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A Unified Representation for Nonlinear
Discrete-Time and Sampled Dynamics*

S. Monaco! D. Normand-Cyrot!

Abstract

This paper deals with exponential representations which provide
a unified framework to study discrete-time and sampled dynamics.
This is illustrated by the study of the problems of linear and linear
feedback equivalences for nonlinear discrete-time as well as sampled
dynamics.

Key words: Nonlinear discrete-time systems, nonlinear sampling, feedback lin-
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1 Introduction

Nonlinear control theory has been initialized with the study of bilinear or
polynomial state dynamics which present the interest of involving matri-
ces algebra (see [3, 4], [23, 24], for example). In fact, at first, bilinear
equations were considered, in both continuous-time and discrete-time do-
mains, as rather general with respect to their nonlinearity but quite struc-
turally simple “nearly linear systems.” This feeling was rapidly denied by
the difficulties already encountered when studying bilinear dynamics and
encouraged specific study in continuous-time and discrete-time contexts
respectively.

In spite of recent developments and an increasing interest (see in various
mathematical frameworks the references, [2], [5] - [7], [9, 10], [13] - [17],
[19], [21], related to the problem here studied), nonlinear control theory
in discrete time is still less understood than in continuous time. There
are many reasons for this, such as the difficulty of setting local concepts,
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extensively studied in the continuous-time case, and the loss of geometric
properties even assuming an affine structure of the state equations with
respect to the control.

In the linear context, many of the above-mentioned difficulties obviously
do not occur, since the linear structure is preserved under sampling. The
result is that digital control problems, set on the basis of continuous-time
models, are solved with respect to the sampled dynamics interpreted as a
discrete-time model. This is quite difficult in a nonlinear context where
structural properties are generally not preserved under sampling. Bilinear
equations are transformed into state affine equations and linear analytic
equations are transformed into general nonlinear difference equations.

A recently developed orientation of research concerns sampled nonlinear
systems and the preservation of control properties under sampling ([1], [18],
[20], [25, 26]). The motivation is very practical since most of the physical
systems are modelled by differential equations while controlled by digital
computers.

The object of this paper 1s to associate an exponential representation
to nonlinear discrete-time and sampled dynamics. In both cases, these
representations are identical except with reference to the vector fields in-
volved, referred to as canonical vector fields. The terminology is due to
the fact that these canonical vector fields and their Lie algebras have been
shown to characterize controllability, invariance and control properties of
the dynamics to which they are associated ([2], [15], [20, 21], [26]).

The unified representation introduced here facilitates comparative stud-
ies between discrete-time, sampled and continuous-time dynamics.

The first results making use of vector fields in the study of discrete time
systems were obtained in [7], [14], [17].

In [21], it has been shown how linear and bilinear dynamics reflect in the
structure of these exponential representations. This analysis is reinforced
in the present paper and illustrated by the study of linear equivalence
and feedback linear equivalence of discrete-time systems as well as systems
under sampling.

In a discrete-time context, it is shown that necessary and sufficient
conditions for linear and linear feedback equivalences can be checked in
terms of the canonical vector fields associated to the considered discrete-
time dynamics. A comparison between the stated results and those known
in a continuous-time domain enables to stress very strong analogies with
continuous linear equivalences of generally nonlinear differential equations
([27, 28)]).

When sampled systems are considered, many properties of the associ-
ated canonical vector fields can be stressed. This concerns their expressions
as series expansions in the sampling period é which satisfy combinatoric
recurrent relations ([20]). In particular, when linear analytic systems are
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sampled, these relations give peculiar conditions for solving linear, and lin-
ear feedback equivalences reinforcing a conjecture stated in [10] and solved
in [1] for n = 2: “linear feedback equivalence under sampling implies lin-
ear equivalence”. With respect to this last problem, the results already
obtained in [1] are here expressed in terms of these canonical vector fields.

The paper is organized as follows. The unified exponential represen-
tation for drift invertible dynamics is introduced in Sections 2 and 3 for
discrete-time and sampled systems. Sections 4 and 5 deal with linear and
linear feedback equivalences in both discrete-time and sampled contexts.
Throughout the paper single input single output systems are investigated
but all the results can be extended to the multi input multi output case,
just requiring extended notations.

2 Exponential Representation of Discrete-Time Dy-
namics

Consider a nonlinear drift invertible discrete-time system

s+ 1) = Fla(k), u(k)) (2.1)
y = H(l‘), (22)

where # € M is a smooth n-dimensional manifold, F' : M x R — M and
H : M — R are analytic functions. Assume the drift term Fy(.) := F'(.,0)
invertible and denote by (z.,0) a equilibrium point of F' . Denoting by
“Ig” the identity function and by [ the identity operator, the following
main result can be stated:

Theorem 2.1 The discrete-time dynamics (2.1) admits the exponential
representation

2k + 1) = 4B Culb ] (2.3)

Fo(w(k)’
where G°(.,u) := M — T, M is a smooth vector field parametrized by u.

The proof follows from Propositions 2.1, 2.2 and 2.3 below. For this, let us
introduce the vector field

0 0
0 _ Y -1 _ 9
Gl(xau) i 66 5:0F(F (x,u),u—l—e)— (66 5:0F("u+€)) F_l(x,u) (24)
and define
Gi(z) = GY(z,0) (2.5)
g1 .
G(z) = =t UIOG?(JL‘,U) Vi>1, (2.6)

3
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so that )
uZ

) = G+ 3 0 (), (27)
i>1

Denoting by GY the Lie derivative associated to the vector field GY(.), such
operator 1s manipulated in the sequel as a formal operator. By conven-
tion, GY is said to be of degree i, so that homogeneous polynomials, Lie
polynomials and series with respect to these operators can be defined.

