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Abstract

The notion of properness, well-known for constant linear systems,

is generalized to the time-varying case. In a module theoretic frame-

work intrinsic characterizations of input-output system properness

are derived. For this, �ltrations and the associated Hilbert polyno-

mials are used. Classical criteria for properness of polynomial and

state representations for constant linear systems are generalized to

the time-varying case. As a measure for the non-properness, an in-

put-output index of a system is de�ned intrinsically which is directly

related to the index of implicit systems of di�erential equations.
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1 Introduction

Most of constant linear control theory concerns proper systems. The follow-
ing reasons are common knowledge: the modeling of the system behaviour

for high frequencies requires the use of a proper model. For constant con-
tinuous time systems properness is equivalent to causality, even if it rather
concerns smoothness (see also Willems' discussion of this question in [29]).
Also it is well-known that proper linear systems can be \realized" without
using di�erentiators.

Though properness is well established for constant linear systems, this
subject has not attracted a lot of attention in the time-varying case [15,
16, 18, 31, 32].

Our investigation is based on the module theoretic approach to linear
systems as it has been introduced by Fliess during the last years [5, 9].
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This is a more general use of module theory than the classical one since
the work of Kalman [19]. Here the system itself is considered as a module.
The approach comprises systems over an arbitrary di�erential �eld and
easily allows us to include time-varying systems. It can be, to some extent,
generalized to distributed parameter systems [7], to systems with delays
[13], and to discrete time systems [8]. It can also be used in an elegant way
for the study of several questions on nonlinear systems (see e.g. [11, 23, 27]
or [25, 26] where an extension of the notion of properness to the nonlinear
case has been proposed).

This module theoretic approach is very much related to the classical
polynomial approach to constant linear systems. Thus, it is not surprising
that we are able to recover the classical properness criteria: for a left (resp.
right) factorization A�1B (resp. ND�1) of the system transfer matrix,
the row-degrees of the matrix A (resp. the column-degrees of D) must be
greater than or equal to those of B (resp. N ) when A is row-reduced (resp.
D is column-reduced) [2, 18].

We �rst interpret the classical transfer matrix de�nition of properness in
the module theoretic approach. For this, we use the transfer matrix of [10]
which is well de�ned also in the time-varying case. From this, we develop a
characterization of properness on the system module. This de�nition uses
the classical algebraic concepts of �ltrations and of the Hilbert polynomial
from dimension theory [1]. The system is proper if and only if the \constant
term" of the Hilbert polynomial of a certain input-output �ltration equals
the state dimension. Thus there is only one intrinsically de�ned integer
which \decides" about properness. This allows us to look at properness
independently of a representation. This is important especially for time-
varying linear systems where the computation of the transfer matrix is
quite tedious.

We de�ne an input-output index as an intrinsic measure for the non-
properness of a system. Using the system theoretic interpretation of the
index of a set of di�erential equations1 recently given by Fliess, L�evine and
Rouchon [12] we show that our input-output index and the index from [12]
coincide. Consequently, a slight modi�cation of our properness criteria al-
lows us to calculate these indexes. An electrical network example illustrates
the methods.

1This notion is important for numerical integration. See [12] for references.
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2 Mathematical Background

Let k be an ordinary di�erential �eld (see [20]), i.e., a commutative �eld
equipped with a single derivation d

dt
= \:" such that

8a; b 2 k;
da

dt
2 k;

d

dt
(a+ b) =

da

dt
+
db

dt
;
d

dt
(ab) =

da

dt
b+ a

db

dt
:

The �eld R(t) of real rational functions and the set of meromorphic func-
tions in the variable t on an open connected domain of R are examples of
ordinary di�erential �elds with respect to d

dt
. A constant is an element

c 2 k such that d
dt
c = 0. A �eld of constants is a di�erential �eld which

contains only constants. The �elds Q and R are examples of di�erential
�elds of constants.

We consider the ring k[ d
dt
] of linear di�erential operators of the formP

�nite ai
di

dti
; ai 2 k. This ring is commutative if k is a �eld of constants.

A left k[ d
dt
]-module generated by a �nite family z = (z1; : : : ; zs) is denoted

as [z]. The cardinal number of a maximal k[ d
dt
]-linearly independent family

of elements of a k[ d
dt
]-moduleM is called its rank. It is denoted as rkM . A

set of generators of a k[ d
dt
]-moduleM which is a k[ d

dt
]-linearly independent

family is called a basis of M . Of course, the cardinal number of a basis
equals rkM . Not all modules admit bases; a module which admits a basis
is called free.

