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Abstract

In this paper we consider time{varying linear systems on Hilbert

spaces and study the optimal control problem with inde�nite perfor-

mance criteria over a �nite horizon interval. Due to the inde�nite-

ness of the cost function, the associated integral Riccati equation in

general does not process a solution on the whole interval. Apply-

ing an operator theoretic approach due to Hinrichsen and Pritchard

[10] equivalent conditions are arrived for the unique solvability of

the linear quadratic optimization problem and for the existence of

solutions to the integral Riccati equation. Contrary to the �nite{

dimensional situation these problems are not generally equivalent.

The results are applied to a parameterized Riccati equation which

plays an important role in robustness analysis.

Key words: in�nite{dimensional systems, time{varying, mild evolution opera-

tor, Riccati equation, optimal control problem

AMS Subject Classi�cations: 49J22, 93C05, 93C50, 93C60

Notation

X;Z Banach space over K 2 fR; Cg with norm k � kX ,

etc.;

H, U , Y Hilbert spaces over K 2 fR;Cg with norm k � kH ,

etc.;
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L(X;Z) Banach space of bounded linear operators

from X to Z provided with the operator

norm k � kL(X;Z);

L(X) L(X;X);

H(H) fT 2 L(H)jT is Hermitiang;

[t0; t1] compact interval in R;

�t1t0 f(t; s)jt0 � s � t � t1g;

C([t0; t1]; X) ff : [t0; t1]! Xjf is continuous;g;

L2(t0; t1;X) ff : [t0; t1]! Xjf is measurable and

kfk2 :=
�R t1

t0
kf(t)k2 dt

�1=2
<1

�
;

Ls;1(t0; t1;L(X;Z)) fF : [t0; t1]! L(X;Z)jF is strongly measurable

and kFk1 := ess supt2[t0;t1] kF (t)k <1

o
.

Note that in order to evaluate the integrals used in this paper, we need

to be able to integrate functions giving values in a general Banach space.

The de�nitions and properties which are needed to justify the evaluation

of such integrals can be found in E. Hille and R. Phillips [9] or S. Bochner

[2].

1 Introduction

Optimal control problems with quadratic cost criteria appear in many ap-

plications, e.g. network theory, stability theory, �ltering and estimation.

Di�erent types of Riccati equations play an important role for the solution

of these problems. A survey of results for the �nite{dimensional Riccati

equation, the �nite{dimensional optimal control problem and its applica-

tions can be found in [1] and [3]. Results of in�nite{dimensional systems

are given for example, in [4], [12] and [14].

In this paper we consider time{varying linear systems described by mild

evolution operators on Hilbert spaces. The state of these systems is given

by the input{state map

x(t; t0; x0; u) = �(t; t0)x0 +

Z t

t0

�(t; �)B(�)u(�) d�; t 2 [t0; t1];

where � is a mild evolution operator and u 2 L2(t0; t1;U ), for U a given

Hilbert space. The performance index is of the form

J(t0; t1; x0; u) = hx(t1; t0; x0; u); Gx(t1; t0; x0; u)i

+

Z t1

t0

hx(t; t0; x0; u); C(t)x(t; t0; x0; u)i+ ku(t)k2 dt:
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In this context, due to the lack of di�erentiability of the system trajectories,

the di�erential Riccati equation is replaced by the integral Riccati equation

P (t)z = ��(t1; t)G�(t1; t)z (1.1)

+

Z t1

t

��(�; t)[C(�)� P (�)B(�)B�(�)P (�)]�(�; t)z d�:

Gibson [7] has shown that (1.1) has a solution P on the interval [t0; t1]

if the operators G and C(t) are positive semi{de�nite.

In this paper we only require that G and C(t) are self{adjoint. Hence,

we obtain an integral Riccati equation with inde�nite state penalty. One

motivation to investigate this generalized integral Riccati equation lies in

possible applications to robustness analysis. This analysis will be the sub-

ject of another article which deals with the in�nite horizon problem on the

basis of results obtained in this paper. These results, however, are also

of independent interest. Due to the lack of positive semi{de�niteness, our

�nite horizon linear quadratic optimization problem does not necessarily

have a solution on [t0; t1]. Hence necessary and su�cient conditions for

the solvability of the optimal control problem and the associated integral

Riccati equation are required. Our aim is to extend results proved in [10]

for �nite{dimensional systems to an in�nite{dimensional context. To reach

this goal, we extend an operator theoretic approach developed by Hinrich-

sen and Pritchard in the unpublished manuscript [10]. In spite of the fact

that crucial steps in [10] do not extend to the in�nite{dimensional situation,

we are able to prove several results. The main results are Theorem 3.5 and

Theorem 3.6 which give equivalent condition for both problems. In fact,

an example is included, showing that | contrary to the �nite{dimensional

case | the two problems started with are not equivalent.

The author knows only of two papers dealing with the integral Riccati

equation (1.1), where G and C(t) are arbitrary self{adjoint operators [5]

and [13]. Dragan and Halanay [5] have considered a more general integral

Riccati equation under stronger assumptions. In this situation they are able

to prove only the equivalence of the conditions (R1) and (R3). Pandol�

[13] proves the existence of solutions to (1.1) on the in�nite horizon (with

G = 0) when a suitable comparison equation is solvable. In these papers

the linear quadratic optimization problem have not been considered.

We proceed as follows. In the next section we summarize some re-

sults concerning mild evolution operators. In Section 3 we give a detailed

problem formulation and prove the main results. Note that some of the

intermediate results required for the proofs are also of independent inter-

est. Finally, in Section 4 we apply the previous results to a parameterized

Riccati equation.
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2 Mild Evolution Operators

We will make no assumptions about the di�erentiability of our evolution

operators, and the properties we assume should leave us with a class of

evolution operators of su�cient generality to include practically all well-

posed linear models of realistic dynamical systems (see Curtain, Pritchard

[4]). Throughout this section we assume that � is a function mapping �t1t0
into L(X).

De�nition 2.1 � : �t1t0 ! L(X) is said to be a mild evolution operator

(on X) if

(a.) �(t; t) = I for each t 2 [t0; t1],

(b.) �(t; �)�(�; s) = �(t; s) for t0 � s � � � t � t1,

(c.) The maps �(�; s) : [s; t1] ! L(X) and �(t; �) : [t0; t] ! L(X) are
strongly continuous.

Remark: Let � be a mild evolution operator.

(a.) Using the uniform boundedness principle, we obtain supt0�s�t
k�(t; s)k < 1 for �xed t 2 [t0; t1] and sups�t�t1 k�(t; s)k < 1 for

�xed s 2 [t0; t1].

(b.) Let (t; s) 2 �t1t0 with s < t and �x � 2 (s; t). Applying De�nition 2.1

(c.), the factorization

�(t; s) = �(t; �)�(�; s)

shows that �(�; �) is strongly continuous in (t; s). This implies the

strong continuity of the function

�(�; �) : �t1t0nf(�; � )jt0 � � � t1g ! L(X);

and we obtain sup
(t;s)2


k�(t; s)k < 1 for each compact set 
 � �t1t0

nf(�; � ) jt0 � � � t1g using the uniform boundedness principle.

