

G0
1(x; u) :=

@

@�

���
�=0

F (F�1(x; u); u+�) = (
@

@�

���
�=0

F (:; u+�))
���
F�1 (x;u)

(2.4)

and de�ne

G0
1(x) := G0

1(x; 0) (2.5)

G0
i (x) :=

@i�1

@ui�1

���
u=0

G0
1(x; u) 8i > 1; (2.6)
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so that

G0
1(x; u) = G0

1(x) +
X
i�1

ui

i!
G0
i+1(x): (2.7)

Denoting by G0
i the Lie derivative associated to the vector �eld G0

i (:), such

operator is manipulated in the sequel as a formal operator. By conven-

tion, G0
i is said to be of degree i, so that homogeneous polynomials, Lie

polynomials and series with respect to these operators can be de�ned.

Denoting by Pi(G
0
1; : : : ; G

0
i ) a generic homogeneous polynomial of de-

gree i, one de�nes (Pi+1)
+(G0

1; : : : ; G
0
i+1) as the homogeneous polynomial of

degree i+1, deduced from Pi by substituting (G
0
i1+1

G0
i2
: : :G0

im
+G0

i1
G0
i2+1

: : :G0
im
+ : : :+G0

i1
G0
i2
: : :G0

im+1) to the generic mononomialG0
i1
G0
i2
: : :G0

im

appearing in Pi(G
0
1; : : : ; G

0
i ). According to these notations, it has been

proved in [19] that

Proposition 2.1: ([19]) F (F�1
0 (x); u) admits the series expansion

F (F�1
0 (x); u) = (I +

X
i�1

ui

i!
Pi(G

0
1; : : : ; G

0
i ))[Id]

���
x
; (2.8)

where the Pi(G
0
1; : : : ; G

0
i ) are homogeneous polynomials of degree i which

can be recursively computed from P1(G
0
1) = G0

1 according to the relation

Pi(G
0
1; : : : ; G

0
i ) = G0

1�Pi�1(G
0
1; : : : ; G

0
i�1) + (Pi�1)

+(G0
1; : : : ; G

0
i�1): (2.9)

Moreover,

Proposition 2.2: ([19]) Any polynomial Pi(G
0
1; : : : ; G

0
i ) for i � 1 admits

the decomposition

Pi(G
0
1; : : : ; G

0
i ) =

X
i1;:::;im

�ij
=i

c(i1; : : : ; im)G
0
i1
� : : :�G0

im
; (2.10)

where the real coe�cients c(i1; : : : ; im) verify the shu�e relations

c(i1)c(i2) = c(i1; i2) + c(i2; i1) = c(i1! i2)

c(i1)c(i2; i3) = c(i1; i2; i3) + c(i2; i1; i3) + c(i2; i3; i1) = c(i1! i2i3)

:::: :::: :

The shu�e product \! " is de�ned in a recursive way as follows ([4], [22])

1! i1 = i1! 1 = i1

i1! i2 = i2! i1 = i1i2 + i1i2

i1 : : : im! j1 : : : jp = i1(i2 : : : im! j1 : : : jp) + j1(i1 : : : im! j2 : : : jp)

::::::::: ::::::::: :
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Sketches of Proofs: First, from (2.4) one deduces

@

@u
F (x; u) =

@

@�

���
�=0

F (x; u+ �) = G0
1(F (x; u); u); (2.11)

that is for u = 0

@

@u

���
u=0

F (x; u) = G0
1(F0(x); 0) = G0

1[Id]
���
F0(x)

;

or, equivalently in (2.8),

P1(G
0
1) = G0

1:

Successively deriving G0
1(F (x; u); u) with respect to u , one computes from

(2.11)

@2

@u2

���
u=0

F (x; u) =
@

@u

���
u=0

(G0
1(F (x; u); u))

=
@

@x
G0
1(:)

���
F0(x)

:
@

@u

���
u=0

F (x; u) +
@

@u

���
u=0

[G0
1(F0(x); u)];

that is, because of (2.6),

@2

@u2

���
u=0

F (x; u) = G0
1�G

0
1[Id]

���
F0(x)

+G0
2[Id]

���
F0(x)

;

or, equivalently in (2.8),

P2(G
0
1; G

0
2) = G0

1�P1(G
0
1) + (P1)

+(G0
1) = G0

1�G
0
1 +G0

2;

according to G0
2 := (P1)

+(G0
1) := (G0

1)
+ .

Iterating the reasoning, one recovers (2.8) and (2.9) in Proposition (2.1).

Q.E.D.

The proof of Proposition (2.2) is an immediate consequence of recurrence

(2.9). In fact, keeping in mind that the operation \+" corresponds to the

derivation with respect to u:, (2.9) exactly reproduces the derivation of a

composed function and thus helps to recover the shu�e relations for the

coe�cients appearing in the right-hand side of (2.10).

Remark 2.1: (2.10) gives a series representation of the function F (F�1
0 (:);

u) in terms of compositions of �rst order di�erential operators applied to

the identity function.

Proposition 2.3: uG0(:; u) in (2.3) is a Lie element in the vector �elds
G0
i 's which takes the form

uG0(:; u) =
X
i�1

ui

i!
Bi(G

0
1; : : : ; G

0
i ); (2.12)
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where Bi(G
0
1; : : : ; G

0
i ) is a homogeneous Lie polynomial of degree i for i � 1.

Proof: Introducing the formal operator P , the right-hand side of (2.8) can

be written as

(I + P )[Id]
���
x
= (I +

X
k�1

uk

k!
Pk)[Id]

���
x
: (2.13)

Interpreting the powers of P as successive compositions of non-commuting

di�erential operators, the usual formal logarithmic expansion can be ap-

plied

Log(1 + P ) = P �
P 2

2
+
P 3

3
�
P 4

4
+ : : : : (2.14)

Now, substituting (2.10) intoPk in (2.14), one deduces from ([22]) that

uG0(:; u) is a Lie element in the G0
i 's because the coe�cients c(i1; : : : ; im)

in (2.10) verify the shu�e relations. This means that Log(1 +P ) admits a

series representation in powers of u, the coe�cients of which are homoge-

neous Lie polynomials in the G0
i 's. Q.E.D.

