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Systems with Quadratic Cost�
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Abstract

In the control or adaptive control of linear stochastic evolution

systems with complete observations of the state it is important

to know the asymptotic distribution of the quadratic cost or the

asymptotic bounds for the 
uctuation of the average cost around

the optimal average cost. In this paper stochastic evolution sys-

tems are considered. These systems arise from a semigroup de-

scription of various in�nite dimensional systems such as linear

partial di�erential equations. These systems are often controlled

and the quadratic cost provides a measure of controlled perfor-

mance. The optimal average cost as the limit of the average cost

where time goes to in�nity can be regarded as optimality of the

control with respect to the Law of Large Numbers. It is shown

that this optimal control is optimal with respect to all principal

Limit Theorems of Probability Theory: the Central Limit Theo-

rem, the Arcsine Law and the Law of the Iterated Logarithm.

Key words: Law of Large Numbers, Central Limit Theorem, Arcsine Law, Law

of the Iterated Logarithm, linear evolution system, optimal average cost
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1 Introduction

In�nite dimensional linear stochastic systems have been investigated for

some time in the control theory (see [2]) and adaptive control theory (see

[3]). The primary importance of these systems is that they can describe
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many linear delay time equations and various families of partial di�erential

equations. In the control or adaptive control of in�nite dimensional linear

stochastic systems with complete observations of the state it is important

to know the asymptotic distribution of the quadratic cost or the asymptotic

bounds for the 
uctuation of the average cost around the optimal average

cost. The asymptotic distribution of the quadratic cost for the evolution

systems is considered in [9]. In this paper we show that this optimal control

is optimal with respect to all the principal Limit Theorems of Probability

Theory: the Central Limit Theorem, the Arcsine Law and the Law of the

Iterated Logarithm. Namely it is shown that under the optimal stationary

control, the quadratic cost satis�es the Central Limit Theorem, the asymp-

totic lower bound for any �-quantile of the distribution of the cost is given,

the asymptotic lower bound for the distribution of the proportion of the

time spent by the average cost above the average optimal cost (the Arcsine

Law) is established and the Law of the Iterated Logarithm provides bounds

for the 
uctuation of the average cost around the optimal average cost. For

�nite dimensional linear stochastic systems similar results were shown in

[7, 8].

2 Preliminaries

The systems that are considered here are linear stochastic evolution systems

where the in�nitesimal generators generate strongly continuous semigroups.

A semigroup (G(t); t � 0) of bounded linear operators on a Hilbert space

H is a strongly continuous semigroup if

lim
t#0

G(t)x = x;

for each x 2 H in the strong topology. A strongly continuous semigroup of

bounded linear operators on H is called a C0 semigroup. If (G(t); t � 0)

is a C0 semigroup then there are real numbers ! � 0 andM � 1 such that

jG(t)j �Me!t;

for t 2 [0; +1) where j � j is the operator norm. If A is the in�nitesimal

generator of a C0 semigroup then the domain of A, D(A) is dense in H and

A is a closed, linear operator (e.g., [10]).

We consider the following in�nite dimensional linear stochastic con-

trolled system

dX(t) = AX(t)dt + BU (t)dt + dW (t); t � 0; X(0) = x (2:1)

together with the cost functional

C(t) =

tZ
0

[hQX(s); X(s)i + hU (s); U (s)i]ds; t � 0
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where X(t) 2 H, H is a real, separable Hilbert space, x is an element

of H, (W (t); t � 0) is an H-valued Wiener process such that W (1) has

the nuclear covariance QW = E[W (1)W (1)�] that is positive. A is the

generator of a C0 semigroup, B 2 L(H1;H) where H1 is a real separable

Hilbert space, U (t) 2 L2([0; t];H1) is an H1-valued process depending in a

nonanticipative way on the observation of X(t).

The probability space (
;F ;P) can be chosen such that
 is the Fr�echet

space of H-valued continuous functions on R+ = [0; +1) with the semi-

norms of local uniform convergence, P is the Wiener measure on 
 for

the process (W (t); t � 0) such that QW = E[W (1)W (1)�] and F is the

P-completion of the Borel �-algebra on 
.

