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Realization of Rational Matrices by Singular

Systems”

Heide Gliusing-Lierfien

Abstract

We study the relationship between spaces of singular systems
and rational matrices. In a recent paper it is shown that the space
of all rational p x m-matrices of fixed McMillan degree 7 is embedded
in a space of rational curves of degree r from the Riemann sphere
5% to a Grassmannian manifold (see [2]). This space of curves is
locally homeomorphic to the space of all proper rational matrices of
degree r. In this paper we study the space of square irreducible (not
necessarily admissible) singular systems. It is shown that the space
of these systems of order r and dimension r + min{m,p} modulo
strong equivalence is homeomorphic to the above mentioned space
of all rational curves of degree r. The homeomorphism is induced by
the transfer matrix.

Key words: singular systems, rational matrix, realization theory, polynomial

coprime factorization

AMS Subject Classifications: 93B15, 93B17, 93B20, 93B10, 93B25,
93C35

1 Introduction

From the realization theory for state space systems we know that the space

Rat? ={G e K(s)P*™ | d(G) = r, G strictly proper } (1.1)

m,r,p

of (real or complex) strictly proper rational matrices G with McMillan
degree d(G) = r is homeomorphic to the quotient space of minimal state
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H. GLUSING-LUERBEN

space systems of order r modulo similarity. Thus, let
Srp = {(A,B,C) € &+ | (A, B,C) minimal}  (1.2)

be the space of minimal state space systems of order r, where K denotes the
field R or C. On immp acts the well-known similarity action, denoted by
~: (A, B,O)X(A' B, C") iff (A", B',C") = (TAT=',TB,CT~") for some
T € Gl,,. Then it is known from Byrnes/Duncan [1] that the map

T: immp S Rat?n,r,p
(A, B,C) &~ C(sl=A)'B

induces a homeomorphism

homeo

im,r,p/ﬁl = Y, ~ Rat) (1.3)

m,r,p?

0
m,r,p

if X, r p 1s endowed with the quotient topology and Rat 1s topologized
as a space of rational maps in a way which is described in [2, Section 3].
The goal of this paper is to generalize this result to arbitrary (i. e. not
only proper) rational matrices of fixed degree on the one hand and singular
systems as their realizations on the other one.
Thus, one object of our study is the space of rational p X m-matrices
of fixed degree r. This space was studied in a preceding paper, see De

Mari/Gliising-LiierBen [2]. Tt can be viewed as a subspace of the space
Iy = {{(X) | X € K[s]PT™X™ 1k X(s) = mforalls € C, §(X) = r},
where for X € K[s]®+7)X™ it is
(X) = {XU|UEeK[s]"™ ™ detU =c€ K"}
§(X) = max{degA | A m x m-minor of X}.

Via coprime factorizations, the space of all rational p X m-matrices of degree
r can be identified with the subspace

P
Q

The equivalence classes (X) of Z,,, , , can be interpreted as rational maps

Raty, rp = {([ ]> ELmrp | Q€K™ det@ £ 0}. (1.4)

from the Riemann sphere into a Grassmannian, the so-called Hermann-
Martin-maps (cf. Martin/Hermann [7] for the strict proper case). In this
way Zp, rp can be endowed with the compact-open topology. For the details
about the space 7, , , see [2].



SINGULAR SYSTEMS

While proper rational matrices can be realized as state space systems,
improper matrices do have realizations as square singular systems, 1. e.
systems of the type

Ei(t) = Ax(t)+ Bu(t) } (1.5)

u(t) = Ce(t)+ Dut)

with (E, A, B,C, D) € [K2n°+nmEpntpm - Note that singular systems con-
tain differential as well as algebraic equations. Systems of this form oc-
cur naturally as realizations for rational matrices: if ¥ = (F, A, B,C, D)
is admissible, that is det(sE < A) # 0, the transfer matriz T(XZ) :=
C(sE <A)~'B + D is a (non-proper) rational matrix.

From Verghese et al. [9] it is known that each rational matrix GG has
a realization as an irreducible singular system X = (E, A, B,C, D) which
is unique up to equivalence transformations; the order rkE is just d(G).
The notions irreducibility and equivalence transformations generalize the
concepts of minimality and similarity as they are introduced for state space
systems (see Definition 2.1 and Definition 2.2).

A glance at the definition of the underlying equivalence transformations
tells us that the dimension of the realizing system X, 1. e. the size of
the matrices F/, A is not determined by the transfer matrix. Thus the
results of [9] are not sufficient to formulate a bijection between the space
Rat,, »p and a suitable quotient space of singular systems. However, it
can easily be seen that each G € Rat,, ,, has an irreducible realization
(E, A, B,C, D) with tkE = r and dimension N = r + min{m, p}. Thus it
follows that the quotient space Ay, rp of all admissible irreducible systems
(1.5) of order tkE = r and dimension N modulo strong equivalence is
bijective to Rat,, ., where the bijection comes in an obvious way from the
transfer matrix.