Remark 2.2: Taking the formal logarithmic expansion (2.14) of (2.8), the

coe�cient of the i-th power in u in (2.12) can be computed as

Bi(G
0
1; : : : ; G

0
i ) = i!

iX
m=1

(�1)m+1

m

X
i1;:::;im�1

i1+:::+im=i

Pi1� : : :�Pim
i1! : : : im!

; (2.15)

which completely speci�es Bi as a polynomial of degree i in the G0
j 's once

every polynomial Pk is replaced by its expression set in (2.10). As pre-

viously stated, from [22] it is known that an adequate regrouping of the

terms in (2.15) gives rise to a homogeneous Lie polynomial of degree i.

Even if a simple Lie decomposition of the general polynomial Bi is not

available, one obtains for the �rst terms

B1 = G0
1; B2 = G0

2; B3 = G0
3 + 1=2[G0

1; G
0
2]; B4 = G0

4 + [G0
1; G

0
3]:

(2.16)

Proof of Theorem 2.1: The construction of the exponential representa-

tion, stated in Theorem 2.1 is easily deduced from Propositions (2.1) and

(2.2) noting that the forced evolution around the drift of the dynamics (2.1)

can be written as

F (F�1
0 (x); u) = euG

0(:;u)[Id]
���
x
: (2.17)

Because of Proposition (2.3), uG0(:; u) is a smooth vector �eld. Q.E.D.

The exponential representation (2.3) is a basic instrument for expand-

ing, around the free evolution, the state and output evolutions of (2.1),

(2.2) in powers of the controls. For, as in [19] (see also [14]), let us denote
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by Gp(x; u) the smooth vector �eld obtained by transporting G0(:; u) along

the free evolution F
p
0 (:). More precisely let, for p > 0

Gp(x; u) := Jx(F
p
0 )
���
F
�p

0
(x)
G0(F

�p
0 (x); u)): (2.18)

Corollary 2.1: The state evolution of (2.1) can be expressed as

x(k) = eu(0)G
k�1(:;u(0))

� : : :�eu(k�1)G
0(:;u(k�1))[Id]

���
Fk
0
(x0)

; (2.19)

where the Gp(x; u(k� p� 1)) :=M ! TxM , de�ned in (2.18), are smooth
vector �elds parametrized by u(k � p� 1) for p = 0; : : : ; k� 1.

Proof: Let us de�ne from G0
1(x; u) in (2.4) the next vector �elds for p > 0

and i > 1

G
p
1(x; u) := Jx(F

p
0 )
���
F
�p

0
(x)

G0
1(F

�p
0 (x); u))

G
p
i (x) := Jx(F

p
0 )
���
F
�p

0
(x)
G0
i (F

�p
0 (x)): (2.20)

Based on (2.17) and (2.20), (2.8), (2.9) and (2.10) are true with the

superscript p instead of 0, so that euG
p(:;u)[Id]

���
x
is an exponential repre-

sentation of the function F
p
0 �F:(:; u)�F

�p�1
0 (x). Denoting such a function

by Rp(x; u), it is easily veri�ed that

x(k) = R0(:; u(k� 1))�R1(:; u(k� 2))� : : :�Rk�1(:; u(0))�F k
0 (x0):

Since each function Rp(:; u) admits the exponential representation euG
p(:;u)

[Id], the general theory of composition of Lie series can be applied ([12])

and the identities hereunder follow

Ri(:; u)�Rj(:; u) = Ri(:; u)(euG
j(:;u)[Id])

= euG
j(:;u)[Ri(:; u)]

= euG
j(:;u)

�euG
i(:;u)[Id]:

It results that

x(k) = (F (:; u(k� 1))�F�1
0 )�(F0�F (:; u(k� 2))�F�2

0 )� : : :

�(F�k�1
0 �F (:; u(0))�F�k

0 )�F k
0 (x0);

that is

x(k) = eu(0)G
k�1(:;u(0))

� : : :�eu(k�1)G
0(:;u(k�1))[Id]

���
Fk
0
(x0)

;
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which ends the proof of Corollary 2.1. Q.E.D.

The same arguments of the proof of Corollary 2.1 can be used to show

that

Corollary 2.2: The output evolution of (2.1)-(2.2) can be expressed as

x(k) = eu(0)G
k�1(:;u(0))

� : : : �eu(k�1)G
0(:;u(k�1))[H]

���
Fk
0
(x0)

; (2.21)

where the Gp(x; u(k� p� 1)) :=M ! TxM , de�ned in (2.18), are smooth
vector �elds parametrized by u(k � p� 1) for p = 0; : : : ; k� 1.

It is useful to point out how an a�ne structure of F (x; u), that is of the

form F0(x) + uF1(x), re
ects into the exponential representation. For, the

following result can easily be proved setting in (2.8) for i � 2 : Pi[Id]
���
x
= 0.

Proposition 2.4: The exponential representation (2.3) describes a drift
invertible linear analytic dynamics if and only if

G0
2+i = �

iX
p=0

c
p
i Jx(G

0
i+1�p)G

0
p+1 8i � 0;

with c
p
i =

i!
p!(p�i)! .