Denoting by Pi(GY,...,G?) a generic homogeneous polynomial of de-

gree i, one defines (P;41)T(GY, . . ., G?_I_l) as the homogeneous polynomial of
degree 141, deduced from P; by substituting (G?1+1G?2 . .G?m —|—G?1 G?2+1

.. .G?m—l— .. .—|—G?1 G?Q .. .G?m_l_l) to the generic mononomial G?l G?Q .. .G?m
appearing in P;(GY,...,G?). According to these notations, it has been
proved in [19] that

Proposition 2.1: ([19]) F(F; (), u) admits the series expansion

)

_ u
F(FS ), u) = (T4 PG, G| (2.8)
>1 il
where the P;(GY,... GY) are homogeneous polynomials of degree i which

can be recursively computed from Pi(GY) = G according to the relation
PGy, ... G = GloP_1(GY, ..., GY_ )+ (P )T(GY, ..., GY_)). (2.9)
Moreover,

Proposition 2.2: ([19]) Any polynomial P;(GY,...,G?) for i > 1 admits
the decomposition

PGY, ... .G = D elit,....im)Glo.. oG] (2.10)
llzf;;’:l;n
where the real coefficients c(iv, ..., im) verify the shuffle relations
c(ir)e(ia) = cliy,i2) + iz, i1) = c(i1w i2)
c(iy)e(ia,iz) = (i1, d2,43) + c(i2, i1, 43) + c(i2, i3, 1) = c(i1w iai3)

The shuffle product “w ” is defined in a recursive way as follows ([4], [22])

lw il = ilw 1:21
ilw iz = izw il = iliz + iliz
il...imwjl...jp = Zl(lzlmWJljp)+j1(llZm(.d_]sz)



NONLINEAR DISCRETE-TIME AND SAMPLE DYNAMICS

Sketches of Proofs: First, from (2.4) one deduces

0 0 0 .
6—UF(x,u)_ 5 EIOF(l‘,U—FE)—Gl(F(l‘,u),u), (2.11)
that is for u =0
9 _ 0 _ 0
du UIOF(x’ U) - Gl(FO(x)a 0) - Gl[Id] Fg(x)’

or, equivalently in (2.8),
P(GY) = GY.
Successively deriving G(F(x, u),u) with respect to u , one computes from

(2.11)

2 Paw=2]  (G@UF@w,0)
8u2 u=0 LU= 8u u=0 1 vu)u
0 0 9 0 .
= 52010 ey Balumo? W By, o1 Fol@) W)
that is, because of (2.6),
> F(x,u) = GYoG[14] + GY[14]
ouZ lu=o" 7 1 o(x 2N P’

or, equivalently in (2.8),
Py(G],G3) = GloPL(GY) + (P)F(G]) = GYoGY + G,
according to GY := (P)*(GY) := (GHT .

Tterating the reasoning, one recovers (2.8) and (2.9) in Proposition (2.1).

Q.E.D.

The proof of Proposition (2.2) is an immediate consequence of recurrence
(2.9). In fact, keeping in mind that the operation “*” corresponds to the
derivation with respect to u., (2.9) exactly reproduces the derivation of a
composed function and thus helps to recover the shuffle relations for the
coefficients appearing in the right-hand side of (2.10).

Remark 2.1: (2.10) gives a series representation of the function F(Fy*(.),
u) in terms of compositions of first order differential operators applied to
the i1dentity function.

Proposition 2.3: uG°(.,u) in (2.3) is a Lie element in the vector fields
GY’s which takes the form

ui
uG(Lu) =y ﬁBZ»(GQ, L L,GY), (2.12)

i>1
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where B;(GY,...,GY) is a homogeneous Lie polynomial of degree i fori > 1.
Proof: Introducing the formal operator P, the right-hand side of (2.8) can

be written as
(I+ Z Pk L))
E>1

(I+P)] Id

(2.13)

Interpreting the powers of P as successive compositions of non-commuting
differential operators, the usual formal logarithmic expansion can be ap-
plied

pz p3 pt
Logll+ P)=P— —+ ———+4+ ... . 2.14
a1+ P =p- BT (214)
Now, substituting (2.10) intoPy, in (2.14), one deduces from ([22]) that
uGO(.,u) is a Lie element in the G?’s because the coefficients (i1, . . ., im)

in (2.10) verify the shuffle relations. This means that Log(1l + P) admits a
series representation in powers of u, the coefficients of which are homoge-
neous Lie polynomials in the G{’s. Q.E.D.

Remark 2.2: Taking the formal logarithmic expansion (2.14) of (2.8), the
coefficient of the i-th power in w in (2.12) can be computed as

m-I—l P O...OP'
0 _ 21 Im
Bi(GY,..., G =i E > s (2

which completely specifies B; as a polynomial of degree ¢ in the G?’s once
every polynomial Py is replaced by its expression set in (2.10). As pre-
viously stated, from [22] it is known that an adequate regrouping of the
terms in (2.15) gives rise to a homogeneous Lie polynomial of degree ¢.

Even if a simple Lie decomposition of the general polynomial B; is not
available, one obtains for the first terms

(2.16)

Proof of Theorem 2.1: The construction of the exponential representa-
tion, stated in Theorem 2.1 is easily deduced from Propositions (2.1) and
(2.2) noting that the forced evolution around the drift of the dynamics (2.1)
can be written as

F(F7 (), u) = @ 0[] (2.17)
Because of Proposition (2.3), uG%(., u) is a smooth vector field. ~ Q.E.D.