A k[ d
dt
]-module T is said to be a torsion module, or to be torsion, if for

all � 2 T there exists a 2 k[ d
dt
], a 6= 0, such that a� = 0. The ring k[ d

dt
]

is a principal ideal domain. Therefore, a k[ d
dt
]-module M which does not

contain any torsion submodule is free. Every �nitely generated k[ d
dt
]-mod-

ule M is the direct sum, M = T � F , of its torsion submodule T and of a
free module F , unique up to isomorphism [4].

Let us introduce the following notation:

jzjr :=

�
spank

�
z; _z; : : : ; z(r)

	
; for r > 0

f0g; for r < 0
:

With this, jzj := (jzjr)r2Zis a �ltration of the k[ d
dt
]-module [z]. This is a

non-decreasing sequence of k-vector spaces in [z]. This �ltration is obvi-

ously exhaustive (
[
r2Z

jzjr = [z]), discrete (jzjr = f0g for r small enough),

and excellent (each jzjr is a �nitely generated k-vector space, d
dt
jzjr � jzjr+1

and there exists an r 2 Zsuch that 8s > r, jzjs+1 = d
dt
(jzjs) ). Hence,

there exists a Hilbert polynomial2 Hjzj(r) 2 Q[r] such that for r 2 Z, r

2The Hilbert polynomial is a numerical polynomial, i.e., an element � of the poly-

nomial algebra Q[r] in one indeterminate r and coe�cients in the �eld Q of rational

numbers such that �(r) 2 N for su�ciently large r 2 N.
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large enough dim jzjr = Hjzj(r) = m(r + 1) + b, where m is the rank of [z]
(see [17]). Here one even has Hjzj 2Z[r].

Denote the �eld of fractions of k[ d
dt
] by k( d

dt
). This �eld, which is a

skew �eld in general, exists since k[ d
dt
] has the Ore property [4]. Then,

by extension of scalars, from each left k[ d
dt
]-module M one obtains the

(left) k( d
dt
)-vector space cM = k( d

dt
) 
 M . The elements of cM can be

understood as formal products a�1m, where a 2 k[ d
dt
], m 2M . The kernel

of the canonical mapping M �! cM de�ned by m 7�! bm = 1 
m is the
torsion submodule ofM [4]. The tensor-product k( d

dt
)
| de�nes a functor

from the category of left k[ d
dt
]-modules to the category of left k( d

dt
)-vec-

tor spaces. According to [10] it is called the Laplace functor. The formal

Laplace transform of m 2M is bm 2 cM .
Consider in a k[ d

dt
]-module M two families w = (w1; : : : ; wq) and

z = (z1; : : : ; zr) such that

wi =

rX
j=1

ci;j(
d
dt
)zj ; i = 1; : : : ; q; (2.1)

where cij(
d
dt
) 2 k[ d

dt
]. For simplicity of notation we use a matrix notation

to write (2.1) as
w = C( d

dt
) z;

with the matrix C( d
dt
) =

�
ci;j(

d
dt
)
�
over k[ d

dt
] of appropriate size.

3 Linear Time-varying Systems

We �rst recall the de�nitions as introduced by Fliess (cf. [5, 9]). Then
we give some details for explanation. A system � is a �nitely generated
left k[ d

dt
]-module. The �eld k is called the ground �eld; it contains the

coe�cients of the system equations. The system is said to be constant if

its ground �eld is a �eld of constants; otherwise it is called time-varying.
We now develop the relation between linear systems and modules. Let

there be given a set of linear di�erential equations in the variables
w1; : : : ; wr, with coe�cients in k. These di�erential equations can be writ-
ten

rX
j=1

ci;j(
d
dt
)wj = 0; i = 1; : : : ; q; (3.1)

with ci;j(
d
dt
) 2 k[ d

dt
]. Consider the free left k[ d

dt
]-module generated by

W = (W1; : : : ;Wr) and the submodule [E] of [W ] generated by the family
E = (E1; : : : ; Eq) such that E = C( d

dt
)W , with C( d

dt
) = (ci;j(

d
dt
)) the

matrix of the coe�cients from (3.1). For i = 1; : : : ; r, denote by wi the
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canonical image of Wi in the quotient module [W ]=[E]. Then, the system
is just this quotient, i.e., � = [W ]=[E]. The linear di�erential equations
(3.1) are a set of de�ning equations of �. They determine the (non-trivial)
relations between the elements of �.