So far, the exponential representation (2.1) has been associated to a drift

invertible nonlinear discrete-time dynamics. The vector �elds Gk
i which

characterize such a representation will be said to be the canonical vector
�elds associated to the discrete-time dynamics (2.1). They have been shown

to characterize controlled invariant distributions and the controllability Lie

algebra in the nonlinear discrete-time case in [7], [14, 15], [17]. In [21], it has

been shown how linearity and bilinearity of the dynamics re
ect into the

structure of these canonical vector �elds. Hereafter, it will be shown how

the conditions of linear and linear feedback equivalences can be expressed

in terms of them providing a uni�ed approach for studying discrete-time

and sampled dynamics. Some more properties will be pointed out.

Proposition 2.5: Under the coordinate change z = f(x) the canonical
vector �elds (2.6) and (2.20) associated to (2.1) are transformed into

~Gj
i (z) = Jx�

���
��1(z)

:Gj
i (�

�1(z)); i � 1; j � 0: (2.22)

Proof: Let us �rst show that (2.22) holds for ~G0(:; u). For

z(k + 1) = eu
~G0(:;u)[Id]

���
~F0(z(k))

= ~F0(z(k)) + u ~G0( ~F0(z(k)); u) + : : :

8
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= �(euG
0(:;u)[Id]

���
F0(x(k))

)
���
��1(z(k))

= euG
0(:;u)[�]

���
F0(��1(z(k)))

= �(F0(�
�1(z(k)))) + u(Jx�:G

0(:; u))
���
F0(��1(z(k)))

+ : : :

and

(Jx�:G
0(:; u))

���
F0(��1(z(k)))

= ((Jx�:G
0(:; u))

���
��1( ~F0(z(k)))

:

It follows from (2.6) that

~G0
i (z) = (Jx�:G

0
i (:))

���
��1(z)

:

Similar arguments can be used to show that

~G1(z; u) = (Jz ~F0: ~G
0(z; u))

���
~F�1
0

(z)
= (Jx�:G

1(:; u))
���
��1(z)

and �nally (2.22). Q.E.D.

The relative degree associated to a discrete-time system can be set in

terms of the Gk
i (x). For, recall that

De�nitions 2.1:

a. The discrete-time system (2.1)-(2.2) is said to have a relative degree r

at a point x0 if

(i) @
@u
H�F k

0 �F (x; u) 6= 0; 0 � k < r � 1

(ii) @
@u
H�F r�1

0 �F (x0; u) 6= 0.

b. It is said to have a strong relative degree r at a point x0 if (ii) holds at
u = 0.

Proposition 2.6: The discrete-time system (2.1)-(2.2) has a relative de-
gree r at an equilibrium point xe if and only if

(i)' LGk
i
[H]

���
x
6= 0; i � 1; 0 � k < r � 1

(ii)' for some i � 1; LGr�1

i
[H]

���
xe

6= 0.

It has a strong relative degree r if and only if condition (ii)' holds for i = 1.

Proof: From de�nitions (2.1) the output evolution initialized at x0 do not

depend on u up to time t = r� 1 while y(r) depends on u(0). With this in

mind, from (2.21) with x0 = xe, the necessity immediately follows.

9
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As far as su�ciency is concerned, note that (i)' implies

H�F k
0 �F (x; u) = euG

k(:;u)[H]
���
(Fk+1

0
(x))

= H�F k+1
0 (x); 0 � k < r � 1:

Similarly, note that the equality

H�F r�1
0 �F (xe; u) = euG

r�1(:;u)[H]
���
Fr
0
(xe)=xe)

= euG
r�1(:;u)[H]

���
xe

;

implies that (ii) is satis�ed, once (ii)' is assumed. Q.E.D.

De�ning a regular feedback as a smooth function 
 :M �R! R, such

that 
(xe; 0) = 0 and
@

@u

���
u=0


(xe; u) 6= 0 (2.23)

one has

Proposition 2.7: Given the discrete-time system (2.1)-(2.2), initialized
at an equilibrium point (xe; 0), its relative degree is invariant under coor-
dinates transformations and feedback.

Proof: The invariance under coordinates transformation follows immedi-

ately from (2.22) and Proposition 2.5.

As far as feedback is concerned, note that for 0 � k � r � 1

H�F k(x; 
(x; 0)) = H�F k
0 (x) (2.24)

In fact, (2.24) is obviously veri�ed for k = 0.

By induction, suppose it is true for some 0 < k < r � 1. Then

H�F k+1(x; 
(x; 0)) = H�F k(:; 
(:; 0))�F (x; 
(x; 0))

= H�F k
0 (:)�F (x; 
(x; 0)) = H�F k+1

0 (x)

since
@

@u
H�F k

0 (:)�F (x; u) = 0:

This shows that the equality holds for k+1, which means that condition (i)

in de�nition (2.1) holds. Moreover from (2.24), because of (ii) and (2.23),

one deduces that

@

@u
H�F r�1(:; 
(:; 0))�F (xe; 
(xe; u))

=
@

@u
H�F r�1

0 (:)�F (xe; u):
@
(xe; u)

@u
6= 0;

which completes the proof of Proposition (2.7). Q.E.D.
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3 Exponential Representation of Sampled Dynamics

Consider a linear analytic continuous-time system of the form

_x(t) = f(x(t)) + u(t)g(x(t)) (3.1)

y = h(x); (3.2)

where x(t) belongs toRn, f and g are analytic vector �elds, h is an analytic

function and the control is constant over time intervals of amplitude � :

u(t) = u(k) for k� � t < (k + 1)�; k � 0. The sampling time � is

supposed to belong to ]0; �0[ where �0 is chosen small enough to ensure

the convergence of the series expansions with respect to � manipulated

throughout the paper.

De�nition 3.1: The nonlinear discrete-time dynamics

x(k + 1) = F �(x(k); u(k)) = F �
0 (x(k)) +

X
i�1

u(k)i

i!
F �
i (x(k)) (3.3)

is said to be sampled equivalent to (3.1) if, at each sampling instant t = k�,
the equality x(k) = x(t) is veri�ed whenever x(0) = x(t = 0).

