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An Algorithm for Viability Kernels in

H�olderian Case: Approximation by Discrete

Dynamical Systems�

Marc Quincampoix Patrick Saint-Pierre

Abstract

In this paper, we study two new methods for approximating the

viability kernel of a given set for a H�olderian di�erential inclusion.

We approximate this kernel by viability kernels for discrete dynam-

ical systems. We prove a convergence result when the di�erential

inclusion is replaced by a sequence of recursive inclusions. Further-

more, when the given set is approached by a sequence of suitable

�nite sets, we prove our second main convergence result. This paper

is the �rst step to obtain numerical methods.

1 Introduction and Notations

Let X be a �nite dimensional vector space and K be closed subset of X.
Consider the di�erential inclusion:

x0(t) 2 F (x(t)); for almost all t � 0: (1.1)

We want to study the viability kernel of K for F (denoted by V iabF (K))
which is the largest closed set contained in K such that starting at any
point of K there exists at least one viable solution (i.e. a solution such
that 8 t � 0; x(t) 2 K). This viability kernel plays a crucial role in
various domains. In control theory, it has been introduced by Aubin in [2],
studied by Byrnes-Isidori under the name of zero dynamics (cf [3, 14]) and
used for target problems in [17] (see also [8, 4, 19]).

It is well-known (see [2, 13]) that when F is a Marchaud-map1 a closed

�Received December 18, 1992; received in �nal form March 26, 1993. Summary
appeared in Volume 5, Number 1, 1995.

1A set-valued map F : X ; Y is a Marchaud map when F is upper-semicontinuous,

with convex compact nonempty values and with linear growth.
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set is viable if and only if it satis�es the following contingent2 condition

8 x 2 K; F (x) \ TK(x) 6= ;: (1.2)

The viability kernel V iabF (K) is the largest closed viable subset contained
in K. Our main aim is to determine this set in a constructive way by using
discrete approximation (see also [12] for another way to approximate this
set). For that purpose, for any � > 0, we associate to (1.1), the following
discrete dynamical system

xn+1 � xn

�
2 F (xn); for all n � 1: (1.3)

We denote by G� the set-valued map G� = 1+ �F . Then the system (1.3)
can be rewritten:

xn+1 2 G�(x
n); for all n � 0: (1.4)

The Viability Theory allows us to study points x0 2 K such that there
exists at least one viable solution to (1.3) starting at x0 (i.e., a solution ~x

to (1.4) such that 8 n; xn 2 K). Similarly, as in continuous case, we can
de�ne viable sets and viability kernels. Let us introduce some notations
for discrete and continuous cases. We denote by

� SF (x0) the set of solution x(�) to (1.1) starting at x0;

� ~SG�
(x0) the set of solution ~x = (xn)n to (1.4) starting at x0;

� V iabF (K) the viability kernel of K for (1.1);

�
�!

V iabG�
(K) the discrete viability kernel of K for (1.4).

When F is a Marchaud map, we know that one can �nd a sequence of
discrete viability kernels ofK under G�, which converges to a closed subset

contained in the viability kernel of K for F (see [20]).
In this paper, when the set valued-mapF is furthermore regular enough

(i.e., when F is a �-H�olderian3), we prove that the sequence of discrete
viability kernels for the map ��(x) = x + �F (x) + l��B converges to the
viability kernel for F .

In the last part of this paper, we consider a �nite approximation Xh

of the whole space X and we consider discrete inclusions on Xh. Then
we prove that viability kernels of some subsets of Xh for suitable discrete
inclusion converge to V iabF (K).

2The contingent cone (or Bouligand cone) TK(x) is the set of v 2 X such that
lim infh�!0+ d(x+ hv; K)=h = 0.

3The map F is an �- H�olderian map namely if there exists some � > 0 such that for

any x; y, F (x) � F (y) + lkx� yk�B.
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This paper gives mathematical results for numerical methods which
have been applied to particular examples (see [15]) for an economical ex-
ample and [9] for the classical problem of a swimmer who tries to reach an
island).

2 Approximation by Viability Kernels of Discrete Dy-

namical Systems

In this section, our goal consists in approximating V iabF (K) by discrete
viability kernel of K for (1.3). First we recall some basic properties of
discrete viability kernels (see [2, 20]).