An input is a �nite set u = (u1; : : : ; um) of elements of � such that the
quotient �=[u] is torsion. We assume the input to be independent, i.e., the
module [u] is free. An output is a �nite set y = (y1; : : : ; yp) of elements of
�. In the case � = [u; y] we call � an input-output system. When � ! [u; y]
we say that [u; y] is the input-output subsystem of �.

A system � � [u; y] is observable if and only if the modules � and
[u; y] coincide. A system � is controllable if and only if the module � is
free. Relations with classical criteria for controllability and observability
are established in [6, 9]. Some of them will become apparent in the sequel.

We use the transfer matrix approach as it was recently introduced by
Fliess [10]. We denote as bui, (resp. byi), the formal Laplace transforms, i.e.,

the canonical images in b� = k( d
dt
)
 �, of ui (resp. yi). The fact that the

quotient �=[u] is a torsion module implies that bu = (bu1; : : : ; bum) is a basis

of the k( d
dt
)-vector space b�. Especially for by = (by1; : : : ; byp), this yields

by = T ( d
dt
) bu; (3.2)

where T ( d
dt
) is a p � m matrix over k( d

dt
) called the transfer matrix3 of

[u; y]. For simplicity of notation we do not introduce an extra notation but
use the convention that it is the matrix expressing the Laplace transforms
of the output y in the basis bu. Even in the non commutative case, the
transfer matrix of a system can be expanded in a Laurent series [4]

T ( d
dt
) =

X
�;�02Z;�>�0

T� :(
d
dt
)�� (3.3)

where the T� are p�m matrices over k and T�0 6= 0.
It is well-known in the constant case that the transfer matrix carries

information only about the controllable and observable parts of the system.
This can be shown as follows. For a general system � ! [u; y] the Laplace

functor yields k( d
dt
)
| : � �! b�. The transfer matrix only describes c[y]

as a k( d
dt
)-subspace of c[u]. Moreover, the kernel of k( d

dt
)
| : � �! b� is

the torsion submodule of �. As � itself, its submodule [u; y] can be written
as a direct sum of its torsion submodule and a free module �. It follows that
the transfer matrix T in (3.2) is determined by this free module �. This
submodule � has been called the transfer module of � in [23], where it has
been shown that it is a complete invariant for transfer equivalence. Instead

3See also [16, 15, 31] for a de�nition of the transfer matrix for time-varying linear

systems.
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of giving the proof that the kernel of k( d
dt
)
| is the torsion submodule,

which can be found in [4, p. 47], we consider a simple example: take the
system de�ned by _y � _u = 0, _z = u. Obviously, the torsion submodule of
� is generated by y � u. One may write

d(y � u) = 1
 (y � u) = ( d
dt
)�1 d

dt

 (y � u) = ( d

dt
)�1



d
dt
(y � u) = 0:

This shows that y � u is mapped on 0. One also sees that 1 
 (y � u) =
1
 y � 1
 u = by � bu = 0: the transfer matrix from bu to by equals 1. The
element z 2 � is unobservable because z 62 [u; y]. One has bz = 1 
 z =
( d
dt
)�1


 ( d
dt
z) = ( d

dt
)�1bu. One can show that all (unobservable) systems

with the same transfer module (up to a particular isomorphism, cf. [23])
lead to the same relations between the formal Laplace transforms bu and by
in c[u], i.e., to the same transfer matrix.

We end this section with a few words about representations of linear
systems. Let there be given a controllable system �. Then, the controlla-
bility being equivalent to the freeness of the module, there exists a basis
w = (w1; : : : ; wm) of �. Therefore, all elements are k[ d

dt
]-linear combina-

tions of the components of w. This implies the existence of matrices D( d
dt
)

and N ( d
dt
) over k[ d

dt
] such that

u = D( d
dt
)w; y = N ( d

dt
)w: (3.4)

From the freeness of [u] it follows that D( d
dt
) is a full rank square matrix.

The representation (3.4) is called a polynomial representation of �.

Remark 3.1 One can see that, via the construction described at the be-
ginning of the section, (3.4) with D( d

dt
) full rank always de�nes a control-

lable system.

With (3.4), one gets

by = 1
 y = 1
 N ( d
dt
)w = N ( d

dt
)
D( d

dt
)�1D( d

dt
)w

= N ( d
dt
)D( d

dt
)�1


D( d
dt
)w

= N ( d
dt
)D( d

dt
)�1(1
D( d

dt
)w)

= N ( d
dt
)D( d

dt
)�1bu:

One recognizes a right factorization T ( d
dt
) = N ( d

dt
)D( d

dt
)�1 of the transfer

matrix.
Let there now be given an observable system � = [u; y]. The quotient

[u; y]=[u] is a torsion k[ d
dt
]module, and hence there exist equations

A( d
dt
) y = B( d

dt
)u (3.5)

6
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where A( d
dt
) and B( d

dt
) are matrices over k[ d

dt
] of appropriate size, with

A( d
dt
) of full rank p [23]. (3.5) is called a polynomial representation of the

system �.