Recurrent expressions for the functions F �
i can be obtained by means

of integro-di�erential formulae based on the Poincar�e expansion of the 
ow

associated to (3.1) or by means of combinatoric relations as proposed in

[20].

The main result of this section is represented by the following theorem

which parallels Theorem 2.1:

Theorem 3.1 The sampled dynamics (3.3) can be expressed as

x(k + 1) = eu(k)E
�(:;u(k))[Id]

���
e�f (x(k))

; (3.4)

where uE�(:; u) is a smooth vector �eld parametrized by u.

As previously stated, the proof of Theorem 3.1 follows from Propositions

3.1, 3.2 and 3.3 below, which are parallel to Propositions 2.1, 2.2 and 2.3.

In fact, to enlighten this parallelism, one has to substitute to the vector

�elds Gk
i manipulated in Section 2 the vector �elds (E�

i )
k introduced in

the sequel. For, let ([20])

E�
1(x; u) :=

@

@�

���
�=0

e�(�f+�ug)e�f+�ug+��g [Id]
���
x

(3.5)

and de�ne

E�
1[Id]

���
x

= E�
1(x; 0)

E�
i+1[Id]

���
x
: =

@i

@ui

���
u=0

E�
1(x; u) for i � 1;

11
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so that

E�
1(x; u) = E�

1[Id]
���
x
+
X
i�1

ui

i!
E�
i+1[Id]

���
x
:

With the conventions set in Section 2 with respect to the G0
i 's and hereafter

with respect to the E�
i 's, the following result can be proved arguing as

previously.

Proposition 3.1: ([20]) e��f e�f+�ug admits the series expansion

e��f e�f+�ug = 1 +
X
i�1

ui

i!
P �
i (E

�
1; : : : ; E

�
i ); (3.6)

where the P �
i 's are homogeneous polynomials of degree i which can be re-

cursively computed from P �
1 (E

�
1) = E�

1 according to the relation

P �
i (E

�
1; : : : ; E

�
i ) = E�

1�P
�
i�1(E

�
1; : : : ; E

�
i�1) + (P �

i�1)
+(E�

1; : : : ; E
�
i�1): (3.7)

Moreover

Proposition 3.2: ([20] ) Any polynomial P �
i (E

�
1 ; : : : ; E

�
i ) for i � 1 admits

the decomposition

P �
i (E

�
1; : : : ; E

�
i ) =

X
i1;:::;im

�ij
=i

c(i1; : : : ; im)E
�
i � : : :�E

�
im
;

where the real coe�cients c(i1; : : : ; im) verify the shu�e relations.

Sketches of Proofs: First, from (3.5) one deduces

@

@u
e�f+u�g =

@

@�

���
�=0

e�f+(u+�)�g = e�f+u�g�E�
1(:; u); (3.8)

that is, for u = 0

P �
1 (E

�
1) = E�

1: (3.9)

Moreover in (3.6), from (3.8) one computes

@2

@u2

���
u=0

e�f+u�g =
@

@u

���
u=0

(
@

@u
e�f+u�g) =

@

@u

���
u=0

e�f+u�g�E�
1(:; u)

=
@

@u

���
u=0

(e�f+u�g )�P �
1 (E

�
1) + e�f �

@

@u

���
u=0

E�
1(:; u)

= e�f �E�
1�P

�
1 (E

�
1) + e�f �E�

2 ;

that is,

P �
2 (E

�
1; E

�
2) = E�

1�P
�
1 (E

�
1) + (P �

1 )
+(E�

1) = E�
1�E

�
1 + E�

2; (3.10)

12
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according to E�
2 = (E�

1)
+ de�ned in (3.6). Iterating the reasoning, one

recovers (3.7).

The same reasoning as in Section 2 holds to prove Proposition 3.2.

Q.E.D.

Proposition 3.3: E�(:; u) in (3.3) is a Lie element in the vector �elds
E�
i 's which takes the form,

uE�(:; u) =
X
i�1

ui

i!
Bi(E

�
1; : : : ; E

�
i ); (3.11)

where Bi(E
�
1; : : : ; E

�
i ) is a homogeneous Lie polynomial of degree i.

For the �rst terms, one obtains as previously

B�
1 = E�

1 ; B�
2 = E�

2; B�
3 = E�

3 + 1=2[E�
1; E

�
2]; B�

4 = E�
4 + [E�

1; E
�
3];

The proof of Proposition 3.3 and Theorem 3.1. is achieved with the same

arguments used in Section 2.

De�ning as in (2.20) from E�
i the transported vector �elds (E�

i )
k, one

has

(E�
i )
k := e��kf�E�

i �e
�kf = e�k�adfE�

i ; i � 1; k > 0: (3.12)

Remark 3.1: Proceeding further the analogies between the discrete-time

and sampled dynamics, the analogous of Corollary 2.1 and 2.2 can be stated

for a sampled dynamics. Moreover coordinates changes on f and g re
ect

on transformed vector �elds E�
i as in Proposition 2.4.

Because of the sampled context, the following insight in the particular

structure of the vector �elds can be done arguing as in [8]. The vector

�elds E�
i are computed from the continuous dynamics by means of ([20])

E�
1 =

1� e��adf

�adf
(�g)

E�
2 =

1� �adf � e��adf

�2ad2f
! �adg(�g) (3.13)

::::::::::::: :::::::::::::: ;

where \! " denotes the shu�e product, \ad" the usual Lie bracket operator

and where the quotient must be interpreted as a formal cancellation.

Remark 3.2: Denoting by L the Lie algebra generated by f and g and by

L0 the Lie ideal of L generated by g, it follows from (3.13) that

E�
i 2 L

i
0 i � 1;

13
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where L1
0 = L0 and for i � 2; Li0 = [L1

0; L
i�1
0 ], (decreasing sequence of

ideals).