In general, De�nition 2.1 does not imply the uniform boundedness of

k�(�; �)k on �t1t0 , for a counterexample see Gibson [7], Appendix B.

De�nition 2.2 We say that a mild evolution operator � is bounded if

M� := sup
(t;s)2�

t1

t0

k�(t; s)k <1:
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For example, a mild evolution operator is bounded if �(�; �) is weakly

continuous on �t1t0 .

De�nition 2.3 We say that a mild evolution operator � on H has the
property (�) if

� The map �(�; s)� : [s; t1] ! L(H) is strongly measurable for �xed
s 2 [t0; t1].

� The map �(t; �)� : [t0; t] ! L(H) is strongly measurable for �xed
t 2 [t0; t1].

In general, the strong measurability of W : [t0; t1] ! L(H) does not

imply thatW � : [t0; t1]! L(H) is strongly measurable. But whether every

mild evolution operator has property (�) is not known to the author. Using

the evolution property (De�nition 2.1 (b.)) of mild evolution operators

with property (�) it is easy to see that �� is strongly measurable on �t1t0.

In the following we write ��(t; s) instead of �(t; s)�. We use the following

perturbation theorem from Gibson [7] and Curtain, Pritchard [4]:

Theorem 2.4 Let � be a bounded mild evolution operator and let W 2

Ls;1(t0; t1;L(X)). Then the operator integral equation

�W (t; s)x = �(t; s)x+

Z t

s

�(t; �)W (�)�W (�; s)x d�; (2.2)

x 2 X, (t; s) 2 �t1t0, has a unique solution �W : �t1t0 ! L(X) in the class
of bounded mild evolution operators. �W is also the unique solution in the
class of bounded mild evolution operators of

�W (t; s)x = �(t; s)x+

Z t

s

�W (t; �)W (�)�(�; s)x d�; x 2 X; (t; s) 2 �t1t0:

This theorem is a generalization of a similar perturbation result for

semigroups, given by Hille and Phillips [9]. In the following we will denote

by �W the unique bounded mild evolution operator which satis�es (2.2).

The following perturbation theorem is also useful.

Theorem 2.5 Suppose � is a bounded mild evolution operator on H with
property (�) and let W 2 Ls;1(t0; t1;L(H)) be given. Furthermore, let W �

be strongly measurable. Then the operator integral equation

�W (t; s)x = �(t; s)x+

Z t

s

�(t; �)W (�)�W (�; s)x d�; x 2 H; (t; s) 2 �t1t0 ;

has a unique solution �W : �t1t0 ! L(H) in the class of bounded mild
evolution operators with property (�).

5



B. JACOB

Proof: The previous theorem implies that the operator integral equation

has a unique solution �W : �t1t0 ! L(H) in the class of bounded mild

evolution operators. Since

��W (t; s)x = ��(t; s)x+

Z t

s

��W (�; s)W �(�)��(t; �)x d�; x 2 H; (t; s) 2 �t1t0

it is easy to see that �W has property (�). 2

Since strong measurability of W : [t0; t1] ! L(H) implies only weak

measurability of the adjoint W � : [t0; t1]! L(H), we also require that W �

is strongly measurable. This is certainly the case if either H is separable

or W is measurable.

3 Problem Formulation and Main Results

Throughout this section we will assume that � : �t1t0 ! L(H) is a bounded

mild evolution operator with property (�), B 2 Ls;1(t0; t1;L(U;H)) and

B� is strongly measurable, G 2 H(H), C 2 Ls;1(t0; t1;H(H)) and x0 2 H.

In this section we do not require any assumptions about de�niteness of C(t)

or G. We consider an evolution process de�ned by the input{state map

x(t; t0; x0; u) = �(t; t0)x0 +

Z t

t0

�(t; �)B(�)u(�) d�; t 2 [t0; t1]; (3.3)

where u 2 L2(t0; t1;U ). In the following we call u the control or input.

Simple calculations show that the integral in (3.3) is well de�ned and

x 2 C([t0; t1];H). We are particularly interested in feedback controls of

the form

u(t) := F (t)x(t; t0; x0; u);

where F 2 Ls;1(t0; t1;L(H;U )). The state trajectories of the correspond-

ing closed{loop system are solutions of the following integral equation

x(t; t0; x0; u) = �(t; t0)x0+

Z t

t0

�(t; �)B(�)F (�)x(�; t0; x0; u) d�; t 2 [t0; t1]:

The next theorem shows the existence and uniqueness of x in the class

C([t0; t1];H):

Theorem 3.1 Let F 2 Ls;1(t0; t1;L(H;U )), x0 2 H, ~u 2 L2(t0; t1;U ) be
given and suppose that the control of our system is de�ned by

u(t) = F (t)x(t; t0; x0; u) + ~u(t); t 2 [t0; t1]: (3.4)
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Then the unique solution of (3.3) in C([t0; t1];H) is given by

x(t; t0; x0; u) = �BF (t; t0)x0 +

Z t

t0

�BF (t; �)B(�)~u(�) d�; (3.5)

where �BF is de�ned as in Theorem 2.4.

Proof: First we show that (3.4) and (3.5) satisfy equation (3.3). This

follows from

x(t; t0; x0; u)

= �(t; t0)x0 +

Z t

t0

�(t; �)B(�)F (�)�BF (�; t0)x0 d�

+

Z t

t0

�
�(t; �)B(�)~u(�)+

Z t

�

�(t; � )B(� )F (� )�BF (�; �)B(�)~u(�) d�

�
d�

= �(t; t0)x0 +

Z t

t0

�(t; �)B(�)~u(�) d�

+

Z t

t0

�(t; �)B(�)F (�)

�
�BF (�; t0)x0+

Z �

t0

�BF (�; � )B(� )~u(� ) d�

�
d�

= �(t; t0)x0 +

Z t

t0

�(t; �)B(�) [F (�)x(�; t0; x0; u)+~u(�)] d�:

It remains to prove the uniqueness of x in C([t0; t1];H). Assuming x1; x2 2

C([t0; t1];H) are solutions of (3.3), where u is given by (3.4), with x1 6= x2.

Then y := x1�x2 satis�es y(t) =

Z t

t0

�(t; �)B(�)F (�)y(�) d� and we obtain

ky(t)k �M�kBk1kFk1

Z t

t0

ky(�)k d�. Now Gronwall's lemma implies y =

0, which is a contradiction to our assumption and the proof is complete. 2

The performance index for our input{state system is given by

J(t0; t1; x0; u) = hx(t1; t0; x0; u); Gx(t1; t0; x0; u)i

+

Z t1

t0

hx(t; t0; x0; u); C(t)x(t; t0; x0; u)i+ ku(t)k2 dt;

where u 2 L2(t0; t1;U ). In general, due to the lack of positive semi{

de�niteness of G and C(t), there need not exist a function u 2 L2(t0; t1;U )

which minimizes the performance index J(t0; t1; x0; u). Now we write the

performance index as a quadratic form. For this, we introduce the follow-

ing operator functions developed by Hinrichsen and Pritchard in [10] and
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Jonckheere and Silverman in [11]:

(Ct0;t1u)(t) = B�(t)

Z t1

t

��(�; t)C(�)

Z �

t0

�(�; � )B(� )u(� ) d� d�;

(3.6)

(Gt0;t1u)(t) = B�(t)��(t1; t)G

Z t1

t0

�(t1; �)B(�)u(�) d�; (3.7)

where u 2 L2(t0; t1;U ) and t 2 [t0; t1]. The proof of the next lemma is

straightforward, and left to the reader:

Lemma 3.2 Ct0;t1;Gt0;t1 2 H(L2(t0; t1;U )).