The exponential representation (2.3) is a basic instrument for expand-
ing, around the free evolution, the state and output evolutions of (2.1),
(2.2) in powers of the controls. For, as in [19] (see also [14]), let us denote

6
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by GP(z,u) the smooth vector field obtained by transporting G°(., u) along
the free evolution FJ(.). More precisely let, for p > 0

G w) = To(FD)|_,  GO(F5 " (@), w). (2.18)

Corollary 2.1: The state evolution of (2.1) can be expressed as

2(k) = @G a0, peu(k=1)G Culk=1))[ 1 (2.19)

F¥ (o)
where the GP(z,u(k—p—1)) =M — T, M, defined in (2.18), are smooth
vector fields parametrized by w(k —p—1) forp=0,... k- 1.

Proof: Let us define from G{(z, u) in (2.4) the next vector fields for p > 0
and ¢ > 1

G, u) = Jo(F) GY(Fg " (x),u))

o (=)

Gl () = Jx(Fé’)‘F_p(x)G?(Fo_p(x)). (2.20)

Based on (2.17) and (2.20), (2.8), (2.9) and (2.10) are true with the

superscript p instead of 0, so that e“Gp("“)[Id] is an exponential repre-
xr

sentation of the function FYoF.(.,u)oF; ™" (2). Denoting such a function
by RP(x,u), it is easily verified that

2(k) = R°(,u(k — 1))oR' (., u(k — 2))o. ..o R* 1., u(0))o Ff (20).
Since each function RP (., u) admits the exponential representation euG?(u)
[T4], the general theory of composition of Lie series can be applied ([12])
and the identities hereunder follow

() L)
— 6UGj("u)[Ri(.,u)]
GUGj("u)OGUGl("u)[Id].

R, u)oR (., u)

It results that

(k) = (F(.,ulk—1))oF;Yo(FooF (., u(k —2))oF; *)o. ..
o(FO_k_loF(., u(O))oFO_k)oFé“(xo);
that 1s

(k) = OOy o
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which ends the proof of Corollary 2.1. Q.E.D.

The same arguments of the proof of Corollary 2.1 can be used to show
that

Corollary 2.2: The output evolution of (2.1)-(2.2) can be expressed as

2(k) = 6U(O)Gk—1(,7u(0))o - .oeu(k—l)GU(,,u(k—l))[H] (2.21)

F¥(z0)
where the GP(z,u(k—p—1)) =M — T, M, defined in (2.18), are smooth
vector fields parametrized by w(lk —p—1) forp=10,..., k— 1.

Tt is useful to point out how an affine structure of F'(z, u), that is of the
form Fy(z) + uFy(2), reflects into the exponential representation. For, the

following result can easily be proved setting in (2.8) for ¢ > 2 : B[I4]| = 0.

xr

Proposition 2.4: The exponential representation (2.3) describes a drift
wmvertible linear analytic dynamics if and only if

Gg+i == ch')Jx(G?H—p)GgH Vi>0,
p=0

So far, the exponential representation (2.1) has been associated to a drift
invertible nonlinear discrete-time dynamics. The vector fields G¥ which
characterize such a representation will be said to be the canontical vector
fields associated to the discrete-time dynamics (2.1). They have been shown
to characterize controlled invariant distributions and the controllability Lie
algebra in the nonlinear discrete-time case in [7], [14, 15], [17]. In [21], it has
been shown how linearity and bilinearity of the dynamics reflect into the
structure of these canonical vector fields. Hereafter, it will be shown how
the conditions of linear and linear feedback equivalences can be expressed
in terms of them providing a unified approach for studying discrete-time
and sampled dynamics. Some more properties will be pointed out.

Proposition 2.5:  Under the coordinate change z = f(x) the canonical

vector fields (2.6) and (2.20) associated to (2.1) are transformed into

Gg(z):Jx@‘qu(z).Gf(q)_l(Z)); i>1, j>0. (2.22)

Proof: Let us first show that (2.22) holds for GO(., u). For

Hk+1) = Gy = Fo(z(k)) + uG°(Fo(2(k)), u) + ...

Fo(#(k))



NONLINEAR DISCRETE-TIME AND SAMPLE DYNAMICS

)‘ _ euGD(.,u) ®
Fo(z(k)) 1=1(2(k))

O(Fo(®7(2(k)))) + u(Jx.G"(, u))

= o CI]

Fo(®=1(2(k)))

Fo(®=1(2(k)))

and

(J,®.G°(,u))

(. ®.GO(., u))‘

Fo(@-1(2(k))) ©-1(Fo(2(k)))

It follows from (2.6) that
(N?? z) = qu).t?? . ‘ .
(2) =( (-) 5102

Similar arguments can be used to show that

Gz, u) = (L Fo.GO(z,u))]|
and finally (2.22). Q.ED.

The relative degree associated to a discrete-time system can be set in
terms of the G¥(z). For, recall that

Definitions 2.1:
a. The discrete-time system (2.1)-(2.2) is said {0 have a relative degree r
at a point xq if

(i) ZHoFfoF(z,u)#0, 0<k<r—1

(ii) ZHoF[ 'oF(xo,u) #£ 0.
b. It is said to have a strong relative degree v at a point xg if (ii) holds at
u=0.

Proposition 2.6: The discrete-time system (2.1)-(2.2) has a relative de-
gree r at an equilibrium point x. if and only if

(1)’ Lo [H]| # 0, 1> 1, 0<k<r-1
(ii)” for some i > 1, Lgr-iz|  #0.
It has a strong relative degree v if and only if condition (ii)” holds fori = 1.