2.1 Viability kernels for discrete dynamical systems

We call discrete dynamical system associated with a set-valued mapG from
X 7! X the following system:

xn+1 2 G(xn); for all n � 0: (2.1)

We denote by K the set of all sequences ~x := (x0; :::; xn; :::) from IN to K.
A solution ~x to (2.1) is viable in K if and only if for all n � 0; xn 2 K

(i.e., ~x 2 ~SG(x) \K. )
A closed set A is a discrete viability domain for G if and only if starting

from any initial points in A there exists at least one viable solution to (2.1).
Let us recall4 that A is a discrete viability domain if and only if

8 x 2 A; G(x) \A 6= ;: (2.2)

Then the discrete viability kernel
�!

V iabG (K) ofK for G is the largest closed
discrete viability domain contained in K.

Let us notice that this set can be easily built in a constructive way (cf
[2]):

Proposition 2.1 Let G: X ; X be an upper semicontinuous set-valued
map with closed values and K be a compact subset of Dom(G). If the
sequence (Kn)n (with K0 = K) is de�ned as follows:

Kn+1 := fx 2 Kn such that: G(x)\Kn 6= q;g

then,
�!

V iabG (K) =

+1\
n=0

Kn:

4cf [2, 20].

3



M. QUINCAMPOIX AND P. SAINT-PIERRE

Let Gr : X ; X the extension of G de�ned by

Gr(x) := G(x) + rB: (2.3)

The sequence of subsets Kr;0 = K; Kr;1; :::; Kr;n; ::: de�ned by

Kr;n+1 := fx 2 Kr;n , such that Gr(x) \Kr;n 6= ;g

is again convergent to
�!

V iabGr (K). Furthermore, when r decreases to 0,
the viability kernel of K for Gr converges to the viability kernel of K for
G (cf [20]):

Proposition 2.2 Let G and K satisfy assumptions of Proposition 2.1 and
Gr be de�ned by (2.3), then

�!

V iabG (K) =
\
r>0

�!

V iabGr (K):

2.2 Approximation process

Let F a Marchaud map and F� a sequence of set-valued maps satisfying

8� > 0; 9�� > 0; 8� 2]0; ��] : Graph(F�) � Graph(F ) + �B; (2.4)

where B is the unit ball in X � X. Thus, we de�ne an approximation
process of (1.1) by the dynamical discrete system xn+1 2 xn + �F�(x

n).
Let us notice that (1.3) is an approximation process (case F� = F )

but there are many of them (see a detailed study concerning Set-valued
Runge-Kutta process and the thickening process in [20]).

Assumption (2.4) implies that the graph of F contains the graphical
upper limit5 of F�, that is to say that Graph(F ) contains the Painlev�e-
Kuratowski upper limit6 of Graph(F�)

lim sup
�!0

Graph(F�) � Graph(F ): (2.5)

Let K� be a sequence of subsets of X such that K = lim sup�>0K�. Possi-

ble K� may be constant. We set �� := 1+ �F� and consider
�!

V iab�� (K�)

5The graphical upper limit is the upper limit of the sequence of Graph(F�).
6The upper limit of a sequence of subsets Dn of X is

D
] = limsup

n!1

Dn := fy 2 X j lim inf
n!1

d(y;Dn) = 0g;

the lower limit is de�ned by

liminf
n!1

Dn := fy 2 X jlimn!1d(y;Dn) = 0g:

4



VIABILITY KERNELS IN H�OLDERIAN CASE

the discrete viability kernel of K� under ��. We shall recall a result (cf
[20] for the proof) which implies the viability property of the upper limit

of discrete viability kernels
�!

V iab�� (K�):

Theorem 2.3 Let F be a Marchaud map and F� be a sequence of set-

valued maps such that F = CoLim]
�!0

F�. Then the upper limit
lim sup�!0

V iab��(K�) is a viable subset under F :

lim sup
�!0+

�!

V iab�� (K�) � V iabF (K): (2.6)

Our main goal is to prove that it is possible to chose F� and K� in a such
way that the inclusion (2.6) is an equality.

2.3 Convergence of the approximation process

We shall prove the convergence of the approximation process under the
crucial following condition concerning set-valued maps F and F�

�
i) M := supx2K supy2F (x) kyk <1

ii) 9 �0 > 0; 8 � 2 ]0; �0]; Graph(F (�+ �B)) � GraphF�:
(2.7)

For any sequence F�, let us de�ne

8 x; ��(x) := x+ �F�(x):

Theorem 2.4 Let K be a closed set and F be a Marchaud set-valued map.
If maps F� satis�es (2.4) and (2.7) then

lim sup
�!0

�!

V iab�� (K) = lim inf
�!0+

�!