The next lemma is an immediate extension of [10], Lemma 7.1.12, and

the proof is the same.

Lemma 3.3 The performance index has the form:

J(t0; t1; x0; u) = hx0;Mt0;t1x0i+2RehNt0;t1x0; ui2+hu; (I+Ct0;t1+Gt0;t1)ui2

where Mt0;t1 2 H(H), Nt0;t1 2 L(H;L2(t0; t1;U )) and Ct0;t1;Gt0;t1
2 H(L2(t0; t1;U )) are given by

Mt0;t1x = ��(t1; t0)G�(t1; t0)x+

Z t1

t0

��(�; t0)C(�)�(�; t0)x d�;

Nt0;t1x(t) = B�(t)��(t1; t)G�(t1; t0)x+

Z t1

t

B�(t)��(�; t)C(�)�(�; t0)x d�

and (3.6), (3.7).

Proof:

J(t0; t1; x0; u)

= hx(t1; t0; x0; u); Gx(t1; t0; x0; u)i

+

Z t1

t0

hx(t; t0; x0; u); C(t)x(t; t0; x0; u)i+ ku(t)k2 dt

=

�
�(t1; t0)x0 +

Z t1

t0

�(t1; �)B(�)u(�) d�;

G

�
�(t1; t0)x0 +

Z t1

t0

�(t1; �)B(�)u(�) d�

��

+

Z t1

t0

��
�(t; t0)x0 +

Z t

t0

�(t; �)B(�)u(�) d�;C(t)

�
�(t; t0)x0

8
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+

Z t

t0

�(t; �)B(�)u(�) d�

��
+ ku(t)k2

�
dt

= h�(t1; t0)x0; G�(t1; t0)x0i + 2Re

Z t1

t0

h�(t1; t0)x0; G�(t1; �)B(�)u(�)i d�

+

Z t1

t0

�
u(�); B�(�)��(t1; �)G

Z t1

t0

�(t1; � )B(� )u(� ) d�

�
d�

+

Z t1

t0

h�(t; t0)x0; C(t)�(t; t0)x0i dt+

Z t1

t0

ku(t)k2 dt

+2Re

Z t1

t0

�
�(t; t0)x0; C(t)

Z t

t0

�(t; �)B(�)u(�) d�

�
dt

+

Z t1

t0

�Z t

t0

�(t; �)B(�)u(�) d�;C(t)

Z t

t0

�(t; � )B(� )u(� ) d�

�
dt

= hx0;Mt0;t1x0i+ 2Re

Z t1

t0

hB�(�)��(t1; �)G�(t1; t0)x0; u(�)i d�

+2Re

Z t1

t0

�Z t1

�

B�(�)��(t; �)C(t)�(t; t0)x0 dt; u(�)

�
d�

+hu; (I + Gt0;t1)ui2

+

Z t1

t0

Z t

t0

�
u(�); B�(�)��(t; �)C(t)

Z t

t0

�(t; � )B(� )u(� ) d�

�
d� dt

= hx0;Mt0;t1x0i+ 2RehNt0;t1x0; ui2 + hu; (I + Ct0;t1 + Gt0;t1)ui2:

2

We study the following optimization problem:

Finite Horizon Linear Quadratic Optimization Problem: Does

there exist for every x0 2 H a unique input u 2 L2(t0; t1;U ) which mini-

mizes the performance index J(t0; t1; x0; u)?

The integral Riccati equation associated with the �nite horizon linear

quadratic optimization problem has the form

P (t)z = ��(t1; t)G�(t1; t)z (3.8)

+

Z t1

t

��(�; t)[C(�)�P (�)B(�)B� (�)P (�)]�(�; t)z d�; z 2 H:

De�nition 3.4 P is said to be a solution of the integral Riccati

equation (IRE) on [t0; t1](with �nal condition P (t1) = G) if P 2

Ls;1(t0; t1;H(H)) and for each z 2 H and t 2 [t0; t1] the equation (3.8) is
satis�ed.

If the IRE (3.8) has a solution on [t0; t1], then it also has a solution

on [~t; t1] with t0 � ~t � t1. Since G and C(t) are only self{adjoint, such

9
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a solution does not necessarily exist, as Example 3.7 shows. The main

results of this paper are presented in the following two theorems which

give su�cient and necessary conditions for the solvability of the integral

Riccati equation, and of the �nite horizon linear quadratic optimization

problem:

Theorem 3.5 The following statements are equivalent:

(O1) For every x0 2 H there exists a unique input u 2 L2(t0; t1;U ) which
minimizes the performance index J(t0; t1; x0; u).

(O2) I + Ct0;t1 +Gt0;t1 > 0 and the range of Nt0;t1 is a subset of the range
of I + Ct0;t1 + Gt0;t1 .

Let these condition be satis�ed. Then for every x0 2 H the optimal control
ut0;x0 ful�ll

(I + Ct0;t1 + Gt0;t1)ut0;x0 + Nt0;t1x0 = 0: (3.9)

Proof: For x0 2 H and for any pair u; û 2 L2(t0; t1;U ) using Lemma 3.3,

we have

J(t0; t1; x0; û+ u)

= J(t0; t1; x0; û) + 2RehNt0;t1x0 + (I + Ct0;t1 + Gt0;t1)û; ui2(3.10)

+hu; (I + Ct0;t1 + Gt0;t1)ui2:

Let x0 2 H be given and assume that ut0;x0 2 L2(t0; t1;U ) is a minimizing

solution, but does not satisfy equation (3.9). If we choose u" := �"((I +

Ct0;t1 + Gt0;t1)ut0;x0 +Nt0;t1x0), " > 0 small, we obtain

J(t0; t1; x0; ut0;x0 + u")

= J(t0; t1; x0; ut0;x0) �
2

"
ku"k

2
2 + hu"; (I + Ct0;t1 + Gt0;t1)u"i2

� J(t0; t1; x0; ut0;x0) �

�
2

"
� kI + Ct0;t1 + Gt0;t1k

�
ku"k

2
2:

Thus ut0;x0 cannot be optimal which is a contradiction to our assumption.

Hence every optimal control ut0;x0 satisfy (3.9).

(O1))(O2) Since for every x0 2 H the optimal control ut0;x0 satis�es

(3.9) the range of Nt0;t1 is a subset of the range of I + Ct0;t1 + Gt0;t1.