Remark 3.2 Via the construction described in the beginning of the sec-
tion, (3.5) always de�nes an observable linear system.

By a simple consideration analogue to the one for the right factor-
ization above, the representation (3.5) yields a left factorization T ( d

dt
) =

A( d
dt
)�1B( d

dt
) of the transfer matrix.

We have seen that (3.5) always de�nes an observable system and one
might ask when it is controllable. Introduce �( d

dt
) as a greatest common

left divisor of A( d
dt
) and B( d

dt
), i.e.,

A( d
dt
) = �( d

dt
) eA( d

dt
); B( d

dt
) = �( d

dt
) eB( d

dt
)

and if eA( d
dt
) = ��( d

dt
) �A( d

dt
); eB( d

dt
) = ��( d

dt
) �B( d

dt
) then �� is k[ d

dt
]-unimodu-

lar. If �( d
dt
) is itself unimodular then A( d

dt
) and B( d

dt
) are left coprime.

Writing

A( d
dt
)by �B( d

dt
)bu = �( d

dt
)( eA( d

dt
)by � eB( d

dt
)bu)

= �( d
dt
) eA( d

dt
)(by � eA( d

dt
)�1 eB( d

dt
)bu) = 0

shows that the transfer matrix can also be written as

T ( d
dt
) = eA( d

dt
)�1 eB( d

dt
):

Moreover, one sees that the kernel of the mapping k( d
dt
)
| : � �! b�, i.e.,

the torsion submodule of �, is trivial if and only if �( d
dt
) is unimodular.

We have recovered the result [6, 10, 15], that the system is controllable if
and only if A( d

dt
) and B( d

dt
) are left coprime. The dual result, viz. that

the system is observable if and only if D( d
dt
) and N ( d

dt
) are right coprime

can be shown, too (cf. [2, 9, 28]). See also [24], where a module theoretic
approach to system duality is introduced.

A (generalized) state of a linear system � with input u is a family
� = (�1; : : : ; �n) of elements of � such that its canonical image in �=[u]
is a basis of this quotient considered as a k-vector space. The num-
ber n := dim �=[u], which is �nite because �=[u] is torsion, is called
the state dimension of the system � with input u. The canonical image
�� = (��1; : : : ; ��n) of the state � is a basis of �=[u]. Therefore, every element
of �=[u] can be expressed as a k-linear combination of the elements of ��.
For the derivatives of the components of �� and for the canonical images of
the output components in �=[u] it follows�

_�� = F ��
�y = H ��

:
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For � and y this yields

8>>>><
>>>>:

_� = F � +

�X
i=0

Gi u
(i)

y = H � +

�X
i=0

Ji u
(i)

where F , Gi, H and Ji are matrices over k of appropriate size. Introducing
the (generalized) state transformation �� = � � G�u

(��1) enables one to
lower by one the order of derivation of the input in the dynamics equation
_� = F � +

P�

i=0Gi u
(i). Repeated state transformations of that kind lead

to a state representation

8><
>:

_x = Ax+ B u

y = C x+


X
i=0

Di u
(i) (3.6)

where D
 6= 0 unless 
 = 0. Input derivatives may eventually be present
in the output equation (
 > 0). The state x = (x1; : : : ; xn) which appears
in (3.6) is called a Kalman state [9].

4 Properness for Linear Time-varying Systems

In the sequel of the paper, we mainly restrict our attention to input-output
systems [u; y] because properness is an input-output property. However,
everything we develop can be applied to general systems (� ! [u; y]) by
considering their input-output subsystem [u; y].

The well-known classical de�nition of properness says that a constant
linear system is proper if the entries of its transfer matrix are proper ra-
tional fractions, i.e., the degrees of the numerators do not exceed the de-

nominator degrees4.
Let us examine the non-commutative case. A right (resp. left) fac-

torization of w 2 k( d
dt
) is the datum of a; b 2 k[ d

dt
] such that w =

a(b)�1 (resp. w = (b)�1a). Consider di�erent left and right factoriza-
tions of an element w 2 k[ d

dt
], for instance w = a1(b1)

�1 = a2(b2)
�1 =

(b3)
�1a3 = (b4)

�1a4. From the equality a1(b1)
�1 = (b3)