The notion of the solution of the stochastic di�erential equation (2.1)

is the mild solution, that is, the solution of the integral equation

X(t) = G(t)X(0) +

tZ
0

G(t� s)BU (s)ds +

tZ
0

G(t� s)dW (s); (2:2)

where (G(t); t � 0) is the semigroup (eta; t � 0). For (square) integrable

controls it is known that there is one and only one solution of (2.2).

Initially it is useful to consider the following deterministic optimal con-

trol problem in H. The system is described by the di�erential equation

dx

dt
= Ax(t) + Bu(t); (2:3)

where x(0) = x0, A is the in�nitesimal generator of a C0 semigroup, u(t) 2
H1, x0 2 D(A) and B 2 L(H1;H). The cost functional that is to be

minimized is

C(t) =

tZ
0

[hQx(s); x(s)i+ hu(s); u(s)i]ds (2:4)

over all u 2 L2([0; t];H1), where Q 2 L(H;H) is bounded, symmetric and

positive de�nite. The dependence of the cost C on the control has been

suppressed for notational convenience.

Let L+(H;H) be the cone of bounded, linear, symmetric, nonnegative

operators from H to H and let CS([0; t]; L+(H;H)) be the family of all

maps S : [0; t] ! L+(H;H) such that S( � )x is strongly continuous for

each x 2 H. Consider the Riccati di�erential equation

dR

dt
= A�R+ RA�RBB�R+ Q; (2:5)
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where R(0) = R0. A mild solution of (2.5) is a functionR 2 CS([0; t]; L+(H;
H)) such that

R(t)x = G�(t)R0G(t)x+

tZ
0

G�(t�s)[Q�R(s)BB�R(s)]G(t�s)xds; (2:6)

for all x 2 H where G(t) = etA. There is one and only one solution of (2.6)

(e.g., p. 64 [1]). Let ' be de�ned by the equation

'(t; x) =
1

2
hR(t)x; xi:

If x 2 D(A), then ' is the solution of the Hamilton-Jacobi equation for

the optimal control problem (3){(4) and the optimal feedback control is

û(s; x(s)) = �B�R(t� s)x(s): (2:7)

We assume that (A;B) is stabilizable and (A;Q1=2) is detectable. Then

the stationary Riccati equation

A�R+RA� RBB�R+ Q = 0 (2:8)

has one and only one nonnegative solution ([1], [11]). This solution R yields

the optimal stationary control for system (2.1)

Û(t) = KX(t); t � 0 (2:9)

with

K = �B�R: (2:10)

Furthermore, this solution is the strong limit as t!1 of the solutions of

the Riccati di�erential equations. For

� = trace(QWR) (2:11)

we have under (2.9)

lim
t!1

EC(t)

t
= �: (2:12)

If U (t) is any nonanticipative control such that

lim
t!1

EhX(t); X(t)i
t

= 0

then

lim inf
t!1

EC(t)

t
� �: (2:13)
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To show (12) and (13) let us consider the following equality

C(t)� �(t) + hRX(t); X(t)i � hRX(0); X(0)i

= 2

tZ
0

hRX(s); dW (s)i; t � 0
(2:14)

To verify (2.14) the extension (see [4]) of Itô's formula to hRX(t); X(t)i
gives us

hRX(t); X(t)i � hRX(0); X(0)i = 2

tZ
0

hX(s); R(A + BU )X(s)ids

+2

tZ
0

hRX(s); dW (s)i +
tZ

0

tr(QWR)ds:

(2:15)

If we add C(t) to both sides of (2.15) we get

C(t)+hRX(t); X(t)i�hRX(0); X(0)i =
tZ

0

[hQX(s); X(s)i+hU (s); U (s)i]ds

+2

tZ
0

hX(s); R(A +BU )X(s)ids + 2

tZ
0

hRX(s); dW (s)i +
tZ

0

tr(QWR)ds:

According to (2.8)

2hRX(t); AX(t)i + hQX(t); X(t)i = hKX(t);KX(t)i:

Hence using (2.11) and the above equalities we obtain

C(t) + hRX(t); X(t)i � hRX(0); X(0)i

= 2

tZ
0

(hKX(t);KX(t)i + hU (s); U (s)i � hKX(s); U (s)i)ds

+ 2

tZ
0

hRX(s); dW (s)i + �t

= 2

tZ
0

hU (s)KX(s); U (s)KX(s)ids + 2

tZ
0

hRX(s); dW (s)i + �t:
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From here (2.12) and (2.13) can be easily justi�ed.

3 Central Limit Theorem

Under the optimal stationary control (2.9), the cost functionalC(t) satis�es

the Central Limit Theorem that is

lim
t!1

P

�
C(t)� �tp

t
� y

�
= �(y=

p
�) y 2 (�1; +1) (3:1)

where �(z) is the distribution function of the standard normal variable and

� will be speci�ed later. (3.1) follows immediately from Proposition 2 that

will be stated later on. Let us now only sketch the proof.

The stochastic integral on the right hand side of (2.14) can be rep-

resented by means of a random time change of a Wiener process W =

fW (t); t � 0g (see [6]). The quadratic variation of the right hand side of

(2.14) is

V (t) = 4

tZ
o

hQWRX(s); RX(s)ids (3:2)

and (2.14) has the following representation

2

tZ
0

hRX(s); dW (s)i =W(V (t)); t � 0 (3:3)

where W = fW(t); t � 0g is a Wiener process.

Let V be the unique nonnegative de�nite solution of the equation

V(A +BK) + (A +BK)�V + 2RQWR = 0; (3:4)

and let

� = trace(QWV):

Then in analogy to (2.14) we have for an arbitrary nonanticipative control

U (t) in (2.1)

V (t)��t+ hVX(t); X(t)i � hVX(0); X(0)i

�2
tZ

0

hVX(s); B(U (s) �KX(s))ids = 2

tZ
0

hVX(s); dW (s)i: (3:5)
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To verify (3.5) apply Itô's formula to (hVX(t); X(t)i; t � 0) and use (3.2)

and (3.4) to obtain

V (t) + hVX(t); X(t)i � hVX(0); X(0)i

= 4

tZ
0

hQWRX(s); RX(s)ids

+ 2

tZ
0

(hVAX(s); X(s)i + hVX(s); BU (s)i)ds

+ 2

tZ
0

hVX(s); dW (s)i +
tZ

0

tr(QWV)ds

= 2

tZ
0

hVX(s); B(U (s) �KX(s))ids + 2

tZ
0

hVX(s); dW (s)i +�t:

Under (2.9) the strong law of large numbers can be applied to the martin-

gale on the right hand side of (3.5) and we get

lim
t!1

V (t)

t
= � a.s. (3:6)

From (2.14) and (3.3) we obtain

C(t)� �tp
t

=
hRX(0); X(0)ip

t
� hRX(t); X(t)ip

t
+
W(V (t))p

t
:

The �rst two terms on the right hand side asymptotically are negligible

and the third one converges in distribution to N (0;�) by (3.6). This gives

us (3.1). (2.12) and (2.13) showed an optimality of (2.9) for the average

cost criterion.

The following proposition describes an optimality property using a Cen-

tral Limit Theorem.

Proposition 1 If U (t) is any nonanticipative control such that

lim
t!1

EhX(t); X(t)ip
t

= 0 (3:7)

then

lim sup
t!1

P

�
C(t)� �tp

t
� y

�
� �(y=

p
�); y 2 (�1; +1): (3:8)
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(3:1) and (3:8) show an optimality of (2:9) for the average cost criterion.

Recall the stochastic ordering of random variables. � is stochastically

greater than or equal to � if P (� � y) � P (� � y), y 2 (�1; +1).

We shall use this stochastic ordering in the asymptotic sense to give an

interpretation of (3.8).