Note that, so far, there are some restrictive regularity conditions in-
volved in this approach. On the one hand, we consider rational maps
induced by matrices [P, @*]* with @ non-singular, on the other hand their
counterparts are systems (£, A, B, C, D) with det(sE < A) # 0. To estab-
lish the above mentioned bijection as a homeomorphism between Ay, ,
and Rat,, ,p, it is useful to omit this regularity conditions. Hence we
change to the larger space Z,, ,p. It is shown in [2] that this space has a
nicer topological structure than Raty, ,p:

If equipped with the topology of uniform convergence, the space Z,, , ,

0

is locally homeomorphic to the space Rat,, ,. , X KF*™ of all proper rational

matrices of degree r (see [2, Theorem 3.5]). The local homeomorphism is

3
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given by

X—oX = |:P:| ,
Q

where ¢ is a permutation, which transports an m x m-submatrix Q of X
with maximal determinantal degree among all these submatrices to the last
m rows. Then PQ~"' is proper and the McMillan degree of the rational ma-
trix PQ~1 is equal to §(X) (see [2, Lemma 2.3]). If (X) € Z,p, ., is viewed
as an ARMA-system, this reorganization of data can be interpreted on a
system theoretical level as an interchanging of inputs and outputs. Thus the
elements in Z,, » , can be viewed as reorganized proper systems. It is pos-
sible to associate with (X) € Z,, , , an irreducible (non-admissible) system
(E, A, B,C, D), namely by realizing PQ~! as a proper state space system
and making the corresponding reorganization of data backwards with the
system matrices. In the case (X) = ([P", Q']") € Ratp, ;p C Ly rp, this
leads in fact to the usual realization PQ~1(s) = C(sE <A)"1B + D.

Having established in this way a bijection between Z,, , , and the quo-
tient space L, ., of irreducible systems of order r and dimension N =
7 4+ min{m, p} modulo strong equivalence as in the regular case, it is not
hard, to prove this bijection to be a homeomorphism: one uses the lo-
cal structure of these spaces and the well-known homeomorphism (1.3) of
the state space case. In particular, this shows the map (E, A, B,C, D) —
C(sE<A)~'B+ D to be a homeomorphism between A,, , , and Rat,, ;. ,.
The really non-trivial part to be done here is to prove this map being a
bijection between Z, ,, and L, rp.

We proceed as follows:

In the next section we introduce the main concepts for singular systems
and establish some fundamental properties. One main point is Theorem
2.4, which shows the coincidence of strong equivalence and operations of
strong equivalence (in the sense of [9]) for systems of the same dimension.
This result is important for further questions about uniqueness of realiza-
tions.

Moreover, we construct a standard-form for singular systems. It is
mostly the same as the “internal reduced form” given by Grimm [4] and
will be used for the reorganization of data when constructing a map between
rational curves and non-admissible systems. It is associated a state space
system with the standard-form by interpreting the involved matrices in
a different way. Then strong equivalent irreducible standard-forms yield
similar minimal state space systems and vice versa.

In Section 3 the quotient space of irreducible systems modulo strong

4



SINGULAR SYSTEMS

equivalence 1s studied. It can be shown that in the context of this paper,
it is sufficient to consider systems (1.5), where E is of the form

. I, 0
E, =
[0 0

] e K**", (1.6)
so that strong equivalence becomes a group action.

In Section 4 a pseudotransfer function is defined. It generalizes the
transfer function to non-admissible systems and associates to them a ra-
tional curve, i. e. an element of Z,, . ,. It is shown in this section that this
pseudotransfer function induces a homeomorphism on the level of quotient
spaces. The very technical part of proving that in fact this map induces a
bijection between the quotient space Ly, »p, and Z,, , , is deferred to the last
section. Some of the very tedious matrix calculations are a bit shortened;
they can be found in more detail in [3].

To save space we will make use of the notations and results of [2], in
particular note the preliminaries and Definition 3.4 of [2].

2 Preliminaries

In this section we introduce a few general concepts for singular systems. We
show that strong equivalence and operations of strong equivalence, as they
were introduced by Verghese et al. [9], coincide for systems with the same
dimension. Secondly, it is given a standard-form for so-called irreducible
systems under strong equivalence. This will be useful later in order to
describe the local structure of the space of all singular systems.

Let M7, , = [K2n”+nm+pntrm he the set of all quintuples (E,A,B,C,D)
describing singular systems of the form (1.5) over a field K, where K is
always R or C.

Definition 2.1 Let ¥ = (F, A, B,C,D)e My, .

a) dimX = n is the dimension, ordX = rkE the order of the system.

b) X is called admissible, if det(sE < A) # 0.

¢) X is called irreducible, if it holds tk[sE <A, B] = n = rk[sE* < A" C*]*
foralls € C and imE+ Aker E+imB = K* = imE"'+ A ker £ +imC".

d) X is called canonical, if it is irreducible and fulfills Aker E C imFE.