V iab�� (K�) = V iabF (K): (2.8)

Let us make some comments before proving the theorem:

Remark 1: Condition (2.7-i)) is ful�lled as soon as F is upper semicon-
tinuous and K is compact

Remark 2: It is possible, when Dom(K) = Dom(F�), to write the condi-
tion (2.7-ii)) as follows:

9�0 > 0; 8� 2]0; �0]; 8x; 8y 2 B(x; �); F (y) � F�(x): (2.9)

Remark 3: The theorem is still valid instead of (2.7-ii)) if we assume the
following weaker condition:

GraphF ((�+ �B) \K) � GraphF�:

5



M. QUINCAMPOIX AND P. SAINT-PIERRE

Remark 4: If F is a Marchaud and `-Lipschitz map then maps F� :=

F + Ml�
2
B satisfy condition (2.7) and (2.4).

Proof of Theorem 2.4: Thanks to Theorem 2.3, we only have to prove
the inclusion

V iabF (K) � lim inf
�!0+

�!

V iab�� (K):

Let x0 2 K and consider any solution x(�) 2 SF (x0). Let � given in ]0; �0].
We have x(s) � x(t) =

R s
t
x0(�)d� 2

R s
t
F (x(�))d� but

x(�) 2 x(t) +
R �
t
F (x(u))du � x(t) + (� � t)MB.

Consequently,

x(t+ �) 2 x(t) +

Z t+�

t

F (x(t) + (� � t)MB)d�:

Since x(t) + (� � t)MB � x(t) + �B and thanks to (2.7), we deduce that
x(t+ �) 2 x(t) + �F�(x(t)).

Then if x(�) 2 SF (x0) then the following sequence

�n = x(n�); 8n � 0 (2.10)

is a solution to the discrete dynamical system associated with �� := 1+F�:

�n+1 2 ��(�n); 8n � 0: (2.11)

So, if x(�) is a viable solution, (�n)n is also a viable solution to (2.11). It
implies

V iabF (K) �
�!

V iab�� (K); ; 8� > 0

and then

V iabF (K) � lim inf
�!0

�!

V iab�� (K) � lim sup
�!0

�!

V iab�� (K):

2

Corollary 2.5 Let F be a Marchaud and `-Lipschitz set-valued map and K
a closed subset of X satisfying the boundedness condition (2.7-i)). Consider

F� := F +
Ml

2
�B: Then lim

�!0

�!

V iab�� (K) = V iabF (K):

It is easy to extend this result to the H�older case:

Corollary 2.6 Let F be a convex compact set-valued map satisfying (2.7-
i)) and the following H�older condition:

9� > 0; 9` > 0; 8(x; y); F (y) � F (x) + `kx� yk�B: (2.12)

Consider F� := F + `��B. Then

lim
�!0

�!

V iab�� (K) = V iabF (K):
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Assumptions (2.4) and (2.7-ii)) are contradictory in some sense. The
�rst one means that the approximations F� must not be too large so that
their graph remains in a \small" extension of the graph of F . The second
one means that approximations F� must be large enough so that F�(x)
contains all images F (y) when y gets close to x.

3 Approximation by Finite Setvalued Maps

In this section, we want to replace X by a discrete set Xh and we shall
state some convergence results.

With any h 2 IR we associate Xh a countable subset of X, which is an
approximation of X in the following sens:

8<
:

i) 8x 2 X; 9xh 2 Xh such that kx� xhk � �(h)
ii) lim

h!0

�(h) = 0

iii) all bounded subset of Xh is �nite.

(3.1)

3.1 Approximation of discrete viability kernels

Let Gh : Xh ; Xh be a �nite set-valued map and a subset Kh � Dom(Gh).
We call �nite dynamical system associated to Gh the following system:

xn+1h 2 Gh(x
n
h); for all n � 0; (3.2)

and we denote by

� Kh the set of all sequences from IN to Kh.

� ~xh := (x0h; : : : ; x
n
h; : : :) 2 Xh a solution to system (3.2)

� ~SGh
(x0h) the set of solutions ~xh 2 Xh to the �nite di�erential inclusion

(3.2) starting from x0h.

A solution ~xh is viable if and only if ~xh 2 ~SGh
(xh) \Kh.

Let K0

h = Kh; K
1

h; :::; K
n
h ; ::: de�ned recursively as in the second sec-

tion:
Kn+1
h := fxh 2 Kn

h such that: Gh(xh) \Kn
h 6= ;g:

The viability kernel algorithmholds true for �nite dynamical systems when-

ever the set-valued map Gh has nonempty values and we have
�!

V iabGh

(Kh) =
T+1

n=0K
n
h . This set can be empty. Moreover, there exists p �nite,

such that:
�!