It remains to prove that I + Ct0;t1 + Gt0;t1 > 0. Suppose there exists

a function u 2 L2(t0; t1;U ) with hu; (I + Ct0;t1 + Gt0;t1)ui < 0. Then

using Lemma 3.3 we see

inf

>0

J(t0; t1; 0; 
u) = �1;

10
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which contradicts our assumption. Since there exists a unique input

u 2 L2(t0; t1;U ) which minimizes the performance index J(t0; t1; 0; u),

we have I + Ct0;t1 + Gt0;t1 > 0.

(O2))(O1) (O2) implies that for every x0 2 H, equation (3.9) has a

unique solution and it is easy to see using (3.10) that this solution

minimizes the performance index. Since every optimal control satis-

�es (3.9), statement (O1) is proved. 2

Concerning the solvability of the integral Riccati equation we have the

following equivalent conditions:

Theorem 3.6 The following statements are equivalent:

(R1) The IRE (3.8) has a unique solution on [t0; t1].

(R2) There exists a constant � > 0, such that for each t00 2 [t0; t1] and
each x0 2 H

inf
u2L2(t

0

0
;t1;U)

J(t00; t1; x0; u) � ��kx0k
2:

(R3) There exists a constant " > 0 such that for every u 2 L2(t0; t1;U ):

J(t0; t1; 0; u) � "kuk22:

(R4) I+Ct0;t1+Gt0;t1 is positive de�nite and invertible in L(L2(t0; t1;U )).

In the �nite{dimensional situation, this theorem has been proven by

Hinrichsen and Pritchard [10]. In this case, in the problem formulation

di�erential Riccati equations may be considered, instead of the IRE. Fur-

ther, in the theorem, (R2) and (R4) may be replaced by (R2') and (R4')

respectively, where

(R2') There exists a constant � > 0, such that for each x0 2 H

inf
u2L2(t0;t1;U)

J(t0; t1; x0; u) � ��kx0k
2:

(R4') I + Ct0;t1 + Gt0;t1 > 0.

It is possible to replace (R2) by (R2') because for every (t; s) 2 �t1t0,

�(t; s) is invertible. Since in the �nite{dimensional situation the operators

Ct0;t1 and Gt0;t1 are compact, it is easy to see that (R4') implies (R4).

Clearly if there exists a solution to the IRE on [t0; t1], then the �nite horizon

linear quadratic optimization problem is uniquely solvable. Furthermore,

in the �nite{dimensional case the converse direction is true. The next

11
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example shows that in the in�nite{dimensional situation in general (R4')

does not imply (R4) and (O1) not (R1). At the end of this section we

give su�cient conditions such that from (R4') follows (R4) in the in�nite{

dimensional situation.

Example 3.7: We choose U = H = L2(0; 1;R), [t0; t1] = [0; 1] and de�ne

for k 2 [0; 1] the shift{operator Sk : H ! H by

(Skx)(t) =

�
0 ; t < k

x(t� k); t � k
:

It is easy to see that Sk 2 L(H) with kSkk = �k;1 and the adjoint operator

is given by

(S�kx)(t) =

�
x(t+ k); t � 1� k

0 ; t > 1� k
:

Then � : �10 ! L(H), �(t; s) = St�s, de�nes a bounded mild evolution

operator with property (�). Furthermore, we set B(t) � I, C(t) � 0 and

G = �I. In this situation, the operators C0;1;G0;1;M0;1 and N0;1 are given

by C0;1 = 0, (G0;1u)(t) = �S�1�t
R 1
0
S1��[u(�)] d�, M0;1 = 0 and N0;1 = 0.

The estimate

hu; (I + G0;1)ui = hu; ui+ hu;G0;1ui

= hu; ui �

�Z 1

0

S1�tu(t) dt;

Z 1

0

S1�tu(t) dt

�
U

=

Z 1

0

ku(t)k2U dt�






Z 1

0

S1�tu(t) dt






2

U

�

Z 1

0

ku(t)k2U � kS1�tu(t)k
2
U| {z }

�0; since kS1�tk�1

dt � 0

proves I + G0;1 � 0.

Let a 2 L2(0; 1;U ) with a(t)(s) = a 2 R, s; t 2 [0; 1], and assume that

there exists u 2 L2(0; 1;U ) such that [I + G0;1]u = a. Since L2(0; 1;U ) �=
L2([0; 1]

2;R) ([6], III.11.17) there exists a set �1 � [0; 1]2 of measure zero

in [0; 1]2 such that for every (t; s) 2 [0; 1]2n�1 we have

([I + G0;1]u)(t)(s) = a:

Furthermore, by [6], III.11.16 there exists a set � � [0; 1] of measure zero

in R such that for every s 2 [0; 1]n�

Z 1

0

[S�1�tS1��u(�)](s) d� =

�Z 1

0

S�1�tS1��u(�) d�

�
(s):

12
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De�ne �2 := [0; 1]��. Then �2 and �3 := �1[�2 have vanishing measure.

Let

� := f� 2 [0; 1] : fh 2 [0; 1� �] : (� + h; h) 2 �3g have positive measureg:

Then � has measure zero in [0; 1] because �3 has vanishing measure. De�ne

�4 := f(�+h; h)j� 2 �; h 2 [0; 1��]g and � = �3[�4. Thus � has measure

zero. Moreover, choose (t; s) 2 [0; 1]n�. Hence we obtain

u(t)(s) = a+

Z 1

0

[S�1�tS1��u(�)](s) d�:

It is easy to see that

[S�1�tS1��u(�)](s) =

8<
:

0 ; s < t � �

u(�)(s + �� t); t� � � s � t

0 ; t < s

:

Thus we have u(t)(s) = a if s > t. Now we consider the case that s � t.

This implies

u(t)(s) = a+

Z 1

t�s

u(�)(s + � � t) d�;

which shows

u(t)(s) = u(t+ h)(s + h) for h 2 [�s; 1� t] and (t+ h; s+ h) =2 �3:

Since (t; s) =2 �4, we obtain

u(t)(s) = a+

Z 1

t�s

u(t)(s) d� = a+ (1� t+ s)u(t)(s)

and thus

u(t)(s) =

�
a ; s > t; (t; s) =2 �

a=(t� s) ; s < t; (t; s) =2 �
:

Choosing a = 0 we get that I + G0;1 is injective which implies using

I+G0;1 � 0 that I+G0;1 > 0. Furthermore, the range of N0;1 is a subset of

the range of I + G0;1 (Note: N0;1 = 0). Thus Theorem 3.5 proves that for

every x0 2 H, there exists a unique input u 2 L2(0; 1;U ) which minimizes

the performance index J(0; 1; x0; u). Now we prove that I + G0;1 is not

surjective. Assume there exists an input u 2 L2(0; 1;U ) such that

[I + G0;1]u = 1 in L2(0; 1;U ):

The calculations above (a = 1) prove that u =2 L2(0; 1;U ), which contra-

dicts our assumption and I+G0;1 is not surjective. This example shows that

13
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in general the solvability of the optimal control problem does not imply the

existence of solutions to the IRE and (R4') does not imply (R4).

The next theorem proves that the solvability of the optimal control

problem implies (R2'). But in general the solvability of the optimal con-

trol problem does not imply (R2) as the previous example shows. Thus

contrary to the �nite{dimensional situation, in general we can not derive

(R2) from (R2').