Put
Lr = {¥eMj, , |ord¥ =r, ¥ irreducible},

m,r,p

5
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Chrp = X eMp,, |ordX =r, X canonical},
AL, = X €Ly, | ¥ admissible}.

The condition A ker £ C imF is responsible for the fact that the system
has no non-dynamical behaviour, see Verghese et al. [9, p. 816]. Observe
that we call a system irreducible if it is strongly irreducible in the sense
of [9]. The notion of canonicity is taken from Grimm [4] as well as the
following definition of strong equivalence, which differs slightly from that
used by Verghese et al. [9].

Definition 2.2

a) Let ¥ = (E,A,B,C,D), ¥ = (E,A, B,C,D) € MG, . X and T are
called strongly equivalent (55), if there exist matrices M, N € Gl,, , Q €
KPXn R € K"*™ such that

TS | S [ A e v A

Q I C D 0 In C D
b) A trivial l-inflation, | € N, of a system ¥ = (E, A, B,C, D) € Mg, , is
a system of the form
E 0 A0 B
Y= D . 2.2
(5 ol [3 2] [0l eamems e
The reverse process is called trivial [-deflation.

¢) Two systems ¥ € M}, and X' € /\/lﬁ;yp are called equivalent (~), if
they can be transformed into each other by a finite sequence of transfor-
mations of the types a) and b), i. e. by strong equivalence transforma-
tions and trivial inflations/deflations.

Irreducibility, admissibility, and canonicity are preserved by ~, the first
two also by ~. Note that (2.1) implies QF = 0 and FR = 0; thus strong
equivalence generalizes the similarity action known for state space systems.

Aker E
Remark 2.3 Since dim(F, A, B,C, D) <dim ( imEnA kerE) is in-

variant under equivalence, it follows that equivalent canonical systems are
of the same dimension.

The next theorem shows that for equivalent systems of the same di-
mension trivial inflations/deflations are not needed to transform one of the
systems into the other one.

Theorem 2.4 Let &, % € MG, , and YAY. Then EXX.

6
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Proof: We assume that ¥ is achieved from ¥ by a sequence of transfor-
mations as in (2.1) or in (2.2) and its inverse process, so let

EISIODllOSZOD120~~~ODltOSt+1(E); (23)

where .S; are transformations of strong equivalence and ), are trivial ;-
inflations (if {; > 0) or l;-deflations (I; < 0). It holds: Zj’:l i, =0
(Note that the [-deflations are only well-defined for systems in block-form
as on the right hand side of (2.2); the notation in (2.3) requires the well-
definedness of the transformations).

We prove the strong equivalence of ¥ and ¥ by induction on t.

For t = 1 it has to be [; = 0, hence there is nothing to prove.

Let ¢ = 2; then (2.3) can be rewritten as (D, )~ !o Sfl(i) =830, 0
S3(X), which means Dy, o Sfl(i)stlQ o S3(X).

Let STH(X) = (E, A, B,C, D), S3(X) = (E, A, B,C, D). If [, < 0, then
it follows obviously S !(X)<S5(X) and thus SX%. If Iy = [ > 0, then there
exist matrices M, N € Gl,1;, Q € KP*(+) R ¢ RIn+DXm gych that

sEsA 0 <B sEeA 0 <B
M N
0 o 0 :[Q IO:| 0 e 0 [0 IR:| (2.4)
C 0 D P C 0 D "

It follows rkE = tkE =: r and

— dim (Aker E — dim (AkerE,
d_dlm( “ /iHlEmAkeI‘E)_dlm( “ /imEﬂAkerE)’

since these numbers are preserved under strong equivalence.
Thus strong equivalence transformations on both systems in (2.4) leads
to an equation of the type

SEn_d <0 G M 0 SEn_d <0 G . R
0 Ip 0| = 01 0 Iy 0 0 1| (2.5)
H 0 J P H 0 J n

. F1 F2 = Fl Fz
thk=d+1and F = F=]_
w1 4+ { an [F?, 0], [F?, 0

From this it follows by tedious but straightforward matrix manipulations

] and F,_g4 as in (1.6).

(En—daFaGaHa J)%(En—daFaGaHaj)

(for the detailed computation see [3, pp. 107]). The case t > 2 can be
handled by using the fact that for k£ > 0 a term of the form Dy 0 S;(X) resp.

7
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Sj 0 D_p(X) can be written as 5}» o Dp(X) resp. D_ o 5‘]» (X) with suitable
transformations of strong equivalence S; resp. S;. Hence the sequence in
(2.3) can be reduced from length ¢ to the case t < 1. O

Remark 2.5 For admissible systems Pugh et al. [8] describe the equiva-
lence of systems in a closed form: two admissible systems (F, A, B, C, D)
and (E, A, B,C, D) (of not necessarily the same dimension) are equivalent
iff they fulfill equation (2.1) with suitable (non-square) matrices M, N, Q
and R, which satisfy some coprimness conditions with respect to the given
systems. Using this characterization Pugh et al. proved Theorem 2.4 for
admissible systems, cf. [8, Theorem 6, Theorem 7].