V iabGh
(Kh) = Kn

h = K
p
h ; 8n > p:

When Gh is the reduction to Kh of a set-valued map G, we can apply
no longer more previous results, since G(xh) may not contain any point of
Xh and Gh(xh) may be empty.
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To turnover this di�culty, we will consider greater set-valued maps
Gr which still approximate G. For choosing Gr

h, we have two di�erent
di�culties: on one hand, Gr has to be large enough (such that Dom(Gr \
Xh) � Kh) and on the other hand, it has to be small enough in view to
apply Theorem 2.4.

Let us de�ne some notations:

8D � X; Dh := D \Xh

8x 2 X; Gr(x) := G(x) + rB

8x 2 X; Gr
h(x) := Gr(x) \Xh:

According to de�nition (3.1) of �(h), we notice that extension G
�(h)

h

satis�es the following nonemptyness property:

8xh 2 Dom(G) \Xh; G
�(h)

h (xh) := G�(h)(xh) \Xh 6= ;: (3.3)

Then from Proposition 2.1, we can deduce the following:

Proposition 3.1 Let G be a Marchaud map. Consider decreasing se-

quence of �nite subsets K
�(h);0

h = Kh; K
�(h);1

h ; : : : ; K
�(h);n

h ; : : : de�ned
by

K
�(h);n+1

h := fx 2 K
�(h);n

h , such that G
�(h)

h (x) \K
�(h);n

h 6= ;g:

Then
+1\
n=0

K
�(h);n

h =
�!

V iab
G
�(h)

h

(Kh):

Let us describe a method to approximate the discrete viability kernel of
K under G. First, we extend G such that Dom(Gr

h) = Dom(G) \Xh (for

doing this we choose r = �(h) then for any xh 2 Kh, the set G
�(h)

h (xh) is

nonempty). Secondly, we shall study convergence of
�!

V iab
G
�(h)

h

(Kh), when

h converges to 0+.

3.2 Discrete viability kernel of a discrete set

Since limh!0 �(h) = 0, by applying Proposition 2.2, we obtain

\
h>0

�!

V iabG�(h) (K) =
�!

V iabG (K):

The following result gives a necessary and su�cient condition for
�!

V iab
G
�(h)

h

(Kh) to be the reduction of
�!

V iabG�(h) (K) to Xh (proof in [20]

Prop. 4.1):
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Proposition 3.2 Let G: X ; X be an upper semicontinuous set-valued
map with closed values and K a closed subset of Dom(G). Let r > 0 be
such that for all x 2 Dom(Gr ) \Xh, Gr(x) \Xh 6= ;. Then

�!

V iabGr

h

(Kh) �
�!

V iabGr (K) \Xh: (3.4)

It coincides if and only if:

8xh 2
�!

V iabGr (K) \Xh; G
r(xh) \ (

�!

V iabGr (K) \Xh) 6= ;: (3.5)

3.3 Approximation for H�olderian maps

In general case, we cannot apply Proposition 3.2, but we can deduce the
following approximation result when K is a viability domain:

Let r(h) = max(`�(h)� ; �(h)).

Proposition 3.3 Let G : X ! X be a �-H�olderian set-valued map and K

a nonempty discrete viability domain for G. Then Kr
h := (K + rB) \Xh

is a �nite viability domain for Gr
h

8r � r(h);
�!

V iabGr

h

(Kr
h) = Kr

h:

Proof: We want to prove that Kr
h is a viability domain for Gr

h, namely
Gr
h(x) \Kr

h 6= ; for any x 2 Kr
h. But

Gr
h(x) \Kr

h = (G(x) + rB) \Xh \ (K + rB) � Xh \ (G(x) \K + rB)

which is nonempty as soon as r � �(h): 2

We can now compare discrete viability kernel of K for G and �nite
viability kernel of K \Xh for Gh.

Proposition 3.4 Let G : X ; X be a �-H�olderian set-valued map with
nonempty values satisfying the following property

8� 2 G(x); 9�h 2 G(x) \Xh such that k� � �hk � �(h): (3.6)

Then, for all r � `�(h)�, we have

�!

V iabG (K) �
�!