Proof: From definitions (2.1) the output evolution initialized at #¢ do not
depend on w up to time ¢ = r — 1 while y(r) depends on «(0). With this in
mind, from (2.21) with 2y = ., the necessity immediately follows.
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As far as sufficiency is concerned, note that (i)’ implies

HoFEoF(z,u) = e“Gk("“)[H]‘ = HoF** (), O0<k<r—L

(FFH ()

Similarly, note that the equality

_ euGT_l(.,u)[H]

FDT(xe):xe) Te

HoF]  oF (z,u) = ¢S CWH]

bl

implies that (ii) is satisfied, once (ii)” is assumed. Q.ED.

Defining a regular feedback as a smooth function v : M x R — R, such
that v(#.,0) = 0 and
0
. e 0 2.23
|,V (Fe w) # (2.23)
one has
Proposition 2.7: Given the discrete-time system (2.1)-(2.2), initialized
at an equilibrium point (x.,0), its relative degree is invariant under coor-
dinates transformations and feedback.

Proof: The invariance under coordinates transformation follows immedi-
ately from (2.22) and Proposition 2.5.
As far as feedback is concerned, note that for 0 <k <r —1

HoF*(x,y(x,0)) = HoF¥(x) (2.24)

In fact, (2.24) is obviously verified for k& = 0.

By induction, suppose it is true for some 0 < k < r — 1. Then

HoF**1(x,v(x,0)) = HoF*(_.,~v(.,0))oF (,7(x,0))
= HoFf()oF(x,v(x,0)) = HoFft!(x)
since 5 )
8_uHOF0 (JoF(z,u)=0.

This shows that the equality holds for k41, which means that condition (i)
in definition (2.1) holds. Moreover from (2.24), because of (ii) and (2.23),

one deduces that
0
_HOFT_l('a 7(a 0))0F(l‘€, 7($@, U))

ou
d _ Ov(ze,u
= -HoF; 1(.)0F(xe,u).%;é0,

which completes the proof of Proposition (2.7). Q.E.D.

10
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3 Exponential Representation of Sampled Dynamics

Consider a linear analytic continuous-time system of the form
() f(@(t)) +u(t)g(z(1)) (3.1)
y = h(x), (3.2)

where z(t) belongs to R®, f and g are analytic vector fields, h is an analytic

function and the control is constant over time intervals of amplitude ¢ :
uw(t) = u(k) for k6 < t < (k+ 1)6, k > 0. The sampling time 6 is
supposed to belong to ]0,ég[ where 8y is chosen small enough to ensure
the convergence of the series expansions with respect to § manipulated
throughout the paper.

Definition 3.1: The nonlinear discrete-time dynamics

ke i
zk+1)= Fé(x(k), u(k)) = Foé(x(k)) + Z u(l—')Ff(x(k)) (3.3)
i>1 ’
is said to be sampled equivalent to (3.1) if, at each sampling instant t = ké,
the equality x(k) = x(t) is verified whenever x(0) = z(t = 0).

Recurrent expressions for the functions F can be obtained by means
of integro-differential formulae based on the Poincaré expansion of the flow

associated to (3.1) or by means of combinatoric relations as proposed in

[20].

The main result of this section is represented by the following theorem
which parallels Theorem 2.1:

Theorem 3.1 The sampled dynamics (3.3) can be expressed as

2k +1) = e WECul ] (3.4)

e8! (x(k))’
where wE*(.,u) is a smooth vector field parametrized by u.

As previously stated, the proof of Theorem 3.1 follows from Propositions
3.1, 3.2 and 3.3 below, which are parallel to Propositions 2.1, 2.2 and 2.3.
In fact, to enlighten this parallelism, one has to substitute to the vector
fields G¥ manipulated in Section 2 the vector fields (E¢)* introduced in
the sequel. For, let ([20])

ES(2,u) = % 6206—(5f+6ug)66f+6ug+6eg [14] ) (3.5)
and define
Ejlld)] = Ei(x,0)
P o

Elalll] =

Bl Fi(x,u) for i > 1,
u? 0

u=

11
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so that

By (w,u) = E1Id‘ +Z Ezé+11d‘~
i>1

With the conventions set in Section 2 with respect to the GY’s and hereafter
with respect to the E?’s  the following result can be proved arguing as
previously.

Proposition 3.1: ([20]) e=%/e?/+49 qdmits the series expansion

o= 0f o0 +buyg _1+Z El,...,EZ'é), (36)
i>1

where the P ’s are homogeneous polynomials of degree i which can be re-
cursively computed from P{(E{) = E? according to the relation

PHNE], ... E}Y=FEjoP! (B}, .. El_)+(PL)Y(E ... E_ ). (3.7)

Moreover

Proposition 3.2: ([20] ) Any polynomial PS(E?:, ...
the decomposition

, B2 fori> 1 admits

PES, BN = Y e(in, ... im)Elo. 0B} |

iLaerim
.=t
7
where the real coefficients c(iy, ..., im) verify the shuffle relations.

Sketches of Proofs: First, from (3.5) one deduces
9 srvusg = 9| ity — I B (L ) (3.8)
Ju Oele=0 B mh

that is, for u = 0
P (ED) = EL. (3.9)

Moreover in (3.6), from (3.8) one computes

86—1122 u:065f+u59 - ;u u=0 ;u ) = 5% uzoeéf-l_MgOEf("u)
- 5% (0B + eéfo%‘uzoEf(.,u)
= MoEjoP (B} + e oES,

that is,
Py(EY, Ey) = E{oP{(E)) + (P{)*(E}) = E{oE} + Ej, (3.10)

12
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according to E5 = (E?)T defined in (3.6). Iterating the reasoning, one
recovers (3.7).