�1a3 it follows
that b3a1 = a3b1 and hence d� a1 � d� b1 = d� a3 � d� b3. The equal-
ity a2(b2)

�1 = (b3)
�1a3 yields d� a2 � d� b2 = d� a3 � d� b3 and then

d
� a1�d

� b1 = d
� a2�d

� b2(= d
� a3�d

� b3). In the same manner one es-
tablishes d� a3 � d� b3 = d� a4 � d� b4. Thus, the di�erence of numerator

4An equivalent characterization is limjsj!+1 Ti;j(s) < 1, where the Ti;j are the

entries of the transfer matrix.
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and denominator degrees does not depend on the (left or right) factor-
ization, and the notion of proper rational fractions can be extended to
non-commutative k( d

dt
). It is easy to verify that the (time-varying) proper

rational fractions form a ring which is a subring of the �eld k( d
dt
). We

denote this ring as P .

De�nition 4.1 A (time-varying) linear system [u; y] with input u and out-
put y is proper if the entries of its transfer matrix are elements of the ring
P .

In other words, the system is proper if the components of by are P -linear-
ly dependent over bu, where bu and by denote the formal Laplace transforms
of u and y respectively. This leads to the following characterization.

Proposition 4.1 A (time-varying) linear system [u; y] with input u is
proper if and only if the P -module generated by by is a submodule of the
P -module generated by bu.

We give a characterization of system properness directly on the module
[u; y].

Lemma 4.1 The following statements are equivalent:

(i) The system [u; y] with input u and output y is proper.

(ii) jyjr \ [u] � jujr, for all r 2 N.

(iii) The Hilbert polynomial of the �ltration ju; yj is Hju;yj(r) = m(r+1)+n

where n is the state dimension of the system [u; y].

Remark 4.1 When one is interested in strict properness this can be ex-
amined by just replacing (ii) by jy; _yjr \ [u] � jujr and the �ltration ju; yj
in (iii) by the �ltration ju; y; _yj.

Proof: (i) , (ii): By de�nition, the quotient [u; y]=[u] is torsion. There-
fore, for all components yi, i = 1; : : : ; p, of the output there exists a di�er-
ential equation

riX
j=0

ai;jy
(j)

i =

mX
l=1

r0
i;lX

j=0

bi;j;lu
(j)

l ;

where ri; r
0

i;l 2 N, ai;j; bi;j;l 2 k, with ai;ri 6= 0, and bi;r0
i;l
;l 6= 0 unless

r0i;l = 0. For the formal Laplace transforms, the previous equation implies

0
@ riX

j=0

ai;j
dj

dtj

1
A byi =

mX
l=1

0
@

r0
i;lX

j=0

bi;j;l
dj

dtj

1
A bul:

9
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One has (i) , [by]P � [bu]P , ri > maxl r
0

i;l, 8i = 1; : : : ; p , (ii), where
[by]P (resp. [bu]P ) denotes the P -module generated by by (resp. bu).

(ii) , (iii): Denote as �yi, i = 1; : : : ; p, the canonical image of yi in
the quotient module [u; y]=[u] and set �y = (�y1; : : : ; �yp). For r large enough,

j�yjr
�

= [u; y]=[u] and hence the Hilbert polynomial of the �ltration j�yj is
Hj�yj(r) = n. For all r 2 N,

dim ju; yjr = dim jujr + dim jyjr � dim(jujr \ jyjr)

= dim jujr + dim jyjr � dim([u]\ jyjr)

+ dim([u(r+1)] \ jyjr)

= dim jujr + dim j�yjr + dim([u(r+1)] \ jyjr):

As dim jujr = m(r + 1), (ii) , [u(r+1)]\ jyjr = f0g , (iii). 2

An examination of this proof allows us to state the following remarks.

Remark 4.2 For non-proper systems [u; y], one gets Hju;yj(r) = m(r +
1) + b, with b > n.

Remark 4.3 For unobservable systems � ! [u; y], the �ltration ju; yj is
exhaustive for the input-output subsystem [u; y]. Hence, the Hilbert poly-
nomial in (iii) of Lemma 4.1 becomes Hju;yj(r) = m(r + 1) + nobs. Here
nobs is the dimension of [u; y]=[u] as k-vector space, i.e., the number of
observable state components.

From the proof of (i) , (ii) in Lemma 4.1 we get the following propo-
sition.

Proposition 4.2 A time-varying linear system [u; y] with input u and out-
put y is proper if and only if the number �0 in the Laurent series expansion
(3.3) of its transfer matrix T ( d

dt
) is non-negative.