The inequality (3.8) means that (C(t)� �t)=
p
t as t!1 is asymptoti-

cally stochastically greater than or equal to a random variable with normal

distribution N (0;�).

The asymptotic lower bound for any �-quantile of the distribution of

C(t) is �t + z�
p
�t where �(z�) = �.

Proof: Let us recall the following elementary property of a Wiener process.

For r � 0, t > 0, b > a

P

�
inf

js�rj�t
W(s) � a; W(r) � b

�
� 3�

�
a � bp

t

�
:

Let us assume that E

tZ
0

hX(s); X(s)ids <1, t � 0. Set

A(t) = 2

tZ
0

hU (s) �KX(s); U (s) �KX(s)ids; (3:9)

Z(t) =

tZ
0

hX(s); X(t)ids (3:10)

and

M (t) = 2

tZ
0

hRX(s); dW (s)i: (3:11)

(3.7) implies that EZ(t) = o(t3=2). Using (3.7) we obtain

EM2(t) = E

0
@ tZ

0

hRX(s); dW (s)i
1
A

2

= 4

tZ
0

EhQWRX(s); RX(s)ids = o(t3=2); t!1
(3:12)
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and������2
tZ

0

hVX(s); B(U (s) �KX(s))ids

������ � const.(Z(t))1=2 � (A(t))1=2; t � 0

(3:13)

Let "; � be su�ciently small, 0 < " < 1, � > 0. (3.7) implies

P (hRX(t); X(t)i > �
p
t) � "; P (Z(t) > �2t3=2) � "; (3:14)

for t su�ciently large. Using (3.5) we can �nd an L su�ciently large so

that

P (jV (t) ��tj � L((A(t))1=2(Z(t))1=2 + t3=4)) � 1� "; t � 1: (3:15)

There is fW(t); t � 0g such that M (t) = W(V (t)), t � 0. Hence for all t

su�ciently large and using (3.15) we obtain

P (C(t)� �t � y
p
t) � " + P (M (t) + A(t)� "

p
t � y

p
t) � 2"

+ P

�
inf

js��tj�L((A(t))1=2(Z(t))1=2+t3=4)
W(s) � �A(t) + (y + ")

p
t

�
� 2"+ P (W(�t) < (y + 2")

p
t)

+

+1X
j=0

P

�
W(�t) � (y + 2")

p
t; j
p
t � A(t) < (j + 1)

p
t;

inf
js��tj�L((A(t))1=2(Z(t))1=2+t3=4)

W(s) � �A(t) + (y + ")
p
t

�

� 2"+ �

�
y + 2"p

�

�
+

+1X
j=0

P

�
W(�t) � (y + 2")

p
t;

inf
js��tj�L(�pj+1t+t3=4)

W(s) � �j
p
t+ (y + ")

p
t

�
:

(3:16)

For t large we have

L(�
p
j + 1t+ t3=4) � 2�L(j + 1)t; j = 0; 1; : : : : (3:17)

Thus using the property of a Wiener process that was mentioned at the

beginning of the proof we obtain

P (C(t)� �t � y
p
t) � 2"+ �

�
y + 2"p

�

�
+ 3

1X
j=0

�

 
� (j + ")

p
tp

2�L(j + 1)t

!
:

(3:18)
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Further

1X
j=0

�

 
� (j + ")p

2�L(j + 1)

!
� 1p

2�

1X
j=0

p
2�L(j + 1)

j + "
exp

�
� (j + ")2

4�L(j + 1)

�

� 1p
2�

1X
j=0

p
2�L

"
exp

�
� j

8�l

�
=

1

"

r
�L

�

�
1� exp

�
� 1

8�L

���1
:

We conclude that the last term in (3.18) can be made arbitrarily small by

taking � small. This completes the proof. �

Proposition 2 If U (t) is any nonanticipative control such that (3:7) holds

and

P -lim
t!1

1p
t
A(t) = 0 (3:19)

then

lim
t!1

P

�
C(t)� �tp

t
� y

�
= �(y=

p
�); y 2 (�1; +1); (3:20)

where P -lim means convergence in probability.