It is interesting to note that the vector �elds (3.6) satisfy the follow-

ing Lie decomposition, which fully characterize their structure and play a

central role when studying the inverse problem of the discretization. More

precisely, one can state

Theorem 3.2 The vector �elds E�
i satisfy

E�
2 =

Z �

0

[(E�
1 )
0; E�

1 ]d� (3.14)

or equivalently
(E�

2)
0 = [(E�

1)
0; E�

1]: (3.15)

Proof: Note that integrating by parts (3.10) yields to the equality

P �
2 (E

�
1 ; E

�
2) =

Z �

0

(E�
1 )
0
�E�

1d� +

Z �

0

E�
1�(E

�
1 )
0d� +E�

2 : (3.16)

On the other side, from Poincar�e integro-di�erential formulae set in

[20] and based on the integration of the Volterra kernels characterizing the

input-state evolution associated to the dynamics (3.1), one has

P �
2 (E

�
1; E

�
2) = 2

Z �

0

(E�
1 )
0
�E�

1d�: (3.17)

Combining (3.16) and (3.17), one easily obtains (3.14) and (3.15). Q.E.D.

Remarks 3.3:

(i) Denoting by ()0 the derivative with respect to � and ()+ the derivative

with respect to u it can also be proved that

(E�
i+1)

0 := ((E�
i )

+)0 = ((E�
i )
0)+ (3.18)

and

(E�
i )
0 = �(i � 1)adgE

�
i�1 � adfE

�
i i � 2 (3.19)

with

(E�
1)
0 = g � adfE

�
1: (3.20)

(ii) The relative degree of a sampled system is, generically with respect to

�, equal to 1 ([18]).

(iii)A necessary and su�cient condition for maintaining the linear analytic

structure (F �
j (x) = 0 for j � 2) under sampling is given by

E�
2+i(x) = �

iX
p=0

c
p
i Jx(E

�
i+1�p):G

�
p+1(x) 8i � 0: (3.21)

14
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4 Linear Equivalence

How do intrinsic properties of the dynamics re
ect on the canonical vector

�elds so far introduced? In this section, linear equivalences in discrete-time

and under sampling will be investigated from this point of view.

De�nition 4.1: A nonlinear system is locally linear equivalent if there
exists a smooth coordinate change, z = �(x) around xe , under which the
system is transformed into a linear controllable one.

Linear equivalence under sampling will denote,with respect to the sampled
dynamics, linear equivalence for any � 2]0; �0[.

4.1 Discrete-time linear equivalence

Starting from a single input linear dynamics on Rn of the form

x(k + 1) = F (x(k); u(k)) = Ax(k) +Bu(k); (4.1)

where A and B are matrices of suitable dimensions, it can immediately be

veri�ed that

G0
1(x; u) =

@

@�

���
�=0

(AF�1(x; u)) + Bu+ B� = B = G0
1(x) = Cst: (4.2)

and

G0
i (x) = 0 for i � 2 (4.3)

Gk
1(x) = AkG0

1(x) = AkB = Cst: 8k 2 Z; (4.4)

so that

[G0
1; G

k
1](x) = 0 8k 2 Z: (4.5)

From (4.3) one deduces the exponential representation of (4.1); that is,

x(k + 1) = eu(k)B[Id]
���
Ax(k)

: (4.6)

From (4.5) the input-state evolution can be expressed as

x(k) = eu(0)A
k�1B

� : : : �eu(k�1)B[Id]
���
Akx0

= eu(0)A
k�1B+:::+u(k�1)B[Id]

���
Akx0

(4.7)

From these simple comments, one concludes that the linearity of the

dynamics implies in particular conditions (4.3) and (4.5). In fact, it will be

shown hereafter that they are necessary and su�cient for linear equivalence.

15
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Theorem 4.1 The drift invertible dynamics (2.1) is locally linear equiva-
lent if and only if the following conditions hold

(i) G0
k = 0 8k � 2

(ii) [G0
1; G

i
1] = 0 for i � 0 (4.8)

(iii) �(G0
1(xe); : : : ; G

n�1
1 (xe)) = n:

Proof - Necessity: follows from the invariance of (i) � (iii) under co-

ordinate transformations, moreover they are true for a linear controllable

system, where G0
1 = B;G0

k = 0 and Gi
1 = AiB (see (4.3) and (4.4)).

Su�ciency: From standard results of di�erential geometry, (ii) and (iii)

imply the existence of a local coordinates transformation z = �(x) such

that
@�

@x
:(G0

1; : : : ; G
n�1
1 ) = In; (4.9)

which implies according to (i)

~Gk(z; u) =

�
@�

@x
:Gk(:; u)

����
��1(z)

= ~Gk
1 = Cst; 0 � k � n� 1: (4.10)

Moreover, because of (ii) and (iii), (4.10) implies ~Gn
1 = Cst. For, assuming

~Gn
1 (z) =

n�1X
i=0

�i(z) ~G
i
1

from

[ ~G
j
1;
~Gn
1 ] = 0 for j = 0; : : :n� 1

it follows that

~G
j
1(�i(z)) = 0 for i = 0; : : :n� 1 and j = 0; : : :n � 1; i.e. �i(z) = Cst:

and
~Gn
1 (z) = Cst:

Now, from

~Gk
1 =

�
Jz ~F

k
0

���
~F�k
0

(z)

�
: ~G0

1 =

�
Jz ~F

1
0

���
~F�1
0

(z)

�
: ~Gk�1

1 = Cst: 0 � k � n;

it follows �
Jz ~F

1
0

���
~F�1
0

(z)

�
:
�
~G0
1; : : : ;

~Gn�1
1

�
= ( ~G1

1; : : : ;
~Gn
1 );

16
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which because of (iii), implies that ~F0(z) is linear with respect to z. Q.E.D.

Remark 4.1: It can be interesting to point out some analogy between the

conditions for discrete-time linear equivalence and continuous-time linear

equivalence when generally nonlinear di�erential dynamics are assumed.