The same reasoning as in Section 2 holds to prove Proposition 3.2.

Q.E.D.

Proposition 3.3: E?(.,u) in (3.3) is a Lie element in the vector fields
E?’s which takes the form,

uZ

5 _ (b 5
uFE (.,u)_ZﬁBZ(El,...,EZ»), (3.11)
i>1
where B;(ES, ... Ef) is a homogeneous Lie polynomial of degree i.

For the first terms, one obtains as previously
By = Fy, By=F,;, By=FE5+1/2[E), B, Bj=E]+[E], B3],

The proof of Proposition 3.3 and Theorem 3.1. is achieved with the same
arguments used in Section 2.

Defining as in (2.20) from E! the transported vector fields (E?)* one
has

(B = e R 0Bl oe™r = e7H0adr B 3> 1 k> 0. (3.12)

Remark 3.1: Proceeding further the analogies between the discrete-time
and sampled dynamics, the analogous of Corollary 2.1 and 2.2 can be stated
for a sampled dynamics. Moreover coordinates changes on f and ¢ reflect
on transformed vector fields E{ as in Proposition 2.4.

Because of the sampled context, the following insight in the particular
structure of the vector fields can be done arguing as in [8]. The vector
fields E¢ are computed from the continuous dynamics by means of ([20])

1— e—éadf
5 _
1 — éads — e~teds
E) = 52fad§ w ad,(8g) (3.13)

where “w 7 denotes the shuffle product, “ad” the usual Lie bracket operator
and where the quotient must be interpreted as a formal cancellation.

Remark 3.2: Denoting by £ the Lie algebra generated by f and g and by
Ly the Lie ideal of £ generated by g, it follows from (3.13) that

El el i>1,

13
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where £} = Lo and for i > 2, £} = [£}, ﬁé_l], (decreasing sequence of
ideals).

It is interesting to note that the vector fields (3.6) satisfy the follow-
ing Lie decomposition, which fully characterize their structure and play a
central role when studying the inverse problem of the discretization. More
precisely, one can state

Theorem 3.2 The vector fields Ef satisfy

ES = /(j[(E{)’, E]ldr (3.14)

or equivalently

(B3)' = [(E7), By (3.15)
Proof: Note that integrating by parts (3.10) yields to the equality
5 5
PI(ES ES) = / (E7)YoETdr +/ ETo(ET)dr + ES. (3.16)
0 0

On the other side, from Poincaré integro-differential formulae set in
[20] and based on the integration of the Volterra kernels characterizing the
input-state evolution associated to the dynamics (3.1), one has

6
PUE! B = 2/0 (ET)YoETdr. (3.17)

Combining (3.16) and (3.17), one easily obtains (3.14) and (3.15). Q.E.D.
Remarks 3.3:

(1) Denoting by ()’ the derivative with respect to 6 and ()* the derivative
with respect to u it can also be proved that

(Bipr) = (BT = (B)))* (3.18)

and
(B}Y = —(i — Vad,E!_| —ad;E} i>2 (3.19)

with
(E2Y =g —ad; B}, (3.20)

(i1) The relative degree of a sampled system is, generically with respect to

8, equal to 1 ([18]).

(iii) A necessary and sufficient condition for maintaining the linear analytic
structure (Ff(a:) =0 for j > 2) under sampling is given by

Elyi(x) == Te(El_,).Ghyi(x) Vi>0. (3.21)
p=0

14
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4 Linear Equivalence

How do intrinsic properties of the dynamics reflect on the canonical vector
fields so far introduced? In this section, linear equivalences in discrete-time
and under sampling will be investigated from this point of view.

Definition 4.1: A nonlinear system is locally linear equivalent if there
exists a smooth coordinate change, z = ®(x) around z. , under which the
system 1s transformed into a linear controllable one.

Linear equivalence under sampling will denote,with respect to the sampled
dynamics, linear equivalence for any é €]0, 6p].

4.1 Discrete-time linear equivalence

Starting from a single input linear dynamics on R* of the form
2k + 1) = F(z(k),u(k)) = Az(k) + Bu(k), (4.1)

where A and B are matrices of suitable dimensions, it can immediately be
verified that

G(x,u) = 9 (AF~Y(x,u))+ Bu+ Be = B=G{(z) = Cst.  (4.2)

66 ¢=0
and
Glz)=0 fori>?2 (4.3)
Gi(x) = A*GY(z) = A*B = Cst. Vke Z, (4.4)
so that
[GY,GH(z) =0 VkeZ. (4.5)

From (4.3) one deduces the exponential representation of (4.1); that is,

k4 1) = eBB[T : 4.6
okt 1) =P (16)
From (4.5) the input-state evolution can be expressed as
x(k) _ eu(O)Ak—lBo y .Oeu(k_l)B[Id] _ eU(O)Ak_lB+"'+u(k_1)B[Id]
Akgzqo Akgzqo
(4.7)

From these simple comments, one concludes that the linearity of the
dynamics implies in particular conditions (4.3) and (4.5). In fact, it will be
shown hereafter that they are necessary and sufficient for linear equivalence.

15
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Theorem 4.1 The drift invertible dynamics (2.1) is locally linear equiva-
lent if and only if the following conditions hold

(i) GY=0 Vk>2
(ii) [GY,Gi =0 fori>0 (4.8)
(iii) p(GY(x.), ..., G (x.)) =n.