Proof: Note that by (3.19) P (A(t) > �
p
t) � " for large t. For all t

su�ciently large

P (C(t)� �t > y
p
t) � P (M (t) +A(t) + "

p
t > y

p
t) � "

+ P

 
sup

js��tj�L((A(t))1=2�(2(t))1=2+t3=4)
W(s) � �A(t) + (y � ")

p
t

!

� 3"+ P (W(�t) > (y � 2") + P

�
W(�t) � (y � 2")

p
t;

sup
js��tj�L(�2t+t3=4)

W(s) � ��
p
t + (y � ")

p
t

�

� 3"+ P (W(�t) > (y � 2")
p
t) + 3�

 
(� � ")

p
tp

L(�2t+ t3=4)

!
:

The last term can be made arbitrarily small as t ! 1 by taking �

su�ciently small. Hence we conclude that

lim sup
t!1

P

�
C(t)� �tp

t
> y

�
� 3"+ 1� �

�
y � 2"p

�

�
:

Since " is arbitrary, this together with (3.8) yields (3.20). �
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4 The Arcsine Law

Let 1A be the indicator function of the Borel set A. The average

1

t

tZ
0

1(�;1)

�
C(s)

s

�
ds (4:1)

is the proportion of time that
C(s)

s
> � or equivalently C(s) > s�. The

Arcsine Law for the occupation time of (0; 1) for the Wiener process (see

[5]) is applied to obtain an asymptotic lower bound for the distribution of

the random variable in (4.1).

Proposition 3 If U (t) is any nonanticipative control such that

lim
t!1

EhX(t); X(t)ip
t

= 0 (4:2)

then

lim sup
t!1

P

0
@1

t

tZ
0

1(�;1)

�
C(s)

s

�
ds � y

1
A � 2

�
arcsin

p
y; y 2 [0; 1]:

(4:3)

Proof: For notational convenience de�ne 1b by the equation

1b = 1(b;1):

Recalling that A(t) = 2

tZ
0

hU (s) � KX(s); U (s) � KX(s)ids and using

(2.14) and (3.3) and an elementary change of variables we have that

11
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1

t

tZ
0

10(C(s) � �s)ds =
1

t

tZ
0

10(W(V (s)) � hRX(s); X(s)i

+ hRX(0); X(0)i + A(s))ds =

tZ
0

10

�
1p
t
(W(V (tz))

� hRX(tz); X(tz)i + hRX(0); X(0)i +A(tz)

�
dz

=

tZ
0

1
"=
p
�

�
1p
�
Wt(�z)

�
dz

�
tZ

0

(1"(Wt(�z))dz +

tZ
0

10

�
Wt

�
1

t
V (tz)

�

� 1p
t
hRX(tz); X(tz)i

+
1p
t
hRX(0); X(0)i + 1p

t
A(tz)

�
dz;

where " > 0, Wt(u) =
1p
t
W(tu), u � 0 is a Wiener process and � =

trace(QWV). Let

f(t) =�
WW

�
1

t
V (tz)

�
� 1p

t
hRX(tz); X(tz)i + 1p

t
hRX(0); X(0)i + 1p

t
A(tz)

�
:

For y 2 [0; 1] and � > 0 arbitrary we have

P

0
@1

t

tZ
0

10(C(s) � �s) � y

1
A � P

0
@ tZ

0

1"=
p
�

�
1p
�
Wt(�z)

�
dz � y + �

1
A

+P

0
@ tZ

0

(1"(Wt(�z))� 10(f(tz)))dz > �

1
A :

(4:4)

For each t > o as � ! 0 and " ! 0 the �rst probability on the right hand

side of (4.4) satis�es the Arcsine Law for the occupation time of (0; 1),

that is
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lim
";�!0

P

0
@ tZ

0

1
"=
p
�

�
1p
�
Wt(�z)

�
dz � y + �

1
A =

2

�
arcsin

p
y:

Thus it only remains to prove the asymptotic negligibility of the second

term on the right hand side (4.4) as t ! 1. Since it is necessary to

compare Wt(�z) and Wt

�
1

t
V (tz)

�
, (3.5) is used.