For, given a nonlinear di�erential dynamics

_x(t) = f(x(t); u(t)) = f(x(t)) +
X
i�1

ui

i!
gi(x(t)) (4.11)

generalizing well-known conditions for continuous-time linear equivalence

of linear analytic dynamics ([12]), it is easy to show that (4.11) is linear

equivalent if and only if (see also [27]-[28])

(i)' gk = 0 8k � 2

(ii)' [g1; ad
k
fg1] = 0 for k � 0 (4.12)

(iii)' �(g1(xe); : : : ; ad
n�1
f g1(xe)) = n:

Note that (i)' means that the given dynamics must be linear analytic, as

clearly expected.

Remark 4.2: Looking at the conditions in Theorem 4.1 and in Remark

4.1, the intuition suggests that a discrete-time dynamics satisfying condi-

tions (i) in (4.8) might be the homologue of a continuous linear analytic

dynamics, i.e. of the form (3.1). More precisely, such a nonlinear discrete-

time dynamics admits an exponential representation of the form

x(k + 1) = eu(k)G
0
1(:)[Id]

���
F0(x(k))

; (4.13)

which derives from particular state representations, but generically nonlin-

ear in u.

The main feature of representation (4.13) is to allow the extension to the

discrete-time situation of several results stated for linear analytic continu-

ous control systems by simply substituting adkfg by Gk de�ned in (2.18).

This fact, previously illustrated with respect to the linear equivalence con-

cept, will be clari�ed in the next section too. It results that the dynamics

(4.13) can be interpreted as the discrete-time equivalent of a linear analytic

continuous one.

As an example, a particular case is represented by the discrete-time

dynamics: F (x; u) = F0(x) + Bu , for which one easily computes G0
1(x) =

B = Cst, or more generally, from dynamics of the form

F (x; u) = F0(x) +
X
i�1

ui

i!
Fi(x)

17
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with

F2(x) = J(F1�F
�1
0 )F1(x)

Fi(x) = J(Fi�1�F
�1
0 )F1(x); for i � 2 : : : ;

which imply

G1(x) = F1�F
�1
0 (x) and Gi(x) = 0 for i � 2:

4.2 Linear equivalence under sampling

Let us now consider the sampled situation. For, setting in (3.1) f(x) = Ax

and g(x) = B, it can easily be veri�ed from (3.13), (3.6) and (3.6) that

E�
1 =

e�A � I

A
B =

X
i�1

�i

i!
Ai�1B = Cst:

E�
i (x) = 0; 8i � 2 (4.14)

(E�
1)
k = ek�AE�

1 = Cst:; 8k 2 Z;

and thus

[E�
1; (E

�
1)
k](x) = 0; 8k 2 Z: (4.15)

(4.14) and (4.15) correspond to conditions (4.3) and (4.5) and characterize

the linearity of the state equations which is preserved under sampling. On

the basis of the analogies shown in Section 3, with the same arguments as

those used for Theorem 4.1, the result stated in [1] (Theorem 2.1) can be

reformulated and proved as follows:

Theorem 4.2 The dynamics (3.1) is locally linear equivalent under sam-
pling if and only if for any � 2]0; �0[

(i) E�
i = 0; i � 2

(ii) [E�
1; e

�i�adfE�
1 ] = 0; 8i > 0 (4.16)

(iii) �(E�
1 ; e

��adfE�
1; : : : ; e

�(n�1)�adfE�
1)
���
xe

= n:

It is interesting to note that, because of particular combinatoric properties

of the vector �elds E�
i , pointed out in Section 3, conditions (i) and (ii) can

be simpli�ed.

Theorem 4.2' The dynamics (3.1) is locally linear equivalent under sam-
pling if and only if for any � 2]0; �0[ the equivalent conditions A and B
below are true.

A E�
2 = 0 and (iii) in (4.16)

18



NONLINEAR DISCRETE-TIME AND SAMPLE DYNAMICS

B (ii) and (iii) in (4.16)

Proof: As far as A is concerned, one has to show that E�
2 = 0 implies (i)

and (ii) of Theorem 4.2.

For, from (3.13)

E�
2 =

X
i�1

(�1)j+1
�j+2

(j + 2)!
ad

j

f! adgg = 0

implies

ad
j
f! adgg = ad

j
fadgg+adfadgad

j�1
f g+: : :+adgad

j
fg = 0 8j > 1: (4.17)

For j = 1, one has adgadfg = 0.

Moreover, assuming adgad
k
fg = 0, for 1 < k � j � 1, it follows from

(4.17) that

adgad
j

fg = 0 for j � 0: (4.18)

Clearly, from Remark 3.2 -(i) in Section 3, Li0 � L2
0 = 0 for i > 2; hence,

E�
i = 0 for i > 2 (i.e. condition (i) in Theorem 4.2). As far as (ii) of

Theorem 4.2 is concerned, it is su�cient to note that

[E�
1; e

�i�adfE�
1] 2 L

2
0;

which was proved to be identically zero.

As far as B is concerned, one has to show in (4.16) that (ii) implies (i),

which means, because of A, it is enough to show that (ii) implies E�
2 = 0.

For, one can note in (4.16) that (ii) for i = 1 implies (4.18) and thus E�
2 = 0.

In fact, because of the de�nitions (3.12) and (3.13), one has

[E�
1; e

��adfE�
1] :=

X
k�2

(�1)k�k
k�1X
i=1

(2k�i � 1)

i!(k � i)!
[adi�1f g; adk�i�1f g] = 0;

that is, for any k � 2

k�1X
i=1

(�1)j+1
(2k�i � 1)

i!(k � i)!
[adi�1f g; adk�i�1f g] = 0;

which implies the condition adgad
j

fg = 0, for j � 1, arguing in a recurrent

way and applying iteratively the Jacobi identity; that is,

[adi�1f g; adk�i�1f g] = adf [ad
i�2
f g; adk�i�2f g]� [adi�2f g; adk�i�1f g]:

Q.E.D.
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Remark 4.3: Note as in [1] that (iii) of Theorem 4.2 is equivalent to

�(g(xe); adfg(xe); : : : ; ad
n�1
f g(xe)) = n:

For,

e�i�adfE�
1 =

X
i�1

(�1)j+1
�j

j!