Proof - Necessity: follows from the invariance of (i) = (iii) under co-
ordinate transformations, moreover they are true for a linear controllable

system, where G = B,G% = 0 and G¢ = A'B (see (4.3) and (4.4)).

Sufficiency: From standard results of differential geometry, (ii) and (iii)
imply the existence of a local coordinates transformation z = ®(x) such

that
o

a—x.(G?, LG =1, (4.9)
which implies according to (i)
G (z,u) = a—CI)Gk( u) ‘ =G =Cst, 0<k<n—1. (4.10)
’ Oz V7 o-1(z) LTS B

Moreover, because of (ii) and (iii), (4.10) implies G7 = Cst. For, assuming

from

[G, G =0for j=0,..n—1
1t follows that

G]l(ozl(z)) =0fori=0,...n—1land j=0,...n—1, i.e. a;(z) = Cst.

and ~
G (z) = Cst.
Now, from
Gh=(J.F}|. GY=(LF} . GEl=Cst. 0<k<m,
Fy*(z) Ft(z)
it follows
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which because of (iii), implies that Fo(z) is linear with respect to z. Q.E.D.

Remark 4.1: It can be interesting to point out some analogy between the
conditions for discrete-time linear equivalence and continuous-time linear
equivalence when generally nonlinear differential dynamics are assumed.
For, given a nonlinear differential dynamics

E(t) = (), u() = fle() + ) %gz’(r(t)) (4.11)

i>1

generalizing well-known conditions for continuous-time linear equivalence
of linear analytic dynamics ([12]), it is easy to show that (4.11) is linear
equivalent if and only if (see also [27]-[28])

(i) ge=0 Vk>2
(i) [g1, adl}gl] =0for k>0 (4.12)
(iii)’ p(gl(xe),...,ad?_lgl(l‘e)) =n.

Note that (i)’ means that the given dynamics must be linear analytic, as
clearly expected.

Remark 4.2: Looking at the conditions in Theorem 4.1 and in Remark
4.1, the intuition suggests that a discrete-time dynamics satisfying condi-
tions (i) in (4.8) might be the homologue of a continuous linear analytic
dynamics, i.e. of the form (3.1). More precisely, such a nonlinear discrete-
time dynamics admits an exponential representation of the form

2k + 1) = * MO (4.13)

Fo(w(k))’
which derives from particular state representations, but generically nonlin-
ear in u.

The main feature of representation (4.13) is to allow the extension to the
discrete-time situation of several results stated for linear analytic continu-
ous control systems by simply substituting ad’}g by G* defined in (2.18).
This fact, previously illustrated with respect to the linear equivalence con-
cept, will be clarified in the next section too. It results that the dynamics
(4.13) can be interpreted as the discrete-time equivalent of a linear analytic
continuous one.

As an example, a particular case is represented by the discrete-time
dynamics: F(z,u) = Fo(x)+ Bu , for which one easily computes G{(z) =
B = Cst, or more generally, from dynamics of the form

F(x,u)=Fo(z)+ Y %;Fi(x)

i>1

17
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with

Fo(z) = J(FoFyh)Fi(z)

Fi(z) = J(Fi—i0Fy YF(x), fori>2...,
which imply

Gi(z) = FloFO_l(a:) and G;(z) = 0 for i > 2.

4.2 Linear equivalence under sampling

Let us now consider the sampled situation. For, setting in (3.1) f(z) = A=

and g(z) = B, it can easily be verified from (3.13), (3.6) and (3.6) that

bA ]
5 [ — I _ (S i1 _
E}=——B = ) SAT'B=Cst.
i>1
Elf(z) = 0, Vi>2 (4.14)
(EDF = MARl =Cst., VkeZ,
and thus
[EL, (E))*](2) =0, VkeZ. (4.15)

(4.14) and (4.15) correspond to conditions (4.3) and (4.5) and characterize
the linearity of the state equations which is preserved under sampling. On
the basis of the analogies shown in Section 3, with the same arguments as
those used for Theorem 4.1, the result stated in [1] (Theorem 2.1) can be
reformulated and proved as follows:

Theorem 4.2 The dynamics (3.1} is locally linear equivalent under sam-
pling if and only if for any é €]0, &g

(i) El=0, i>2
(i)  [E] e U E =0, Vi>0 (4.16)
(iii) p(Ef,e_éadef,...,e_("_l)éadef) =n.

Te

It is interesting to note that, because of particular combinatoric properties
of the vector fields Ef | pointed out in Section 3, conditions (i) and (ii) can
be simplified.

Theorem 4.2° The dynamics (3.1) is locally linear equivalent under sam-
pling if and only if for any 6 €]0,60] the equivalent conditions A and B
below are true.

A FEf=0and (iii) in (4.16)

18
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B (ii) and (iii) in (4.16)

Proof: As far as A is concerned, one has to show that ES = 0 implies (i)
and (ii) of Theorem 4.2.

For, from (3.13)

Eg = ;(—1)]'“ (j‘si:;!ad;w adgg =0
implies
ad?w adyg = ad?adgg—i—adfadgad;_lg—l—. : .—|—adgad§g =0 Vj>1. (4.17)
For j =1, one has adjad;g = 0.
Moreover, assuming adgad’}g =0, for 1 < k <j—1, 1t follows from

(4.17) that '
adgaditg =0 for j > 0. (4.18)

Clearly, from Remark 3.2 -(i) in Section 3, £ C £2 = 0 for i > 2; hence,
Ef = 0 for i > 2 (i.e. condition (i) in Theorem 4.2). As far as (ii) of
Theorem 4.2 1s concerned, it 1s sufficient to note that

(1], e 1) € 3,
which was proved to be 1dentically zero.