In the following we give a standard-form for canonical systems under
strong equivalence. The idea is taken from Grimm [4], who introduced a
so-called “internal reduced form,” which is only slightly different from the
following standard-form (cf. [4, Definition 5al]). As in [2], let P(n) denote

the set of n X n-permutation matrices.

Definition 2.6 Let o € P(m), 7 € P(p). A system X € My, , is called in
(¢, 7)-standard-form, if ¥ € M7,  is of the structure

T4 A [0 B e 0 D,
z_<En,[A3 AHI BJQ,T[O I][O O]m (2.6)

with F,, as in (1.6), Ay € Kn=r)x(n=r) ), ¢ Kp-ntr)x(m=nt+r) qpnd the

remaining matrices in fitting sizes.
The state space system

iz(Al,[Az,Bz],[ Gy ][ Cy Dy

K Hrmtprtpm
A3 <A, By :| ) €

15 called the associated state space system.

Note that ¥ € M7,  can be in (g, 7)-standard-form only if n < ord¥ +
min{m, p}, which is always the case for canonical systems. It holds

Proposition 2.7 a) Fach system ¥ € (), 1s strongly equivalent to a

m,r,p
system as in (2.6) with Ay = 0 and with suitable permutation matrices

o €P(m), T € P(p).
b) Each system ¥ € L) 15 strongly equivalent to a system

m,r,p

28 2 Eeanece.

8



SINGULAR SYSTEMS

with (B, A, B,C, D) € C%=F for some 0 < k < n.

m,r,p

The proofs can be done by simple matrix manipulations with the prescribed
operations.

Note that for canonical systems the standard-form is more special than
in Definition 2.6, namely in this case it is A4 = 0. Since in the case
A4 # 0 the associated state space system is of the most general form, it
will be useful to study these more general standard-forms also. Via the
reorganization of data, the associated state space systems will describe the
local structure of the irreducible singular systems, as we will see later.
One necessary property for this ensures the next proposition: irreducibility
(resp. strong equivalence) of the standard-forms is translated to minimality
(resp. similarity) of the associated state space systems and vice versa.

Proposition 2.8 Let o € P(m), 7 € P(p) and ¥t € M3, , be of the form
e [AL AL 0 B ci 0 Di
= (E, L2 2 1 2 2
( ’[Afo, Aa]’ [I Bz]w[o Ll Lo o[

fori=1,2. Then for the associated state space systems f]l it holds:
o) ey, = S € Sy x KPXT
b) NIEN? e AN
Proof:
a) For ©! = (E,, A', B',C', D) it holds imFE, + A'ker E, + imB* =
sl, A1 <A} 0  Bi
cAL <Al I, Bj
iff tk[sI, <A}, [©AL, B3]] = r. The analogous conditions hold for the
observability.

K. Further for all s € C 1t 1s rk

b) “=” First one observes that we can restrict ourselves to the case ¢ =
Im, 7 = I,. For abbreviation let ¥ = (E,,, A’, B*,C%, D) for i = 1,2
with the matrices as given in the proposition. Then from

M 0][sE, <A B[N R
Q I ct D! 0 Inp

sk, A2 oB?
C? D

M, M,

0 M,y

This yields after some computations

1t follows M = [ ] with My € Gl, and M4 € Gl,,_,.

- 1 -
(MlA%Ml 1aM1[A%aB%]a [ . :|M1 1|:

C3  D; )
<AL

<AL ©Bi
9



H. GLUSING-LUERBEN
C? c? D?
A2 [A2 B2 i ) 2 1y
( la[ 2 Z]a C}A% 3 @AZ C;)Bz )
The implication “<” is trivial. O

Remark 2.9 Consider the system X given by (2.6). The corresponding
equations are

1 = Ajxi+ Asxs 4+ Boug

0 = Asxi+ Aszo + wr + Baus (2.7)
y1 = Cizi+ Cowa+ Daus

Y2 = T2

with respect to suitable partitions of input, state and output. This formu-
lation shows that some of the inputs (those described by ;) are not really
inputs, but satisfy w3 = <{Asz; + Asxs + Baus), whereas the part ys of
the output is free. Neglecting initial conditions, one can formulate (2.7) as

&1 = Ajr+ [As, By <y2 )

Uz
Y
U

el S0

z1+ )
Az Ay By U2
which 1s just the associated state space system. Hence standard-form and
associated state space system are obtained from each other by interchanging
some of the inputs and outputs with each other.