Theorem 3.7 (O1) implies (R2').

Proof: First Theorem 3.5 implies that there exists an operator

T 2 H(L2(t0; t1;U )) such that I + Ct0;t1 + Gt0;t1 = T 2. Clearly the range

of Nt0;t1 is a subset of the range of T [use Theorem 3.5]. By [4], Theorem

3.3, there exists a constant 
 > 0 such that

kTuk2 � 
kN�
t0;t1

ukH ; u 2 L2(t0; t1;U ):

Hence

J(t0; t1; x0; u) = hx0;Mt0;t1x0i+ 2Rehx0; N
�
t0;t1

ui + kTuk22

� hx0;Mt0;t1x0i+ 2Rehx0; N
�
t0;t1

ui + 
2kN�
t0;t1

uk2H

= hx0;Mt0;t1x0i+ 
2kN�
t0;t1

u+ 
�2x0k
2
� 
�2kx0k

2

� �(kMt0;t1k+ 
�2)kx0k
2:

2

For the proof of Theorem 3.6 we need some preliminary results, which

are also of independent interest. Some of the proofs in [10] do not ex-

tend to the in�nite{dimensional situation, and so the generalization is far

from being trivial. The reasons are that the evolution operators are not

di�erentiable, and (R4) must be used instead of (R4').

Lemma 3.8 Suppose P is a solution of the IRE (3.8) on [t0; t1] and u 2

L2(t0; t1;U ) is a given control. Then

hx0; P (t0)x0i

= hx(t1; t0; x0; u); Gx(t1; t0; x0; u)i

+

Z t1

t0

fhx(�; t0; x0; u); [C(�)� P (�)B(�)B�(�)P (�)]x(�; t0; x0; u)i

�2Rehx(�; t0; x0; u); P (�)B(�)u(�)ig d�;

where x is given by (3.3).

14
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Proof: First we set M (�) := [C(�) � P (�)B(�)B�(�)P (�)]. Then by

(3.3),

hx(t1; t0; x0; u); Gx(t1; t0; x0; u)i

= h�(t1; t0)x0;G�(t1; t0)x0i| {z }
=:I1

+2Re

�
�(t1; t0)x0;G

Z t1

t0

�(t1; �)B(�)u(�) d�

�

+

�Z t1

t0

�(t1; �)B(�)u(�) d�;G

Z t1

t0

�(t1; � )B(� )u(� ) d�

�

= I1 + 2Re

Z t1

t0

h�(t1; �)�(�; t0)x0; G�(t1; �)B(�)u(�)i d�

| {z }
=:I2

+

Z t1

t0

Z �

t0

h�(t1; �)B(�)u(�); G�(t1; �)�(�; � )B(� )u(� )i d� d�

+

Z t1

t0

Z t1

�

h�(t1; � )�(�; �)B(�)u(�); G�(t1; � )B(� )u(� )i d� d�

= I1 + 2I2

+2Re

Z t1

t0

Z �

t0

h�(t1; �)�(�; � )B(� )u(� ); G�(t1; �)B(�)u(�)i d� d�

| {z }
=:I3

= I1 + 2I2 + 2I3;

Z t1

t0

hx(�; t0; x0; u);M (�)x(�; t0; x0; u)i d�

=

Z t1

t0

h�(�; t0)x0;M (�)�(�; t0)x0i d�

| {z }
=:I4

+2Re

Z t1

t0

�
�(�; t0)x0;M (�)

Z �

t0

�(�; � )B(� )u(� ) d�

�
d�

+

Z t1

t0

�Z �

t0

�(�; � )B(� )u(� ) d�;M (�)

Z �

t0

�(�; ")B(")u(") d"

�
d�

= I4 + 2Re

Z t1

t0

Z t1

�

h�(�; �)�(�; t0)x0;M (� )�(�; �)B(�)u(�)i d� d�

| {z }
=:I5

+

Z t1

t0

Z t1

�

Z "

t0

h�("; � )B(� )u(� );M (")�("; �)B(�)u(�)i d� d" d�

= I4 + 2I5

15
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+

Z t1

t0

Z t1

�

�Z �

t0

+

Z "

�

�
h�("; � )B(� )u(� );M (")�("; �)B(�)u(�)i d� d" d�

= I4 + 2I5

+

Z t1

t0

Z �

t0

Z t1

�

h�("; �)�(�; � )B(� )u(� );M (")�("; �)B(�)u(�)i d" d� d�

| {z }
=:I6;a

+

Z t1

t0

Z t1

�

Z t1

�

h�("; � )B(� )u(� );M (")�("; �)B(�)u(�)i d" d� d�

= I4 + 2I5 + I6;a

+

Z t1

t0

Z �

t0

Z t1

�

h�("; �)B(�)u(�);M (")�("; � )B(� )u(� )i d" d� d�

= I4 + 2I5 + I6;a

+

Z t1

t0

Z �

t0

Z t1

�

h�("; �)�(�; � )B(� )u(� );M (")�("; �)B(�)u(�)i d" d� d�

= I4 + 2I5 + 2I6;

where I6 = ReI6;a, and

�2Re

Z t1

t0

hx(�; t0; x0; u); P (�)B(�)u(�)i d�

= �2Re

Z t1

t0

h�(�; t0)x0; P (�)B(�)u(�)i d�

| {z }
=:I7

�2Re

Z t1

t0

Z �

t0

h�(�; � )B(� )u(� ); P (�)B(�)u(�)i d� d�

| {z }
=:I8

= �2I7 � 2I8:

Since P is a solution of the IRE (3.8) on [t0; t1], we obtain

I1 + I4 = hx0; P (t0)x0i;

2I2 + 2I5 � 2I7 = 0;

2I3 + 2I6 � 2I8 = 0:

This proves the lemma. 2

Lemma 3.9 Suppose P is a solution of the IRE (3.8) on [t0; t1]. Then

hx0; P (t0)x0i = J(t0; t1; x0;�B
�(�)P (�)��BB�P (�; t0)x0):

16
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Proof: For u(t) = �B�(t)P (t)��BB�P (t; t0)x0 we obtain x(t; t0; x0; u) =

��BB�P (t; t0)x0, hence u(t) = �B�(t)P (t)x(t; t0; x0; u). Now Lemma 3.8

implies

hx0; P (t0)x0i

= hx(t1; t0; x0; u); Gx(t1; t0; x0; u)i

+

Z t1

t0

hx(�; t0; x0; u); [C(�)� P (�)B(�)B�(�)P (�)]x(�; t0; x0; u)i

+2Rehx(�; t0; x0; u); P (�)B(�)B
�(�)P (�)x(�; t0; x0; u)i d�

= hx(t1; t0; x0; u);Gx(t1; t0; x0; u)i

+

Z t1

t0

hx(�; t0; x0; u);C(�)x(�; t0; x0; u)i

+k � B�(�)P (�)x(�; t0; x0; u)k
2 d�

= J(t0; t1; x0;�B
�(�)P (�)��BB�P (�; t0)x0):

2

Theorem 3.10 Suppose P is a solution of the IRE (3.8) on [t0; t1], and
u 2 L2(t0; t1;U ), with the corresponding state being given by (3.3). Then

J(t0; t1; x0;�B
�(�)P (�)��BB�P (�; t0)x0)

= hx0; P (t0)x0i

= J(t0; t1; x0; u)�

Z t1

t0

ku(�) + B�(�)P (�)x(�; t0; x0; u)k
2 d�;

hence

min
u2L2(t0;t1;U)

J(t0; t1; x0; u) = J(t0; t1; x0;�B
�(�)P (�)��BB�P (�; t0)x0)

= hx0; P (t0)x0i:

Furthermore, the �nite horizon linear quadratic optimization problem is
(uniquely) solvable with optimal control ut0;x0 given by

ut0;x0(t) = �B�(t)P (t)��BB�P (t; t0)x0

and optimal cost hx0; P (t0)x0i.