An application of Lemma 4.1 generalizes a classical result stemming
from the polynomial approach [2, 18, 30] in the constant case. Recall that
a non-singular polynomial matrix is called column-reduced (resp. row-re-
duced)5 if its leading column (resp. row) coe�cient matrix is non-singular
[18, 30].

Proposition 4.3 Let there be given a polynomial representation (3.4), with
D( d

dt
) column-reduced, of a (controllable) input-output system [u; y]. The

system is proper if and only if the column-degrees of each column of D( d
dt
)

are higher than or equal to those of the corresponding columns of N ( d
dt
).

5These notions were �rst introduced by Wolovich who used the terms column-proper

and row-proper cf. [18, p. 384].

10
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Proof: Denote as 
iD (resp. 
iN ) the column-degree of the i-th column of
the matrix D( d

dt
) (resp. N ( d

dt
)). First note that a column-reduced matrix

D( d
dt
) can be written asDhcdiag ((

d
dt
)
iD) + a sum of terms of lower degree,

where Dhc is a full rank matrix over k. It is then a simple observation

that column-reducedness of D( d
dt
) implies that u

(r)
j 2 �m

i=1jwij

iD+r , but

u
(r)
j =2 �m

i=1jwij

iD+r�1, for all j = 1; : : : ;m and r 2 N. Moreover, jyjr �

�m
i=1jwij


iN+r . It readily follows that 
iN 6 
iD, i = 1; : : : ; p, is equivalent
to jyjr \ [u] � jujr, for all r 2 N. With (ii) of Lemma 4.1, this means
properness. 2

An analogous classical result on left factorizations of the transfer matrix
can be generalized by considering row-degrees and row-reduced matrices.

Proposition 4.4 Let be given a polynomial representation (3.5), with
A( d

dt
) row-reduced, of an (observable) system [u; y]. The system is proper

if and only if the row-degrees of each row of A( d
dt
) are higher than or equal

to those of the corresponding rows of B( d
dt
).

Proof: Denote as �iA (resp. �iB) the row-degree of the i-th row of the
matrix A( d

dt
) (resp. B( d

dt
)). Introduce zi =

Pp

j=1 ai;j(
d
dt
)yj , i = 1; : : : ; p.

The row-reducedness of A( d
dt
) then means that, for i = 1; : : : ; p, one can

write

zi =
�
aihr:(

d
dt
)�iA + sum of terms of lower degree

�
y = bi( d

dt
)u

with aihr the row vectors of a non singular matrix over k, and bi( d
dt
) the row

vectors of B( d
dt
). It follows from the regularity of Ahr that [

p
i=1jzij

r��iA =
jyjr \ [u]. Moreover, [pi=1jzij

r��iB � jujr. Therefore, �iA 6 �iB, i =
1; : : : ; p is equivalent to jyjr \ [u] � jujr, 8r 2 N. 2

A di�erent way to prove the result is by using duality as introduced in
[24]. The dual of a pair (A( d

dt
); B( d

dt
)) from a right factorization is given

by �D( d
dt
) = AT (� d

dt
) and �N ( d

dt
) = BT (� d

dt
). Of course, row degrees of

A( d
dt
) and B( d

dt
) become column degrees of �N ( d

dt
) and �D( d

dt
).

As a second application of Lemma 4.1 we get the following proposition
which is a consequence of Proposition and De�nition 5.1 in the next section
(see there for the proof).

Proposition 4.5 Let be given a Kalman state representation (3.6) of a
system �. The system � is proper if and only if the integer 
 in the output
equation is zero.

Remark 4.4 The integer 
 which appears in (3.6) is related to the index
of linear implicit di�erential systems [12], as we will see in the next section.
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5 Input-output Index and Index of an Implicit System

of Linear Di�erential Equations

From the Propositions 4.2 and 4.1, one sees that the integers �0 in (3.3)
and 
 in (3.6) both can be considered as a measure for non-properness.
More precisely, with each input-output system [u; y] we can associate6 an
input-output index I[u;y] = max(0; 1� �0) = max(0; 1 + d� D( d

dt
)), where

D( d
dt
) =


X
i=0

Di:(
d
dt
)i, with Di the matrices in (3.6), and with the conven-

tion that d� D( d
dt
) = �1 if D( d

dt
) = 0 and d� D( d

dt
) = 
 if D( d

dt
) 6= 0.

Following [12], the de�nition of I[u;y] is intrinsic because �0 and 
 are in-
trinsic. However, with the language of �ltrations developed here we are
able to give other intrinsic de�nitions of the input-output index which are
not based on any representation. Hence, in general, the calculation of the
input-output index will be easier than the calculation of �0 or 
.