This interpretation was studied in detail for ARM A-systems by Willems
[11]. He defines systems via their external behaviour and divides (if possi-
ble) the external variables in inputs and outputs according to their prop-
erties with respect to the dynamical system. Kuijper/Schumacher [5, 6]
followed this approach especially for singular systems. In the sense of [11]
the free external variables of (2.7) are uz and ya2, whereas y; and 4y process
and do not anticipate ys and us. Further z; satisfies the “axiom of state.”

Thus, within this terminology, (2.7) is in fact a state space system (for the
notions see [11, p. 216, p. 186]).

3 A Quotient Space of Singular Systems

This section is devoted to the quotient space modulo strong equivalence of
all irreducible systems with fixed order r and dimension n. Analogously
to the regular case, where E € (i, can be transformed to £ = I, we

10



SINGULAR SYSTEMS

will consider only those systems (£, A, B,C, D) € L}, ., where E is of
the form FE, as in (1.6). Strong equivalence reduced to this subspace of
systems then becomes a group action. We show that the quotient space
related to this action is homeomorphic to [’Z’L,r,p/f\‘f'

It is obvious that each system X € L7, ., is strongly equivalent to a

system Y = (En, A, B, C, E) Therefore we introduce the space

Ly ., ={(4,B,C,D)eEM | (E,,A,B,C,D)€ L2, ,,}

m,r,p
with M := n? + nm 4+ pn 4+ pm. There is a canonical embedding

v: [A:Z%np S—= Lo 3.1)

(A,B,C,D) - (E, A B,C, D), '
if both spaces are equipped with the Euclidean topology. Having in mind
the identification v(A4, B, C, D) = (En ,A, B, C, D), wealsocall (4, B,C, D)

a system. Define also

AZ@,r,p = {(Aa B,C, D) € f’?@,r,p | det(SEn C:)A) 5—'& O}a
Corp = (ABCD)eLy  ,|(En A BCD)eC , },
endowed with the topologies induced by [A:Z%np. Then AZ@%P s an open

n
m,r,p

subset of £

morp- is that strong equiva-

The advantage of the space £
lence, if restricted to this space, becomes a group action: let Hy, ., = H

be the subgroup of Gl,4p X Glyypm consisting of elements of the form

My Mo 07 MY 0 077"

0 My 0|, Ns Ny R )a

0 Q2 I, 0 0 I,
where M7 € Gl,., My, Ny € Gl,_, and My, N3, ()2, Ry are arbitrary ma-
trices of appropriate size. Denote by « be the algebraic action

o H x [A:Z%w, S [A:Z%w,
(h,(A,B,C, D)) v~ (MAN,M(B+ AR),(C <QA)N, (3.2)
D+ CR<QBSQAR)

-1

] ) € H with M, N,Q, R as in the above

Whereh:<[M OHN t

Q I 0 In
form. Then the equivalence relation

(A,B,C, D)XA, B,C, D) <=
FheH: alh, (A, B,C, D))= (A, B,C,D)

11
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is just the restriction of the strong equivalence to systems in Em rpt At

is (4, B, o D)X(A, B,C, D) iff (En, A, B,C, D) % (En, A, B,C, D). Note

also that ~ generalizes the similarity action from %, rp XKPX™ = ﬁfnmp =

cr = Afnmp to ﬁmmp for n > r. The restriction to £? fits also

m,r,p m,r,p

topologically as it holds:

Proposition 3.1

homeo n
mrp/ Am P

a) It zsﬁmrp/shomeoﬁn /s and A

m,r,p

/se iof all spaces
are endowed with the quotzent topologies.

h) Aﬁﬂap/s is open embedded in [A:Z”«p/s and é;@yryp/s = Smrp X

kP> )/ s is open embedded in An ool s foralln>r.
Proof:
a) Consider the well-defined bijection
Foo Lhls o= Ll

[(A,B,C,D)i #— [(E., A, B,C, D),

with []; as the corresponding equivalence classes. The continuity of
the canonical projections II : L7 /se and I : L7

m,r,p mrp m,r,p

ﬁg@ﬂ“,p/ﬁ, and the openness of the last one imply the continuity of f.
Hence 1t remains to show that f is open.

Ity cLr /sisopen,thenalsoV:f[_()CE” Put V =

m,r,p m,r,p*
{(Secr,, |3(4,B,CD)eV: XXy(A,B,C, D)} with v as in (3. 1)
Then it is V = II7L(f(U)), thus we have to show that V C L7

m,r,p

open. For this let g = (Ey, Ao, Bo, Co, Dy) € V. We will construct

an open neighborhood of ¥y in V. Without loss of generality we can
! !

By ] with tk B = r = rk Ey.

assume that Fg 1s of the form [E’ >

Put

Ey

kE, =
By E rtkEy = r}

rp|

W:{E:([

and for ¥ € W let

]AB(JD)E%

ETY 0 I &F7'E
M(E):[C}E;El_l I],N(E):[O L Z]EGln.

Consider the map

S

QDZ
Y =(E, A, B,C,D)
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Then it is X9 € ¢~ (V) C W N V. Thus the continuity of ¢ and the

openness of W in £, ., imply that go_l(f/) is an open neighborhood of
Eo V.