Proof: Using Lemma 3.8 and Lemma 3.9 the result follows from

J(t0; t1; x0;�B
�(�)P (�)��BB�P (�; t0)x0)

= hx0; P (t0)x0i

17
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= hx(t1; t0; x0; u); Gx(t1; t0; x0; u)i

+

Z t1

t0

hx(�; t0; x0; u); [C(�)� P (�)B(�)B�(�)P (�)]x(�; t0; x0; u)i

�2Rehx(�; t0; x0; u); P (�)B(�)u(�)i d�

= hx(t1; t0; x0; u); Gx(t1; t0; x0; u)i

+

Z t1

t0

�
hx(�; t0; x0; u); C(�)x(�; t0; x0; u)i+ ku(�)k2

�
d�

�

Z t1

t0

ku(�) + B�(�)P (�)x(�; t0; x0; u)k
2 d�:

2

Corollary 3.11 The IRE (3.8) has at most one solution on [t0; t1] with
�nal condition P (t1) = G.

Proof: Let P1; P2 2 Ls;1(t0; t1;H(H)) be solutions of (3.8) on [t0; t1].

Then the previous theorem implies hP1(t)x0; x0i = hP2(t)x0; x0i for each

t 2 [t0; t1], x0 2 H. Hence P1 = P2. 2

Lemma 3.13 gives a lower bound for the length of the integral such that

(3.8) has a solution without further assumption. We need this result for

the construction of a solution to the IRE on a given interval [t0; t1] under

the assumption (R2).

Lemma 3.12 Let F : X ! X, v 2 X and � > 0 be given. Further,
suppose F (0) = 0, kvk � 1

2
� and

kF (x1)� F (x2)k �
1

2
kx1 � x2k for every kx1k; kx2k � �:

Then there exists a unique solution x 2 X with kxk � � of the equation
F (x) + v = x.

Proof: Consider the function ~F : B(0; �) ! B(0; �), B(0; �) := fx 2

Xjkxk � �g, de�ned by ~F (x) := F (x)+v. Then Banach's �xpoint theorem

implies the result. 2

Lemma 3.13 Suppose there exists a constant � > 0 such that

2�kBk21M
2
�(t1 � t0) �

1

2
; (3.11)

kGkM2
� + kCk1M

2
�(t1 � t0) �

�

2
; (3.12)

then the IRE (3.8) has a unique solution on [t0; t1].

18
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If the interval [t0; t1] is suitably small then there exists an � > 0 such

that (3.11) and (3.12) are satis�ed.

Proof: Consider, for P 2 Ls;1(t0; t1;H(H)), t 2 [t0; t1] and x 2 H, F and

v de�ned by

F (P )(t)x = �

Z t1

t

��(�; t)P (�)B(�)B�(�)P (�)�(�; t)x d�;

v(t)x = ��(t1; t)G�(t1; t)x+

Z t1

t

��(�; t)C(�)�(�; t)x d�:

It is easy to see that F maps Ls;1(t0; t1;H(H)) to itself and that v 2

Ls;1(t0; t1;H(H)) is satis�ed [Note: Using the properties of �, it is not

di�cult to show that for �xed x 2 H the functions F (P )(�)x and v(�)x are

measurable on [t0; t1]]. For p1; p2 2 Ls;1(t0; t1;H(H)) with kp1k; kp2k � �

and � 2 [t0; t1] we obtain

kp1(�)B(�)B
� (�)p1(�) � p2(�)B(�)B

� (�)p2(�)k

� k[p1(�) � p2(�)]B(�)B
�(�)p1(�)k + kp2(�)B(�)B

�(�)[p1(�) � p2(�)]k

� 2�kBk21kp1 � p2k1;

which implies

kF (p1) � F (p2)k � (t1 � t0)M
2
�2�kBk

2
1kp1 � p2k1

(3.11)
�

1

2
kp1 � p2k1:

Furthermore, by (3.12)

kvk1 � kGkM2
� + kCk1M

2
�(t1 � t0) �

�

2
;

and therefore it follows from Lemma 3.12 that the equation

p = v + F (p) (3.13)

has a unique solution in the class fP 2 Ls;1(t0; t1;H(H))jkPk1 � �g.

This completes the proof since (3.8) is equivalent to (3.13) and the unique-

ness follows by Corollary 3.11. 2

Lemma 3.14 Suppose P is a solution of the IRE (3.8) on [t0; t1]. Let
X0
t0;t1

; XP
t0;t1

: L2(t0; t1;U )! L2(t0; t1;U ) be the maps given by

(X0
t0;t1

u)(t) := B�(t)P (t)

Z t

t0

�(t; s)B(s)u(s) ds;

(XP
t0;t1

u)(t) := B�(t)P (t)

Z t

t0

��BB�P (t; s)B(s)u(s) ds:
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Then I+Ct0;t1+Gt0;t1 = (I+X0
t0;t1

)�(I+X0
t0;t1

) and (I�XP
t0;t1

)(I+X0
t0;t1

) =

I, (I +X0
t0;t1

)(I �XP
t0;t1

) = I.

The operator functions X0
t0;t1

and XP
t0;t1

are also introduced in [10].

Furthermore, the proof of this result is exactly the same as in [10], Propo-

sition 7.1.16.

Proof: It is easy to show that

((X0
t0;t1

)�u)(t) = B�(t)

Z t1

t

��(�; t)P (�)B(�)u(�) d�:

Hence

((X0
t0;t1

)�X0
t0;t1

u)(t)

= B�(t)

Z t1

t

��(�; t)P (�)B(�)B� (�)P (�)

Z �

t0

�(�; s)B(s)u(s) ds d�

= B�(t)

Z t1

t

��(s; t)

Z t1

s

��(�; s)P (�)B(�)B�(�)P (�)�(�; s)B(s)u(s) d� ds

+B�(t)

Z t

t0

Z t1

t

��(�; t)P (�)B(�)B� (�)P (�)�(�; t)�(t; s)B(s)u(s) d� ds

IRE
= B�(t)

Z t1

t

��(s; t)

�
� P (s)B(s)u(s) + ��(t1; s)G�(t1; s)B(s)u(s)

+

Z t1

s

��(�; s)C(�)�(�; s)B(s)u(s) d�

�
ds

+B�(t)

Z t

t0

�
� P (t)�(t; s)B(s)u(s) + ��(t1; t)G�(t1; s)B(s)u(s)