Proposition and De�nition 5.1 The input-output index I[u;y] of [u; y]
equals the minimal l 2 N such that H

jy; _y;u;:::;u(l)j(r) = m(r + l + 1) +
dim[y; u]=[u].

Proof: First, observe that for all l 2 N, and for r large enough,

dim
�
spank fxg+ jy; _y;u; : : : ; u(l)jr

�
= dim jy; _y; u; : : : ; u(l)jr + dim spank fxg

� dim
�
spank fxg \ jy; _y;u; : : : ; u

(l)jr
�

= dim jy; _y; u; : : : ; u(l)jr + n� nobs:

Recall that nobs = dim[u; y]=[u] is the dimension of a state of the observ-
able subsystem [u; y]. Equations (3.6) yield jy; _yjr � spank fxg+ juj

r+
+1

and, unless I[u;y] = 0, jy; _yjr 6� spank fxg + juj
r+
 for all r 2 N. Suppose

�rst that l = 
 + 1. One has spank fxg + ju; : : : ; u(l)jr � spank fxg +
jy; _y; u; : : : ; u(l)jr � spank fxg + ju; : : : ; u(l)jr. Hence, dim(spank fxg +
jy; _y; u; : : : ; u(l)jr) = n+m(r + l + 1). Suppose now that l < 
 + 1. Unless
I[u;y] = 0, one has spank fxg+jy; _y; u; : : : ; u

(l)jr ! spank fxg+ju; : : : ; u
(l)jr,

and hence dim(spank fxg+jy; _y; u; : : : ; u
(l)jr) > n+m(r+l+1). Therefore,

for the case I[u;y] 6= 0,


 = l + 1, H
jy; _y;u;:::;u(l)j(r) = m(r + l + 1) + nobs;


 > l � 1, H
jy; _y;u;:::;u(l)j(r) > m(r + l + 1) + nobs:

If I[u;y] = 0, one has dim(spank fxg + jy; _y; uj
r) = n + m(r + 1), whence

Hjy; _y;uj = m(r + 1) + dim[y; u]=[u]. 2

6The equality max(0;1��0) = max(0;1+d� D( d
dt
)) has been shown in [12] and this

will not be repeated here.
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We can give yet another interesting intrinsic de�nition, which is equiva-
lent to the previous ones. Consider the canonical injection { : [u] �! [u; y].

Proposition and De�nition 5.2 The index I[u;y] of [u; y] satis�es

I[u;y] = min
�
l 2 N j {�1(ju; y; _yjr) � jujl+r; 8r 2Z

	
:

Proof: One has

Hju;:::;u(l);y; _yj(r) = Hju;:::;u(l)j(r) +Hj�yj(r) = m(r + l + 1) + n;

with �yi the canonical image of yi in [y; u]=[u] if and only if {�1(ju; y; _yjr) �
jujl+r; 8r 2 Z. This is because ju; : : : ; u(l); y; _yjr=jujr+l and j�y; _�yjr are iso-
morphic for all large r if and only if our inclusion condition holds. Moreover,
Hj�yj(r) = H

j�y; _�yj(r) = n. This proves equivalence with the Proposition and

De�nition 5.1. (This proof can be formalized by considering short exact
sequences for the �ltered modules (cf. [17]).) 2

Remark 5.1 The input-output index is a measure for non-strict proper-
ness: the input-output index of a strictly proper system is zero, the in-
put-output index of a proper but not strictly proper system is one, and
the input-output index of non-proper systems is greater than one. For that
reason we use the �ltration which tests for strict properness in the previous
de�nition (cf. Remark 4.1).

Remark 5.2 An analogous result can be considered for the canonical in-
jection of [y] into [u; y]. The integer de�ned by this way measures the
maximum order of zeros at in�nity. This will be studied elsewhere.

We can use the input-output index in order to give a new de�nition of
the index of an implicit system of linear di�erential equations (see [3]7).
The index of an implicit system of di�erential equations measures the num-
ber of times the equations have to be di�erentiated in order to get an as-
sociated explicit system. This notion, introduced for constant systems of
di�erential equations, has been extended recently to time-varying systems
[12, 21, 22]. We show how the two notions of index are related.