1"(Wt(�z))� 10(f(tz)) � 1"=4

�
1p
t
hRX(tz); X(tz)i

�

+ 1"=4

�
1p
t
hRX(0); X(0)i

�

+ 1"=4

�
1p
t
hVX(tz); X(tz)i

�

+ 1"=4

�
Wt(�z)�Wt

�
1

t
v(tz)

�
� 1p

t
A(tz)

�
�

�
�
1� 1"=2

p
t

� ����1t V (tz) ��z

����
� 2

t

������
tzZ
0

hVX(s); B(U (s) �KX(s))ids

������
� 2

t

������
tzZ
0

hVX(s); dW (s)i

������
��

:

(4:5)

Since

2

t

������
tzZ
0

hVX(s); B(U (s) �KX(s))ids

������
� 2jVk jBj

0
@ 1

t3=2

tzZ
0

hX(s); X(s)ids
1
A

1=2�
1p
t
A(tz)

�1=2

;

we have for each 
 > 0 that the last term on the right hand side of (4.5) is

majorized by
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1


0
B@2jVj jBj

2
4 1

t3=2

tzZ
0

hX(s); X(s)ids
3
5
1=2
1
CA

+ 1
=t1=4

0
@1

t

������
tzZ
0

hVX(s); dW (s)i

������
1
A

+ 1"=2+(1=
p
t)A(tz)

�
sup

�
Wt(�z)�Wt(s))

: j�z � sj � "

2
p
t
+




t1=4
+ 


�
1p
t
A(tz)

�1=2��
:

(4:6)

Let R(z) be the sum of the �rst three terms on the right hand side of (4.5)

and the expression in (4.6). Integrating this new inequality we have for

each z 2 [0; 1] and " > 0 that

lim
t!1

E1"=4

�
1p
t
hRX(tz); X(tz)i

�
= 0 (4:7)

lim
t!1

E1"=4

�
1p
t
hRX(0); X(0)i

�
= 0 (4:8)

lim
t!1

E1"=4

�
1p
t
hVX(tz); X(tz)i

�
= 0: (4:9)

Since

lim
t!1

1

t3=2
E

tZ
s

hX(s); X(s)ids = 0

we have that

lim
t!1

E1


0
B@2jVj jBj

2
4 1

t3=2

tzZ
0

hX(s); X(s)ids
3
5
1=2
1
CA = 0: (4:10)

Similarly since

lim
t!1

1

t3=2
E

tzZ
0

hVQWX(s); X(s)ids = 0

14
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we have that

lim
t!1

E1
=t1=4

0
@2

t

������
tzZ
0

hVX(s); dW (s)i

������
1
A = 0: (4:11)

Recall the following well{known result for a Wiener process

P

�
sup

s�u�t
(W (u)�W (s)) � a

�
= 2P (W (t� s) > a):

Let M be the event given by

M =

�
sup

�
Wt(�z)�Wt(s) : j�z � sj

� "

2
p
t
+




t1=4
+ 


�
1p
t
A(tz)

�1=2�
� "

2
+
A(tz)p

t

�
:

For t su�ciently large we have that

P (M ) �
1X
j=0

P (M; j
p
t � A(tz) < (j + 1)

p
t)

�
1X
j=0

P
�
supfW (�z)�W (s) : j�z � sj � 3


p
j + 1g � "

2
+ j
�

�
1X
j=0

4�

 
�
�
"
2
+ j
�

p
3

p
j + 1

!
=  (
):