The same proof also works for A%,r,p/ s .

The open embedding of AZ%M,/ s in [A:Z%w,/ s 1s obvious.

For the last statement of the proposition let 5 be the embedding
g Crarp S~ Abrp

(A,B,C,D) ([’3 Ino_r],[ﬁ],[c,o],m

and let T : A"

m,r,p

- A%,r,p/s and I’ : ér - é;%,r,p/s be the

m,r,p
canonical projections. Then the map

v é;%,r,p/ﬁ, = A%,r,p/ﬁ,

(A, B,C,D) w— I(B(A,B,C,D))

is well-defined, injective, and continuous. For an open set U C CA;“«’p/ s

it is I'=Y(U) open in C7, and thus B(I'=Y(U)) = V open in B(C

m,r,p

endowed with the subset topology of An With the open set

m,r,p°

)
m,r,p/?

_ Al A2 in
M - {(|:A3 A4:|’B’C’D) € Am,r,p | A4 S Gln—r}

it is I(3(CL, »,)) = II(M) open in A%, , /s and W ={S e M |Ix €
V. Eii} open in M, which can be proven similar to the openness of

the set Vin a). Tt follows ¥(U) = (V) = II(I¥) is open in H(ﬁ(ér ))

A mr,p
3 n
and hence in A7, /s .
O

n

At the end of this section we give a quotient space Ammp

/s bijective

to Raty, ,p, where the bijection is induced by the transfer matrix. In order
to establish this bijection as a homeomorphism, we will extend 1t in the
next section to a map between a quotient space L7, . /s and Zp, », and

use the local structure of the latter space.

From Verghese et al. [9], Theorem 2.4, and (1.4) it follows that the

transfer function

T: Aﬁlmp <—  Raty,p (3.3)
(E,A,B,C,D) &~ C(sE<A)"'B+D '

13
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is well-defined and satisfies T(X) = T(X') iff X%/, Observe that this

holds for every n > r. The map T is also surjective if n is chosen to be

n=r+ min{m, p}, as it can be seen from the following facts:

— toeach G € K(s)P*™ there exists an irreducible realization as a singular
system of order r, i. e. there is an system (£, A, B,C, D) € A7, ., for
some n, such that G(s) = C(sE <A)"1B + D (cf. [10, p. 242]).

7

m,rp With arbitrary n > ris

— By Proposition 2.7 b) every system X € A
equivalent to a system in some ngl,r,p Then it is n' < r + min{m, p}
since for a canonical system X it is dim X < ordX + min{m, p}.

— Each system ¥ € Aﬁ%ryp for some 7 < r + min{m, p} can transformed

via trivial inflation to a system X' € A7, . with n = r + min{m, p}.
The invariance of T under equivalence transformations (see [9, Theorem
5.1]) then implies the surjectivity of T in the case n = r+min{m, p}. Thus,
in this case, the above and Theorem 2.4 yield a bijective correspondence

A%,r,p/i g Ratmyﬁp' (34)

4 A Homeomorphism between the Spaces /jmmp/g and
Im,T,p

For the rest of the paper fix N = r 4+ min{m, p} as the dimension of the
systems and put ﬁmmp = ﬁ%mp’ Ammp = A%,r,p'
In this section we will show that the spaces ﬁmmp/ s and Z,, ., are
homeomorphic, where the homeomorphism is induced byNthe transfer ma-
trix for admissible systems. For this we extend the map 7" in (3.3) from
the admissible case to the non-admissible one. This can be done by using
the standard-forms and their associated state space systems introduced in
Definition 2.6 and Proposition 2.7; the reorganization of data in the sys-
tems is then transported to a reordering of rows in the transfer matrix in
Zm,rp- The idea is demonstrated for the admissible case and then taken as
definition for the general case. One has to show a lot of well-definedness
for the so-called pseudotransfer matrix, which is deferred to Section 5.
For the following notations, in particular the matrices V3 and oy, but

also the topological structure of Z,, , ,, see [2, Section 3].

Lemma 4.1 Let X = (A, B,C, D) =

Ay A, 0 Bs ¢y Oy 0 Ds in
([Ag AJ’[IH_T BJQ’T[O In_T]’T[O 0 ]Q)EEWP (4.1)

14
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and put G(s) =

[g; gj]@: [5;3](517«@141)—1[142,32“[{5;4 554]. (4.2)

Then X is admissible iff det Gs £ 0. If, in this case, PQ~Y(s) = C(sEn &
A)'B+ D and PQ‘l = G are polynomual coprime factorizations, then it

holds
=1 0][P
y=te |y O] T

P

e

Proof: The first statement follows from

sl <A 0 :| [I <I)(SI C}Al)_lAz]

E,oA=
’ < [ A3 <Ay C}Ag(SI C}Al)_lAz 0 I

If det Gz # 0, then (sE, <A)~! =

[(51 SANTHI + AyG3t Az(sT < A1)™] (s] @Al)—lAngl]