Consider the implicit system of linear time-varying di�erential equations

A( d
dt
)Y = 0; (5.1)

where Y = (Y1; : : : ; Ym) are the unknowns and A( d
dt
) is an m � m

matrix with full rank over k[ d
dt
]. In the k[ d

dt
]-module [E; Y ], with

E = (E1; : : : ; Em), de�ne W = (W1; : : : ;Wm) such that Wi = Ai( d
dt
)Y �

7See [12] for further references.
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Ei, i = 1; : : : ;m, where Ai( d
dt
) denotes the ith row of A( d

dt
). Set [e; y] =

[E; Y ]=[W ], where e and y are respectively the canonical images of E and Y
in [E; Y ]=[W ]. As A( d

dt
) has full rank, [e; y]=[e] is torsion and [e; y] can be

considered as an input-output system with input e and output y associated
to (5.1). With the de�nition of the index from [12] one gets the following.

Proposition and De�nition 5.3 The index of the implicit system of
time-varying linear di�erential equations (5.1) is equal to the input-output
index of the associated input-output system [e; y].

Remark 5.3 The index of (5.1) is invariant with respect to equivalent
choice of equations and change of coordinates for the unknown variables.
This follows from the invariance of the input-output index with respect to
invertible changes of input and output, i.e., ~y = F1 y and ~u = F2 u, where
F1 and F2 are invertible square matrices of appropriate size with entries in
k.

6 Example

6.1 Input-output index of a linear network

Consider the time-varying linear network of Figure 1 (resistors R1, R2,
R3 and R5 are adjustable). We utilize the linear idealized model of the
operational ampli�ers [14]. Writing down Kirchho� laws yields:

��
�

��
�

��
�

HHH
HHH

HHH
+ + +

� � �

��� ���
R1 R2 C3

-

-

C1 C2

R3
���

R5
���

R4

-
i1

-i5 -i4

i2

-
i3

6
u 6y

i6

6v1 6v2

Figure 1: Linear Time-varying Network

i1 = C1 _u v1 = �R1i1
i2 = C2 _v1 v2 = �R2i2 = R3i3
i6 = �C3 _y y = �R4i4

i3 + i5 = i4 + i6 u = R5i5

These equations are not in any standard form (i.e., state-variables equa-
tions, input-output polynomial equations, transfer equations,...). However,
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they allow us to check properness with the �ltration criterion. Variables
i1; : : : ; i6; v1 and v2 are latent variables, u is the input, y the output. Denote
as �z the canonical image of z 2 � in �=[u]. This yields:

�i1 = 0 �v1 = �R1
�i1

�i2 = C2 _�v1 �v2 = �R2
�i2 = R3

�i3
�i6 = �C3 _�y �y = �R4

�i4
�i3 +�i5 = �i4 +�i6 0 = R5

�i5:

It follows that �i1 = �i2 = �i3 = �i5 = �v1 = �v2 = 0, �i4 = �(1=R4)�y, �i6 = �C3 _�y
and �y+R4C4 _�y = 0, and hence dim �=[u] = 1. The observability is obvious.

We can check properness with the �ltration ju; yj. We see that jyj1 \
[u] � juj2, and jyj1\[u] 6� juj1, and, by repeated derivation of the equations,
we can check that jyjr \ [u] � jujr+1 and jyjr \ [u] 6� jujr, for all r 2 Z.
The system is not proper. We can also calculate the Hilbert polynomial
of ju; yj: dim ju; yj0 = 2, dim ju; yj1 = 4 = (1 + 1) + 2, dim ju; yj2 = 5 =
(2+1)+2; : : : ; dim ju; yjr = r+3 = (r+1)+2. Thus Hju;yj(r) = r+1+2 6=
r+ 1 + dim �=[u].

We saw that 8r 2Z, jyjr \ [u] � jujr+1 and jyjr \ [u] 6� jujr. It follows
that 8r 2 Z, jy; _yjr \ [u] � jujr+2 and jy; _yjr \ [u] 6� jujr+1. Therefore,
8r 2 Z, {�1(ju; y; _yjr) � jujr+2 and {�1(ju; y; _yjr) 6� jujr+1. The input-
output index of this network is 2.

6.2 Index of a time-varying implicit system of linear

di�erential equations

We will calculate the index of the implicit system of di�erential equations
considered in [12], given by

�
_Y1 + t _Y2 = 0
Y1 + tY2 = 0

: (6.1)

The associated input-output system reads

�
_y1 + t _y2 = e1
y1 + ty2 = e2

:

One sees that y1 = e2+te1�t _e2 and y2 = �e1+ _e2. Hence, fromProposition
and De�nition 5.2, I[e;y] = min

�
l 2 N j {�1(je; y; _yjr) � jejl+r ; 8r 2Z

	
= 2.

The index of (6.1) is 2.

Acknowledgments: The authors would like to thank P. Rouchon for
helpful comments.
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