It is clear that the in�nite series that de�nes  converges and lim

!0

 (
) = 0

since

lim
t!1

supP

0
@ 1Z

0

(1"(W (�z)) � 10(f(tz)))dz > �

1
A

� lim supP

0
@ 1Z

0

R(z)dz > �

1
A �  (
)

�

we have the desired negligibility of the second term on the right hand side

of the inequality (4.4) �

Proposition 4 If U (t) is any nonanticipative control such that (4:2) and

P -lim
t!1

1p
t
A(t) = 0 (4:12)

15
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hold, then

lim
t!1

1

t

tZ
0

1(�;1)

�
C(s)

s

�
ds =

2

�
arcsin

p
t; y 2 [0; 1]: (4:13)

Proof: Since we established (4.3), now we have to verify that

lim inf
t!1

P

0
@1

t

tZ
0

10(C(s) � �s)ds � y

1
A � 2

�
arcsin

p
y; y 2 [0; 1]: (4:14)

Analogously to (4.4) we deduce the following inequalities

P

0
@1

t

tZ
0

10(C(s)� �s)ds � y

1
A

� P

0
@ 1Z

0

1�"=
p
�

�
1p
t
Wt(�z)

�
dz � y � �

1
A

� P

0
@ 1Z

0

(10(f(tz)) � 1�"(W(�z)))dz � �

1
A :

(4:15)

To estimate the last probability we have

1Z
0

(10(f(tz)) � 1�"(W(�z)))dz =

1Z
0

R�(z)dz;

where R�(z) di�ers from R(z) only in the last term of (4.6) that we can

modify as follows

�

8><
>: sup

j�z�sj� "

2
p
t
+ 


t1=4
+

�
A(tz)
p
t

�1=2(Wt(s)Wt(�z)) �
"

2
� A(tz)p

t

9>=
>; ; (4:16)

where � is the indicator function. Since (4.12) holds the probability of the

event in (4.16) tends to 0 as t ! 1. From this and from (4.9), (4.10),

(4.11) we deduce the negligibility of the last term in (4.15). The �rst term

on the right of (4.15) is independent of t and converges to
2

�
arcsin

p
y as

"; � ! 0. We conclude that (4.14) holds. �
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5 The Law of the Iterated Logarithm

The Law of the Iterated Logarithm provides bounds for the 
uctuation of

C(t) around �t. The bounds are obtained under the optimal stationary

control (2.9) and can not be improved within the class of controls de�ned

in the next proposition.

Proposition 5 If U (t) is any nonanticipative control such that for some

" > 0

lim
t!1

jX(t)j2+"p
t

= 0 a.s.; (5:1)

then

lim sup
t!1

C(t)� �tp
2t log log t

�
p
� a.s. (5:2)

lim inf
t!1

C(t)� �tp
2t log log t

� �
p
� a.s. (5:3)

Furthermore, the equalities (5:2) and (5:3) hold if we assume additionally

that

lim
t!1

tZ
0

hU (s) �KX(s); U (s) �KX(s)idsp
t log log t

= 0 a.s. : (5:4)

Proof: Choose U and �x it. Consider (2.14), (3.3) and (3.5). Denote

H(t) =

tZ
0

hVX(s); B(U (s) � KX(s))ids and g(x) =
p
2x log logx. Note

that

g0(x) � g(x)

x
; for x � 6 (5:5)

and that

jH(t)j � 2jVj jBj

0
@ tZ

0

hX(s); X(s)ids

1
A

1=2

� (A(t))1=2:

By (5.1) we have for t su�ciently large

jH(t)j � t3=4��(A(t))1=2; (5:6)

for some � > 0. (5.1) implies

2

tZ
0

hVX(s); dW (s)i = o(t); t!1:

17
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The time change for the Wiener process [6] and the Law of Iterated Loga-

rithm can be used to prove this. Write according to (3.5)

�t+ o(t) = �t� hVX(t); X(t)i + hVX(0); X(0)i + 2

tZ
0

hVX(s); dW (s)i

= V (t)�H(t):
(5:7)

From (2.14) and from (5.1) follows

C(t)� �t

g(�t+ o(t))
=
W(V (t))

g(V (t))
+ Y (t) + o(1); t!1; (5:8)

where

Y (t) =
W(V (t)) + A(t)

g(�t+ o(t))
� W(V (t))

g(V (t))
: (5:9)