G3lAz(sI <A)~! G351
thus
Cy C - 0 B 0D
—1 —1 -1 _ 1 2 —1 2 2
T PQ 7 (s)o _[0 I](SEn@A) [I 34]-1-[0 0]

[G1G5Y G eGi1G5 Gy
Tl Gyt G316y '

Partition P = [Pf, P;]t, Q= [QE, Qg]t with Py, Q1 € K[s](»=")%™  Then it

holds
. Lo1-1 ) L oq-1\ 1
] ([2]]e
Q1| Q2 Q2 || Q2|
Gy Ga1[Gs Ga]™ | [GiG5! Gy eGiG5 Gy
L1 oflo T | G5t G316y '
Hence the result follows. O

The lemma says just what one would expect if one looks at ([P*, Q*]")
as the dual of an ARMA-system: interchanging of inputs and outputs of

15



H. GLUSING-LUERBEN

the singular system associated with PQ~! is related to an interchanging of
corresponding rows in ([P*, Q*]%).

We use this fact for the definition of a pseudotransfer matrix for non-
admissible systems in ﬁm,r,p

Having introduced the larger space Z,, , , and not only (non-proper) ra-
tional matrices, we can transform, via a permutation, the transfer matrix of
the associated state space system to one of the original system, even in the
non-admissible case. In the terminology of Willems [11] this construction
is just the dual of ARMA-representations and first-order representations of
behaviours.

Definition 4.2 Let Y € [A:Z%np be as in ({.1) with ¢ € P(m) and 7 € P(p),

G as in (4.2), and PQ~' = G € Rat!

<m , ,
morp X K a polynomial coprime

factorization. Define

T(E):([g Q?l]vn_r[g]mzmw.
In [4, p. 1335] Grimm defines the pseudotransfer function for a system
in “internal reduced form” as the transfer function of its associated state
space system, which, in his approach, looks a bit different from ours. Thus,
the information about the reorganization of the system, which is contained
in the matrices g, 7 and V,,_,, is not included in Grimm’s definition.

It is possible to define T(E) not only for systems in standard-form but
for arbitrary irreducible systems via transforming them to a standard-form.
For this remember the map v as in (3.1). We have to use this map only for

the formal reason that there is no notion of equivalence ~ introduced for

k

systems in Ly, ..
o

Theorem 4.3 The map

T: Lyrp = Tompp
Y e T(E’), where v(S)~v(X), and v(X') € L3, . p for some
n < N is in a (o, 7)-standard-form with suitable ¢ €
P(m), 7 € P(p)

is well-defined, surjective, and fulfills SRY <= T(X) = T(X) for , ¥ €
IfY = (A B,C,D) € Ap,p and T(Z) = ([P*, QYY) € Ty rp, then it
holds det Q # 0 and PQ~'(s) = C(sE, A" "B+ D.
We call T(X) a pseudotransfer matriz of . X € ﬁmmp 1s named a
realization of ('Y € Ty, yp, if T fulfills T(X) = (T).

16
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Proof: The well-definedness of 7 and the property 2% < 7(X) = 7(X)
are rather technical to prove. We put the proof of this fact in Section
5. The surjectivity of 7 holds, since each (T} € Z,, ,, can be written as
0 P . .
(T) = <[Z)- Q_l]Vk [Q]> with 7 € P(p), ¢ € P(m), k < min{m, p} and
PQ-le Rat?n,r,p x KP*™ (remember the bijection ¥y in equation (3.6) of
[2]). Then Definition 4.2 and the realization theory for state space systems
yield at once a realization for (T') in E;{':fyp, which can be trivially inflated

to one in Ly rp- 0O

Remark 4.4 The map 7 could have been formulated also by setting 7 (%)
= T(X') where ¥/ is in addition to the given requirements also canonical.
This would have made the proof of the well-definedness of 7 and of the
property 7(X) = 7(X) < UAY much easier. But this approach would
make 1t much more complicated to prove that 7 induces a homeomorphism
between ﬁmmp/ s and Z,, , ,. The reason for this is that the transfer matrix
of the associated state space system of a canonical system in standard-form
has a special structure in the direct feedthrough matrix (see Proposition
2.7 a)). Thus, with that formulation, one could not use the local structure
of Zpn r p, which is (due to [2, Theorem 3.5]) homeomorphic to the space of
all proper (minimal) state space systems.

Put Loy ,p = ﬁmmp/ s . Theorem 4.3 shows that

Frolmrp S= Inrp

(4.3)
[X] &= T(X)

is a bijection, where [X] denotes the equivalence class of X.. In the following
we will show that F is in fact a homeomorphism.

As it can be seen from [2, Theorem 3.5], the space Z,, , , looks locally
like Rat?n,r,p x KPx™ - We will give the corresponding local structure for
the space Ly, ,p and then establish the bicontinuity of F' via this local
structure. For this remember Definition 3.4 in [2] and the definition of the
matrix oy € P(p + m) as in equation (3.4) of [2].