As far as B is concerned, one has to show in (4.16) that (ii) implies (i),
which means, because of A it is enough to show that (ii) implies E5 = 0.
For, one can note in (4.16) that (ii) for i = 1 implies (4.18) and thus £ = 0.
In fact, because of the definitions (3.12) and (3.13), one has

k-1

E—i
5 —dady 87 . kck (2 =1 i E—i=1 1 _ .
(B}, e ? 4 5] =) (-1)Fs Zm[adf g,ad;™" " g] = 0;
k>2 i=1
that is, for any k£ > 2
k—1 k—i
1 (27— E—ie1 7 _

> (-1y m[adf g,ad;™" " g] =0,
i=1

which implies the condition adgadi;g =0, for j > 1, arguing in a recurrent
way and applying iteratively the Jacobi identity; that is,

[adjf_lg, adlff—i_lg] = ady [adjf_zg, adlff—i_zg] - [adjf_zg, adl;_i_lg].
Q.E.D.

19
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Remark 4.3: Note as in [1] that (iii) of Theorem 4.2 is equivalent to

plyg(ze),adsg(z.), ..., ad?_lg(xe)) =n.

For,
. Y . . .
e=ibads pf — Z(_l)Hl'_x ((i +1) — if) ad?flg Yi> 0 (4.19)
i>1 J:
implies
(Ef, . .,e—<”—1>5“def) = (g,adsg,...,)D,
where

D= iy = DI - - @20)

p(D) = n since, by substituting to each column the sum of the previous
ones, we recover a Vandermonde matrix.

From Theorem 4.2” and Remark 4.3, taking into account that E§ = 0 for
any é €]0, 8¢ if and only if adgad’}g =0, for k£ > 1, it remains to prove that

Corollary 4.1: Linear equivalence under sampling holds, of and only if the
linear analytic continuous time dynamics (3.1) satisfies

(i)’ adgad’}g =0 for k>1
(1)’ ply(ze), adsg(z.), ..., ad?_lg(xe)) =n,

i.e. the continuous dynamics is locally linear equivalent (Remark 4.1 in
[17]).

Remark 4.4: It follows from Theorem 4.2 and Corollary 4.1 that linear
analytic dynamics are described under sampling by exponential represen-
tations of the form (4.13) if and only if they are linear equivalent. Tt is not
difficult to verify that sampling a general nonlinear dynamics of the form
(4.11), B¢ (z) = 0 for & €]0, 6] may result only if g; = 0 for i > 2. So that
under sampling, exponential representations of the form (4.13) are obtained
if and only if the continuous-time system is linear equivalent (see Remark
4.1). This analysis confirms the limited interest of sampled dynamics of

the form (4.13).

5 Linear Feedback Equivalence

Linear feedback equivalence for nonlinear discrete-time and sampled dy-
namics were studied in [9] and [1]. Hereafter these results are reformulated
and studied in terms of the canonical vector fields, GY ’s and Ef ’s, with an
approach which is parallel to the one used in the continuous context ([12]).

20
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Definition 5.1: A nonlinear system is (locally) linear feedback equivalent if
there exist around x., a smooth coordinates change z = ®(x) and a regular
feedback such that the closed loop system is linear equivalent.

Linear equivalence under sampling will denote,with respect to the sampled
dynamics, linear equivalence for any é €]0, 6p].

5.1 Discrete-time linear feedback equivalence

With reference to a discrete-time dynamics of the form (2.1), denoting by
“associated relative degree” to a function defined from M to R the relative
degree associated to the system composed with the dynamics (2.1) and the
given function, the following result can be proved.

Lemma 5.1 The dynamics (2.1) is locally linear feedback equivalent if and
only if there exists around x. a smooth real valued function A(x), with
Aze) =0 for which the associated strong relative degree is equal to n.

Proof - Sufficiency: Since the strong relative degree associated to A
is equal to n, from Proposition 2.5 one computes from z(0) € U;(0) a

neighbourhood of z(0)

AMz(1)) AoFo(2(0)), M(z(2)) = Ao F2(2(0)), ..., A(z(n — 1))

Aok~ (x(0))

and

Mz(n)) = Ao Fr= o F (2(0), u(0)).

The existence of a feedback law u = 5(x,v), solution of the equality
A(z(n)) = v, where v is an external input follows from the implicit function
theorem and because of the definition of a strong relative degree. It is now
sufficient to consider the coordinates change ([18])

z=®(x) = (AMx), Ao Fy(2),. .., /\oFél_l(x))T

to transform (2.1) into the linear controllable Brunovsky canonical form

01 0 — 0
0 001 — 0 0
2k+1)= 2R+ ¢ | v(k). (5.1)
1 (f
0 — — — 0

Necessity Assume, without loss of generality, that the locally equivalent
linear dynamics is in a Brunovsky canonical form which has an obviously
strong relative degree n associated to A(z) = z;. The result is proved by
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recalling the invariance of the relative degree under coordinated transfor-
mation and regular feedback (Proposition 2.6). Q.E.D.

On these bases, the following theorem can be proved:

Theorem 5.1 The dynamics (2.1) is locally linear feedback equivalent
around x. if and only if

() GY//GY for k>1
(i) span{GY,...,G™?} is involutive around wx. (5.2)
(i) p(G(z.),...,GI N z.)) = n.