�
(i+ 1)j � ij

�
ad

j�1
f g 8i � 0 (4.19)

implies �
E�
1 ; : : : ; e

�(n�1)�adfE�
1

�
= (g; adfg; : : : ; )D;

where

D = fdklg
l=1;:::;n
k�1 = f

�k

k!
(�1)k�1(lk � (l � 1)k)glk (4.20)

�(D) = n since, by substituting to each column the sum of the previous

ones, we recover a Vandermonde matrix.

From Theorem 4.2' and Remark 4.3, taking into account that E�
2 = 0 for

any � 2]0; �0[ if and only if adgad
k
fg = 0, for k � 1, it remains to prove that

Corollary 4.1: Linear equivalence under sampling holds, if and only if the
linear analytic continuous time dynamics (3.1) satis�es

(i)' adgad
k
fg = 0 for k � 1

(ii)' �(g(xe); adfg(xe); : : : ; ad
n�1
f g(xe)) = n,

i.e. the continuous dynamics is locally linear equivalent (Remark 4.1 in
[17]).

Remark 4.4: It follows from Theorem 4.2 and Corollary 4.1 that linear

analytic dynamics are described under sampling by exponential represen-

tations of the form (4.13) if and only if they are linear equivalent. It is not

di�cult to verify that sampling a general nonlinear dynamics of the form

(4.11), E�
i (x) = 0 for � 2]0; �0[ may result only if gi = 0 for i � 2. So that

under sampling, exponential representations of the form (4.13) are obtained

if and only if the continuous-time system is linear equivalent (see Remark

4.1). This analysis con�rms the limited interest of sampled dynamics of

the form (4.13).

5 Linear Feedback Equivalence

Linear feedback equivalence for nonlinear discrete-time and sampled dy-

namics were studied in [9] and [1]. Hereafter these results are reformulated

and studied in terms of the canonical vector �elds, G0
i 's and E

�
i 's, with an

approach which is parallel to the one used in the continuous context ([12]).
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De�nition 5.1: A nonlinear system is (locally) linear feedback equivalent if
there exist around xe, a smooth coordinates change z = �(x) and a regular
feedback such that the closed loop system is linear equivalent.

Linear equivalence under sampling will denote,with respect to the sampled
dynamics, linear equivalence for any � 2]0; �0[.

5.1 Discrete-time linear feedback equivalence

With reference to a discrete-time dynamics of the form (2.1), denoting by

\associated relative degree" to a function de�ned fromM to R the relative

degree associated to the system composed with the dynamics (2.1) and the

given function, the following result can be proved.

Lemma 5.1 The dynamics (2.1) is locally linear feedback equivalent if and
only if there exists around xe a smooth real valued function �(x), with
�(xe) = 0 for which the associated strong relative degree is equal to n.

Proof - Su�ciency: Since the strong relative degree associated to �

is equal to n, from Proposition 2.5 one computes from x(0) 2 Ux(0) a

neighbourhood of x(0)

�(x(1)) = ��F0(x(0)); �(x(2)) = ��F 2
0 (x(0)); : : : ; �(x(n� 1))

= ��Fn�1
0 (x(0))

and

�(x(n)) = ��Fn�1
0 �F (x(0); u(0)):

The existence of a feedback law u = 
(x; v), solution of the equality

�(x(n)) = v, where v is an external input follows from the implicit function

theorem and because of the de�nition of a strong relative degree. It is now

su�cient to consider the coordinates change ([18])

z = �(x) = (�(x); ��F0(x); : : : ; ��F
n�1
0 (x))T

to transform (2.1) into the linear controllable Brunovsky canonical form

z(k + 1) =

0
BBBBB@

0 1 0 � 0

0 0 1 � 0
.. .

1

0 � � � 0

1
CCCCCA
z(k) +

0
BBB@

0
...

0

1

1
CCCA v(k): (5.1)

Necessity Assume, without loss of generality, that the locally equivalent

linear dynamics is in a Brunovsky canonical form which has an obviously

strong relative degree n associated to �(z) = z1. The result is proved by
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recalling the invariance of the relative degree under coordinated transfor-

mation and regular feedback (Proposition 2.6). Q.E.D.

On these bases, the following theorem can be proved:

Theorem 5.1 The dynamics (2.1) is locally linear feedback equivalent
around xe if and only if

(i) G0
k==G

0
1 for k > 1

(ii) spanfG0
1; : : : ; G

n�2
1 g is involutive around xe (5.2)

(iii) �(G0
1(xe); : : : ; G

n�1
1 (xe)) = n:

Proof: It will be shown that conditions (i) - (iii) are equivalent to the

existence of a function � as in Lemma 5.1. Arguing as in the continuous-

time context ([12]), let us �rst assume that such a function exists. From

the de�nition of a strong relative degree, � satis�es

@�

@x
:
�
G0(:; u); : : :; Gn�2(:; u)

�
= 0

for any u and
@

@u

���
u=0

�
@�

@x
:Gn�1(:; u)

�
6= 0:

In particular for u = 0

@�

@x
:
�
G0
1; : : :G

n�2
1

�
= 0 (5.3)

and
@�

@x

���
xe

:Gn�1
1 6= 0;

which imply (ii) and (iii) because of the Frobenius Theorem.