V iabGr

h

(K

h ) + 
B;

where K

h = (K + 
B) \Xh and 
 := (r=`)

1
� : 2

9
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Before proving Proposition 3.4, we state the following:

Lemma 3.5 Let assumptions of Proposition 3.4 hold true. Consider r �
`�(h)� . Then

8 ~� 2 ~SG(�
0); 9 ~�h 2 ~SGr

h

(�0h); 8 n � 0; k�nh � �nk� �
r

`
: (3.7)

Proof of the Lemma: From (3.1), there exists some �0h, which belongs

to (�0 + ( r
`
)1=�B) \Xh. Assume that we found a sequence �ph 2 Gr

h(�
p�1
h ),

which satis�es (3.7) until p = n.
Thanks to the nonemptyness property (3.3) and because G is a

H�olderian map, we deduce:

G(�n) � G(�nh + (
r

`
)
1
�B) � G(�nh ) + rB = Gr(�nh ): (3.8)

Since �n+1 2 G(�n), from (3.6), there exists some �n+1h 2 G(�n)\Xh such
that k�n+1 � �n+1h k� � r

`
. Thanks to (3.8), �n+1h 2 Gr(�nh ) \Xh = Gr

h(�
n
h )

and consequently ~�h 2 ~SGr

h

(�0h). By iterating this process, the proof is
completed. 2

Proof of Proposition 3.4: Consider �0 2
�!

V iabG (K) and ~� 2 ~SG(�
0) as

an associated solution which is viable in K. Thanks to Lemma 3.5, there
exist ~�h 2 ~SGr

h

(�0h) satisfying (3.7). Hence, for any n � 0,

�nh 2 K + (
r

`
)
1
� \Xh:

2

3.4 Convergence result

Before stating our main convergence result, we shall recall a useful lemma
(see [20] for the proof).

Lemma 3.6 Let D � X be closed. Consider a decreasing sequence of
closed subsets D� such that D =

T
�>0D�. Assume that (3.1) holds true.

Then
D = lim

�;h!0

((D� + �(h)B) \Xh): (3.9)

If D satis�es the property 8x 2 D; 9xh 2 D \Xh : kx� xhk � �(h), then

D = lim
h!0

(D \Xh): (3.10)

Now we can state the following:

10
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Theorem 3.7 Let F : X ; X be a H�older map with convex compact
nonempty values and K be a closed subset of X satisfying the boundedness
condition (2.7-ii)). Consider �� := 1+ �F + `�1+�B and assume that �(�)
and Xh satisfy (3.1).

If �(h) � `�1+� , then

V iabF (K) = lim
�;h!0

(
�!

V iab�� (K) + �(h)B) \Xh: (3.11)

Consider � such that �1+� � �(h)� and de�ne �`�
1+�

�;h := (��+`�
1+�B)\Xh.

Then

V iabF (K) = lim
�;h!0

�!

V iab
�
`�1+�

�;h

((K + �
1+�
� B) \Xh): (3.12)

Proof: From Corollary 2.6, V iabF (K) = lim�!0

�!

V iab�� (K).

The decreasing sequence
�!

V iab�� (K) converges to V iabF (K) when �

decreases to zero. Then applying Lemma 3.6 with D� =
�!

V iab�� (K), we
obtain (3.11).

To prove the second equality (3.12), we shall use Proposition 3.4 with
G = ��. We �rst notice that condition (3.6) is already satis�ed because
`�1+� � �(h) and thanks to (3.1). Hence, thanks to Proposition 3.4

�!

V iab�� (K) �
�!

V iab
�
`�1+�

�;h

((K + �
1+�
� B) \Xh) + �

1+�
� B:

Consequently, thanks to (3.11), we proved that

V iabF (K) � lim inf
�;h!0

�!

V iab
�
`�1+�

�;h

((K + �
1+�
� B) \Xh):

Let us prove the opposite inclusion. Since �`�
1+�

� = �� + `�1+�B =

1 + �F� + 2`�1+�B. Observe that

Graph(
�
`�1+�

�h � 1

�
) � Graph(F ) + 2`�1+�B:

Hence (2.4) is satis�ed and thanks to Theorem 2.3, we obtain

V iabF (K) � lim sup
�;h!0

�!

V iab
�
`�1+�

�;h

((K + �
1+�
� B) \Xh):

This ends the proof. 2

This result allows to approximate numerically viability kernels (see ex-
amples in [9] and [21] ).
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3.5 A numerical example

We apply our algorithm to a very simple example of linear control problem
in IR2 which dynamic is given by

�
i) (x0(t); y0(t)) = (x(t); y(t)) + c(u(t); v(t))
ii) (u(t); v(t)) 2 B(0; 1):

When K = [�1; 1]2, it is easy to see that V iabF (K) = cB(0; 1).
Compute this viability kernel by approximating it by suitable discrete

viability kernels (by taking hn := 1

2n
). When n = 8, we can refer to the

enclosed �gure.
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