Proof: It will be shown that conditions (i) - (iii) are equivalent to the
existence of a function A as in Lemma 5.1. Arguing as in the continuous-
time context ([12]), let us first assume that such a function exists. From
the definition of a strong relative degree, A satisfies

aA

9 (GO(., u), ..., G"(, u)) =0

for any u and

4, OXN e
a_u I (a_xG 1(.,U)) # 0
In particular for v = 0
OA e
o (GY,..GY7%) =0 (5.3)
and 2
=l GITH£0,

which imply (ii) and (iii) because of the Frobenius Theorem.
Moreover, function A satisfies, for any u

O o el B
61‘G (bu)=...= G (., u) =0,

which implies (i). On the other hand, because of (ii), there exists a function
A solving (5.3). Moreover, because of (i) and (iii), it is easily verified that
the associated relative degree is a strong relative degree equal ton . Q.E.D.

Arguing as in the continuous-time case, the next remarks follow.
Remarks 5.1:
(i) When n = 2, the conditions of Theorem 5.1 reduces to
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(a)  GO(,un)//GO(., uz)

(b)  p(Gi(xe), Gi(ze)) = 2.
(i1) The conditions of Theorem 5.1 imply, around ., the involutivity of
the distribution
span {GY, ..., G*}, 1<k<n-3.
It is interesting to note that with the same arguments used in the proof
of Theorem 5.1, the problem of linear feedback equivalence for a general

nonlinear continuous-time dynamics can be solved. Formally, the analogy
is evident.

Theorem 5.2 The nonlinear continuous-time dynamics (4.11) is locally
linear feedback equivalent if and only if

(i) grx//g1 for k>1

(ii) span{gl,...,ad?_zgl} is involutive around =z,

(iil) p (gl(xe), e ad?_lgl(l‘e)) =n.

Remark 5.2 From Theorem 5.1, particularly from condition (i) in (5.2),
a dynamics which admits an exponential representation of the form

l‘(k‘ + 1) — eoz(x,u)G(.)[Id]

5.4
o7 (@ (k) 54

with Do, )
alz, .
it S A 0
Ou 7
might be considered for studying linear feedback equivalence. Note that
such an exponential representation generalizes (4.13).

5.2 Linear feedback equivalence under sampling

All the results previously discussed hold when sampled systems are in-
vestigated. For, it suffices to substitute Ef to GY and e~*%4ds B¢ to G¥.
As far as linear feedback equivalence under sampling i1s concerned, let us
reformulate Theorem 2.2 in [1] in terms of the vector fields E{’s.

Theorem 5.3 A nonlinear continuous system s locally linear feedback
equivalent under sampling if and only if for any é €]0, b
(i) E}//E] for i>2
(i) span{E: ..., e~ 0(n=2)ady EiVis involutive around x. (5.5)
(iil) p (Ef,e‘éadef,...,e_("_l)éadef)

=n.

Te
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Moreover,
Proposition 5.1: E{//E? fori> 2 imply

E} = (i— Dla(8) 1S, (5.6)

K3

where o(8) is an analytic function defined from 10,60 to R.

Proof: Tt will be obtained recurrently. Assuming (5.6) true up to k with
Ef = a(6)E? and assuming the existence of an analytic function, say 3(¢),
such that

Eip1 = BO)ET, (5.7)
one deduces that 3(8) = k!a(8)*. For, because of (5.7) and (3.19) one has
(Eip) = (B(0)) By + BO)(EY)

= —kady(E}) — ady ()
= —kla(8)*tad,EY — klg(a(8)* 1) E?
—B(6)ady EY — f(5(8)) Y (5.8)
(3.19); that is,
ad; B = g — (B}
and because of (5.6), for i = 2, and (3.19)
ady By = —(a(8)) EY — f(a(8))E] — a(8)g, (5.9)
one deduces from the equalities (5.8) the following condition
{R1(a(6)"~H(a(8))" + kN (a(8)*  f(a) — klg(a(8)" 1) — F(B(6)) — (B(6))'}E
+{kla(8)" + 3(8)}g = 0,

which yields to 3(6) = k!a(6)* since the vector fields g and E? are linearly
independent, otherwise g//adi}g for i > 1.

Proposition 5.2: E!//E? for i > 2 and (iii) in (5.5) imply the linear
feedback equivalence of the continuous dynamics (3.1).

Proof: It is enough to show that the parallelism Ef//E? for i > 2 implies
the involutivity of the distribution span {g, .. .,ad];g} for k >n—-2 In

fact because of (5.6) and the definition (3.13) of E | one directly deduces
from the parallelism £3//E?, the parallelism of g with adgadjfg for ¢ > 1.
Then according to the identity

adfadgadjtg = [ad;yg, adjcg] + adgadjfl'lg,

one concludes that [ad;g, adjfg] belongs to span {g, ad;g} for i > 1. Tterat-
ing the reasoning, it follows that any vector field of the form [ad’}g, adjfg]
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for 0 < p < n—2 belongs to span {yg, ..., ad’}g} which is sufficient to prove
the involutivity of span {g, ..., ad’}g} forp<n-—2. Q.ED.

From Proposition 5.2, it results that sampled nonlinear exponential
representations of the form (5.4) characterize a subset of the ones obtained
under sampling from linear feedback equivalent dynamics. We recall that
in [10] it has been conjectured that feedback linearizability under sampling
of a linear analytic continuous-time system of the form (3.1) implies its
linear equivalence. A proof has been given in §1 for n = 2 but for n > 2
even if very restrictive requirements on f and g can be emphasized, no
complete proof is available.

6 Conclusions

In this paper, a unified representation for nonlinear discrete-time and sam-
pled dynamics has been proposed. An exponential form and “canonical
vector fields” are associated to this representation. This provides a com-
mon framework for the study of discrete-time and sampled dynamics, as
shown by discussing linear and linear feedback equivalences.
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