Assume �rst that lim
t!1

V (t) =1. Applying the Law of the Iterated Loga-

rithm to the �rst term on the right hand side of (5.8) we obtain

lim sup
t!1

1p
�

C(t)� �t

g(t)
� 1 + lim inf

t!1
Y (t)

and

lim inf
t!1

1p
�

C(t)� �t

g(t)
� �1 + lim inf

t!1
Y (t):

Consequently to demonstrate (5.2) and (5.3) it su�ces to show that

lim inf
t!1

Y (t) � 0: (5:10)

Note that (5.9) can be rewritten as

Y (t) =
W(V (t))

g(V (t))
�
�
g(�t = o(0) +H(t))

g(�t = o(t))
� 1

�
+

A(t)

g(�t+ o(t))
:

Since

lim sup
t!1

jW(V (t))j
g(V (t))

= 1;

(5.10) will be proved by verifying

lim inf
t!1

�
�g(�t + o(t) +H(t))

g(�t+ o(t))
� 1 +

A(t)

g(�t+ o(t))

�
� 0; (5:11)
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where the upper signs are forH(t) > 0 and the lower ones are for H(t) < 0.

Let t su�ciently large and let H(t) > 0. Then from (5.5) and (5.6) follows

�g(�t+ o(t) +H(t))

g(�t+ o(t))
+ 1+

A(t)

g(�t+ o(t))
�

� H(t) � g0(�t+ o(t))

g(�t+ o(t))
+

A(t)

g(�t+ o(t))
� using(5:6)

� H(t)

�t+ o(t)
+

A(t)

g(�t+ o(t))
=

� o(1)

s
A(t)

g(�t+ o(t))
+

A(t)

g(�t + o(t))
= o(1):

This shows (5.11) with the upper signs. Consider

g(�t + o(t) +H(t))

g(�t + o(t))
� 1 +

A(t)

g(deit + o(t))
: (5:12)

(5.12) is nonnegative if A(t) � g(�t+ o(t)). Let

A(t) < g(�t+ o(t)): (5:13)

Then using (5.6)

jH(t)j � t3=4��
p
g(�t+ o(t)) = o(t):

Consequently, the �rst term in (5.12) approaches 1 as t!1 provided that

(5.13) holds. Hence (5.11) is established.

Assume now that

lim
t!1

V (t) <1: (5:14)

Then from (2.14) and (3.3) follows

lim inf
t!1

C(t)� �t

g(t)
� 0

and hence we obtain (5.3). The nonvalidity of (5.2) would require

lim sup
t!1

A(t)

g(t)
<
p
�:

But this together with (5.6) implies H(t) = o(t) which with (5.7) yields

V (t)!1 in contradiction to (5.14).
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To prove the second assertion of Proposition 5 note that from (5.4),

(5.6) and (5.7) we obtain

A(t)

g(�t+ o(t))
= o(1); H(t) = o(t); V (t) = �t+ o(1):

From here and from (5.9) we conclude that Y (t) in (5.8) is negligible and

equalities in (5.2) and (5.3) hold. �

6. Conclusions

Stochastic evolution systems that arise from a semigroup description of

various in�nite dimensional systems such as linear partial di�erential equa-

tions were considered. These systems are often controlled and the quadratic

cost provides a measure of the controlled performance.

In the control or adaptive control of linear stochastic evolution systems

with complete observations of the state it is important to know the asymp-

totic distribution of the quadratic cost or the asymptotic bounds for the


uctuation of the average cost around the optimal average cost.

The optimal average cost as the limit of the average cost where time

goes to in�nity can be regarded as optimality of the control with respect

to the Law of Large Numbers. It has been shown that this optimal control

can be regarded as optimality of the control with respect to all principal

Limit Theorems of Probability Theory: the Central Limit Theorem, the

Arcsine Law and the Law of the Iterated Logarithm.
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