Moreover, function � satis�es, for any u

@�

@x
G0(:; u) = : : : =

@��Fn�2
0

@x
G0(:; u) = 0;

which implies (i). On the other hand, because of (ii), there exists a function

� solving (5.3). Moreover, because of (i) and (iii), it is easily veri�ed that

the associated relative degree is a strong relative degree equal to n . Q.E.D.

Arguing as in the continuous-time case, the next remarks follow.

Remarks 5.1:

(i) When n = 2, the conditions of Theorem 5.1 reduces to
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(a) G0(:; u1)==G
0(:; u2)

(b) �
�
G0
1(xe); G

1
1(xe)

�
= 2.

(ii) The conditions of Theorem 5.1 imply, around xe, the involutivity of

the distribution

span fG0
1; : : : ; G

k
1g; 1 � k � n� 3:

It is interesting to note that with the same arguments used in the proof

of Theorem 5.1, the problem of linear feedback equivalence for a general

nonlinear continuous-time dynamics can be solved. Formally, the analogy

is evident.

Theorem 5.2 The nonlinear continuous-time dynamics (4.11) is locally
linear feedback equivalent if and only if

(i) gk==g1 for k > 1

(ii) spanfg1; : : : ; ad
n�2
f g1g is involutive around xe

(iii) �
�
g1(xe); : : : ; ad

n�1
f g1(xe)

�
= n:

Remark 5.2 From Theorem 5.1, particularly from condition (i) in (5.2),

a dynamics which admits an exponential representation of the form

x(k + 1) = e�(x;u)G(:)[Id]
���
��1
0

(x(k))
(5.4)

with
@�(x; :)

@u
6= 0

might be considered for studying linear feedback equivalence. Note that

such an exponential representation generalizes (4.13).

5.2 Linear feedback equivalence under sampling

All the results previously discussed hold when sampled systems are in-

vestigated. For, it su�ces to substitute E�
i to G0

i and e�k�adfE�
i to Gk

i .

As far as linear feedback equivalence under sampling is concerned, let us

reformulate Theorem 2.2 in [1] in terms of the vector �elds E�
i 's.

Theorem 5.3 A nonlinear continuous system is locally linear feedback
equivalent under sampling if and only if for any � 2]0; �0[

(i) E�
i ==E

�
1 for i � 2

(ii) spanfE�
1; : : : ; e

��(n�2)adfE�
1gis involutive around xe (5.5)

(iii) �
�
E�
1; e

��adfE�
1; : : : ; e

�(n�1)�adfE�
1

� ���
xe

= n:

23



S. MONACO AND D. NORMAND-CYROT

Moreover,

Proposition 5.1: E�
i ==E

�
1 for i � 2 imply

E�
i = (i � 1)!�(�)i�1E�

1 ; (5.6)

where �(�) is an analytic function de�ned from ]0; �0[ to R.

Proof: It will be obtained recurrently. Assuming (5.6) true up to k with

E�
2 = �(�)E�

1 and assuming the existence of an analytic function, say �(�),

such that

E�
k+1 = �(�)E�

1 ; (5.7)

one deduces that �(�) = k!�(�)k. For, because of (5.7) and (3.19) one has

(E�
k+1)

0 = (�(�))0E�
1 + �(�)(E�

1 )
0

= �kadg(E
�
k)� adf (E

�
k+1)

= �k!�(�)k�1adgE
�
1 � k!g(�(�)k�1)E�

1

��(�)adfE
�
1 � f(�(�))E�

1 (5.8)

(3.19); that is,

adfE
�
1 = g � (E�

1)
0

and because of (5.6), for i = 2, and (3.19)

adgE
�
1 = �(�(�))0E�

1 � f(�(�))E�
1 � �(�)g; (5.9)

one deduces from the equalities (5.8) the following condition

fk!(�(�)k�1(�(�))0 + k!(�(�)k�1f(�) � k!g(�(�)k�1)� f(�(�)) � (�(�))0gE�
1

+fk!�(�)k + �(�)gg = 0;

which yields to �(�) = k!�(�)k since the vector �elds g and E�
1 are linearly

independent, otherwise g==adifg for i � 1.

Proposition 5.2: E�
i ==E

�
1 for i � 2 and (iii) in (5.5) imply the linear

feedback equivalence of the continuous dynamics (3.1).

Proof: It is enough to show that the parallelism E�
i ==E

�
1 for i � 2 implies

the involutivity of the distribution span fg; : : : ; adkfgg for k � n � 2. In

fact because of (5.6) and the de�nition (3.13) of E�
2 , one directly deduces

from the parallelism E�
2==E

�
1, the parallelism of g with adgad

i
fg for i � 1.

Then according to the identity

adfadgad
i
fg = [adfg; ad

i
fg] + adgad

i+1
f g;

one concludes that [adfg; ad
i
fg] belongs to span fg; adfgg for i � 1. Iterat-

ing the reasoning, it follows that any vector �eld of the form [ad
p
fg; ad

i
fg]
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for 0 � p � n� 2 belongs to span fg; : : : ; ad
p

fgg which is su�cient to prove

the involutivity of span fg; : : : ; ad
p
fgg for p � n� 2. Q.E.D.

From Proposition 5.2, it results that sampled nonlinear exponential

representations of the form (5.4) characterize a subset of the ones obtained

under sampling from linear feedback equivalent dynamics. We recall that

in [10] it has been conjectured that feedback linearizability under sampling

of a linear analytic continuous-time system of the form (3.1) implies its

linear equivalence. A proof has been given in x1 for n = 2 but for n > 2

even if very restrictive requirements on f and g can be emphasized, no

complete proof is available.

6 Conclusions

In this paper, a uni�ed representation for nonlinear discrete-time and sam-

pled dynamics has been proposed. An exponential form and \canonical

vector �elds" are associated to this representation. This provides a com-

mon framework for the study of discrete-time and sampled dynamics, as

shown by discussing linear and linear feedback equivalences.
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