+

Z t1

t

��(�; t)C(�)�(�; s)B(s)u(s) d�

�
ds

= �B�(t)

Z t1

t

��(s; t)P (s)B(s)u(s) ds�B� (t)

Z t

t0

P (t)�(t; s)B(s)u(s) ds

+B�(t)

Z t1

t0

��(t1; t)G�(t1; s)B(s)u(s) ds

+B�(t)

Z t1

t

��(�; t)C(�)

Z �

t0

�(�; s)B(s)u(s) ds d�

= (Gt0;t1u)(t) + (Ct0;t1u)(t)� ((X0
t0;t1

)�u)(t)� (X0
t0;t1

u)(t);

which proves the �rst equation. Furthermore,

(XP
t0;t1

u)(t)
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= (X0
t0;t1

u)(t)

�B�(t)P (t)

Z t

t0

Z t

s

��BB�P (t; �)B(�)B
� (�)P (�)�(�; s)B(s)u(s) d� ds

= (X0
t0;t1

u)(t)

�B�(t)P (t)

Z t

t0

��BB�P (t; �)B(�)B
� (�)P (�)

Z �

t0

�(�; s)B(s)u(s) ds d�

= (X0
t0;t1

u)(t)� (XP
t0;t1

X0
t0;t1

u)(t) = ((I �XP
t0;t1

)X0
t0;t1

)(u)(t):

A similar calculation shows that (XP
t0;t1

u)(t) = X0
t0;t1

(I � XP
t0;t1

)(u)(t),

which yields the second and third equation. 2

We have now presented all the results necessary for the proof of Theorem

3.6. The proof is not an immediate extension from the �nite{dimensional

situation, as mentioned previously.

Proof of Theorem 3.6:

(R1))(R4) Follows immediately from Lemma 3.14.

(R4))(R3) Since I + Ct0;t1 + Gt0;t1 > 0, there exists an operator T 2

H(L2(t0; t1;U )) with

I + Ct0;t1 + Gt0;t1 = T 2:

The invertibility of I + Ct0;t1 + Gt0;t1 implies that T is invertible in

L(L2(t0; t1;U )) with k(I + Ct0;t1 + Gt0;t1)
�1
k = kT�1k2. Thus there

exists a constant " > 0 such that

J(t0; t1; 0; u) = hu; (I + Ct0;t1 + Gt0;t1)ui2 = kTuk22 � "kuk22:

(R3))(R2) Let t00 2 [t0; t1], x0 2 H and u 2 L2(t
0
0; t1;U ). Setting

�u(t) :=

�
0 ; t 2 [t0; t

0
0)

u(t) ; t 2 [t00; t1]
:

It is not di�cult to see that J(t00; t1; 0; u) = J(t0; t1; 0; �u). Then by

assumption

J(t00; t1; x0; u) = hx0;Mt0
0
;t1x0i+ 2RehNt0

0
;t1x0; ui+ J(t00; t1; 0; u)

� hx0;Mt0
0
;t1x0i+ 2RehNt0

0
;t1x0; ui+ "kuk22

= hx0;Mt0
0
;t1x0i+ "ku+ "�1Nt0

0
;t1x0k

2
2

�"�1kNt0
0
;t1x0k

2
2

� �(kMt0
0
;t1k+ "�1kNt0

0
;t1k

2)kx0k
2;
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where " is independent of t00. Since the functions t
0
0 7! kMt0

0
;t1k and

t00 7! kNt0
0
;t1k are bounded on [t0; t1] there exists a constant � > 0

such that (R2) holds.

(R2))(R1) First we set

� := 2max
�
kGkM4

� + kCk1M
4
�(t1 � t0); (3.14)

�M2
� + kCk1M

2
�(t1 � t0)

	
and we choose a number N 2 N such that

2�kBk21M
2
�

t1 � t0

N
�

1

2
: (3.15)

Now we divide up the interval [t0; t1] in the following way

t0 =: sN < t0+
t1 � t0

N
=: sN�1 < � � � < t1�

t1 � t0

N
=: s1 < s0 := t1:

We will now prove the following statement by induction over n, n 2

f1; � � � ; Ng:

The equation

P (t)z = ��(t1; t)G�(t1; t)z (3.16)

+

Z t1

t

��(�; t) [C(�)�P (�)B(�)B� (�)P (�)] �(�; t)z d�;

z 2 H, has a solution P 2 Ls;1(sn; t1;H(H)) with

kP (sn)k � max
�
kGkM2

� + kCk1M
2
�(t1 � sn); �

	
:

First let n = 1. Then

2�kBk21M
2
�(t1 � s1) = 2�kBk21M

2
�

t1 � t0

N
�

1

2

and kGkM2
� + kCk1M

2
�(t1 � s1) �

�

2
;

and therefore Lemma 3.13 implies that equation (3.16) has a solution

P 2 Ls;1(s1; t1;H(H)). Lemma 3.9 shows

hx0; P (s1)x0i = J(s1; t1; x0;�B
�(�)P (�)��BB�P (�; s1)x0)

for each x0 2 H. Hence, using equation (3.16) and (R2), we obtain

for every x0 2 H

� �kx0k
2

� hx0; P (s1)x0i (3.17)

�

�
kGkM2

� + kCk1M
2
�(t1 � s1)

�
kx0k

2:
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This shows kP (s1)k � max
�
kGkM2

� + kCk1M
2
�(t1 � s1); �

	
and

the statement is true for n = 1. Now we assume that the result

is true for n 2 f1; � � � ; N � 1g. By the assumption, there exists

a P1 2 Ls;1(sn; t1;H(H)), which solves (3.16) with kP1(sn)k �

max
�
kGkM2

� + kCk1M
2
�(t1 � sn); �

	
. Since the inequalities

2�kBk21M
2
�(sn � sn+1) �

1

2

and

kP1(sn)kM
2
� + kCk1M

2
�(sn � sn+1)

� max
�
kGkM4

�+kCk1M
4
�(t1�sn+1); �M

2
�+kCk1M

2
�(sn�sn+1)

	
�

�

2

are satis�ed, Lemma 3.13 implies the existence of a solution P2 2

Ls;1(sn+1; sn;H(H)) of the equation

P2(t)z = ��(sn; t)P1(sn)�(sn; t)z

+

Z sn

t

��(�; t) [C(�) � P2(�)B(�)B
�(�)P2(�)] �(�; t)z d�:

We de�ne

P (t) :=

�
P1(t); t 2 [sn; t1]

P2(t); t 2 [sn+1; sn]
:

It is easy to see that P 2 Ls;1(sn+1; t1;H(H)) solves (3.16) on the

interval [sn+1; t1]. It remains to prove that

kP (sn+1)k � max
�
kGkM2

� + kCk1M
2
�(t1 � sn+1); �

	
:

Lemma 3.9 shows

hx0; P (sn+1)x0i = J(sn+1; t1; x0;�B
�(�)P (�)��BB�P (�; sn+1)x0)

for all x0 2 H. Hence for each x0 2 H using (3.16) and (R2), we

obtain

� �kx0k
2

� hx0; P (sn+1)x0i (3.18)

�

�
kGkM2

� + (t1 � sn+1)M
2
�kCk1

�
kx0k

2;

which shows kP (sn+1)k � max
�
kGkM2

� + kCk1M
2
�(t1 � sn+1); �

	
This completes the proof because the uniqueness is implied by Corol-

lary 3.11. 2

Corollary 3.15 If C(t) � 0 a. e. and G � 0, then all the statements
(R1){(R4), (O1), (O2), (R2') and (R4') are true.
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The next theorem gives a su�cient condition such that (R4') implies

(R4). In this situation the statements (R1){(R4), (O1), (O2) and (R4')

are equivalent.

Theorem 3.16 Let U be a separable Hilbert space. Furthermore, suppose
that B(t) is a compact operator for every t 2 [t0; t1]. Then (R4') implies
(R4). Hence we can replace (R4) by (R4') in Theorem 3.6. Furthermore,
the �nite horizon linear quadratic optimization problem is uniquely solvable
if and only if there exists a solution of the IRE on [t0; t1].

Proof: First we de�ne the functions kC ; kG : [t0; t1]
2
! L(U ) by

kC(t; �)u = B�(t)

Z t1

maxft;�g

��(�; t)C(� )�(�; �)B(�)u d�

kG(t; �)u = B�(t)��(t1; t)G�(t1; �)B(�)u;

where (t; �) 2 [0; 1]2 and u 2 U . Then it is easy to see that

� (Ct0;t1u)(t) =

Z t1

t0

kC(t; �)u(�) d� and

(Gt0;t1u)(t) =

Z t1

t0

kG(t; �)u(�) d�,

� sup
(t;�)2[t0;t1]2

kkC(t; �)k <1 and sup
(t;�)2[t0;t1]2

kkG(t; �)k <1,

� the maps kC and kG are strongly measurable.

By assumption, B(t) is a compact operator, hence using Schauder's the-

orem we have that B�(t) is a compact operator for every t 2 [t0; t1]. By

the ideal property of the compact operators we obtain that kC([t0; t1]
2) is a

subset of the set of compact operators in L(U ). Since the compact opera-

tors in L(U ) form a separable subspace of L(U ) using that U is separable,

we obtain kC is measurable. Hence kC 2 L2([t0; t1]
2;L(U )). The com-

pact operators in L(U ) provided with the operator norm form a Banach

space and the �nite{dimensional operators are dense in the set of com-

pact operators. Furthermore, by [6], III.11.17 we have L2([t0; t1]
2;L(U )) �=

L2(t0; t1;L2(t0; t1;L(U ))). Let " > 0. Thus there exists ~kC 2 L2([t0; t1]
2;

L(U )) such that k~kC � kCk2 < ", ~kC is a countable function in L2(t0; t1;

L2(t0; t1; L(U ))) and in L2([t0; t1]
2;L(U )) and ~kC(t; s) is a �nite-

dimensional operator for every (t; s) 2 [t0; t1]
2. De�ne

( ~Ct0;t1u)(t) =

Z t1

t0

~kC(t; �)u(�) d�:
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Then it is easy to see that ~Ct0;t1 is a �nite{dimensional operator. Now from

k ~Ct0;t1�Ct0;t1k � k~kC�kCk2 derive that Ct0;t1 is a compact operator. That

Gt0;t1 is a compact operator can be proven in a similar way. This implies

that I+Ct0;t1+Gt0;t1 is a Fredholm operator and, using I+Ct0;t1+Gt0;t1 > 0,

Fredholm's alternative proves that I + Ct0;t1 + Gt0;t1 is bijective. Now by

the open mapping theorem we obtain that I + Ct0;t1 +Gt0;t1 is invertible in

L(L2(t0; t1;U )). 2

Remark: The assumptions of Theorem 3.16 hold if the input space U is

a �nite dimensional Hilbert space. We need the assumptions in Theorem

3.16 in order to prove that the kernels kC and kG are measurable, hence in

L2([t0; t1]
2;L(U )), and compact operator valued.

4 A Parameterized Riccati Equation

In this section we will examine how the previous result can be applied

to a parameterized Riccati equation, which plays an important role in

robustness analysis. Throughout this section we will assume that � :

�t1t0 ! L(H) is a bounded mild evolution operator with property (�),

B 2 Ls;1(t0; t1;L(U;H)), B� strongly measurable, G 2 H(H), C 2

Ls;1(t0; t1;L(H;Y )) and x0 2 H. We consider the input{output opera-

tor L : L2(t0; t1;U )! L2(t0; t1;Y ) de�ned by

u 7! C(�)

Z �

t0

�(�; �)B(�)u(�) d�:

In the �nite dimensional case it has been shown in [8] that

kLk
�1 := supf� 2 RjDRE�has a bounded self{adjoint

solution on[t0;1)g;

where DRE� denotes the parameterized di�erential Riccati equation given

by

_P (t) +A�(t)P (t) + P (t)A(t)� �2C�(t)C(t) � P (t)B(t)B�(t)P (t) = 0;

t 2 [t0;1).

Now we will extend some results proved in [8] for �nite{dimensional

systems to the in�nite{dimensional situation. But we will consider �nite

horizon intervals instead of in�nite. Because we have no di�erentiability

assumptions on our evolution operator, we replace the di�erential Riccati

equation by the parameterized integral Riccati equation
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P�(t)z = �

Z t1

t

��(�; t)[�2C�(�)C(�) + P�(�)B(�)B
�(�)P�(�)]�(�; t)z d�;

(IRE�)

z 2 H.

In the previous section we have shown

Theorem 4.1 The following statements are equivalent

(a) (IRE�) has a unique solution P� 2 Ls;1(t0; t1;H(H)).

(b) There exists a constant " > 0 such that for every u 2 L2(t0; t1;U )

J�(t0; t1; 0; u) :=

Z t1

t0

��2kC(�)x(�; t0; 0; u)k
2+ ku(�)k2 d� � "kuk22;

where

x(t; t0; 0; u) =

Z t

t0

�(t; � )B(� )u(� ) d�:

We now apply this result to the parameterized Riccati equation

Theorem 4.2 The following statements are equivalent

(a) (IRE�) has a unique solution P� 2 Ls;1(t0; t1;H(H)) on [t0; t1].

(b) j�j < kLk
�1.

Proof: Using Theorem 4.1 and

J�(t0; t1; 0; u) =

Z t1

t0

��2kC(�)x(�; t0; 0; u)k
2+ ku(�)k2 d�

= ��2kLuk22+ kuk22

it remains to prove the equivalence of

(i) There exists a constant " > 0 such that for every u 2 L2(t0; t1;U )

��2kLuk22+ kuk22 � "kuk22:

(ii) j�j < kLk
�1.

(iii) implies the existence of a constant " > 0 such that

kLuk22 �

�
1

j�j2
(1� ")

�
kuk22: (18)

Hence (i) holds. Conversely, (i) implies (18) and thus (ii). 2

Theorem 4.2 implies the following characterization of kLk:

kLk
�1 := supf� 2 Rj(IRE�) has a unique solution on [t0; t1]g:
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