For r <1 < N let

n: L S—= Lymrp

m,r,p

(A,B,C,D) ([’é Iﬁ_l],[g],[am,p).

17



H. GLUSING-LUERBEN

For J € J :={(j1,. - jm) EN"|1<j1 < < jm <p+ m} with o5 as
in (3.4) of [2] and k(J) = k put

L; = {Xe ﬁfn'l'kyp | v(X)is in a (¢, 7)-standard-form}

T

Ly = {Xe€ ﬁmmp | 1/(2)51/(2/), for some X’ € ﬁj}

Proposition 4.5 a) It is ﬁmmp =Ujsesr Ly. The subsets Ly are open in
Cors.

b) Let 1T : ﬁmmp — Lmyrp be the canonical projection. Then it holds
H(ﬁj)hogeo Yo rp X KPX™ where H(ﬁ]) C Lo rp is endowed with the
subset topology.

Proof:

a) The first part is obvious. For the second part, fix J € J and let
oy be as in (3.4) of [2]. Put k = k(J), | = N <r <k and partition
Y =(A,Bo71,7C,tDo ) € ﬁmmp as follows:

2= (|A), ] [(B”') 321112’3] o T [(C” ) ;zi:z,a] :
T [(Dzj),,j:l,Q] 9‘1)

with A, € KTXT,AQQ,le,CQz,Dzl c KE*E and 331,053 c Kle, which
fixes the sizes of the remaining matrices as well. In the case Asz € G; define
A= Ay S As3 A3 Ase, B = Boy ©As3A54 Bsy, C = Con 3023455 Azs and
D = Dy @02314531331. Let

(4.4)

Lr={(A Bo~1,7C, Do) € ﬁmmp |

) LN (4.5)
Az € Gl;, B, C, I, DB - AC™ € le}.

Then it is n(ﬁj) CLyC L. The first inclusion is obvious; the second one
can be seen by transforming the system (En ,A,Bo=t, 7C tDo™1) € L via
strong equivalence into (¢~!, 7)-standard-form, which goes straightforward
because of the non-singularity of the specified matrices in Ly: a) invert
Ass, b) delete (the new matrices) Ajs, Aaz, Az, As2, ¢) delete the last row
of B and the last column of C| d) transform the matrices at the position
(2,1)in B and at (2,2) in C to Ij, e) delete the entries Dy, Doy, Dag in the
matrix D. The detailed transformations can be found in [3, pp. 1563]. Note
that all these transformations depend continuously on the given entries
in ¥ = (A, Bo!,7C,7Dp™') € L;. Thus there exists a continuous map
f:L;— n(ﬁj) such that f(E)iE for X e Ly.
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Since Ly is open, the same holds for a(H x L) C ﬁmmp, but this is
just the set £y (remember the map « in (3.2)).

b) Tt is n(ﬁj)hogeoﬁjhogeoimmp x [KPX™ and with Proposition 2.8
(L) = W(a(H x n(£s))) = W(n(Ls)) = Spmrp x KPX™ Hence we
have to prove the bicontinuity of the above bijection, where H(n(ﬁj)) has
to be endowed with the subset topology induced from L,,,,. For this
consider the commutative diagram

s X .
Torp XK &g (L) s~ a(H x L)
Hll lmn(z]) l“lamxm (4.6)

] . id
Torp X KPP g TI(n(Ly)) =g M(a(H x L)).

Here II; is the canonical projection Il; : Xy, » , X KP*™ — 3, ) x KPX™

the map 3 is the homeomorphism § : X, ., x KP*" — n(ﬁj), which is
defined as

Cz D3 D4 @Cz @DB

0 Ba ][O0 D] [0 Da] oy
L oD, Tlo |70 ol?

and ¢ is the canonical inclusion from n(ﬁj) in (M x L5). Then, by
Proposition 2.8, 3 is a well-defined bijection. Further id : H(n(ﬁj)) —
M{a(H x Ly)) is a homeomorphism by the chosen topologies. The maps

seantmmd | 00 D =a 2 ]

H|77(£J) and (7 x ¢ ;) are continuous, the latter one is also open. If we can

show that H|n(ﬁj) is an open mapping, too, then £ is an homeomorphism

homeo

and hence H(ﬁ]) =I(a(H X Ly)) ~ Zpyp x KX
Thus it remains to be shown that H|77(£J) is open. As noted in a), there
is a continuous map f: Ly — n(Ly) with f(£)2X. Thus, if O C n(ﬁj) is
open, then f=1(0) C L; also. But then f=(0) is open in a(H x L) and
thus H|n(ﬁj)(0) = H|Q(HX£J)(f_1(O)) is open. |
With this preparation and the notations of equation (3.5) and Theorem
3.5, both in [2, Section 3], we finally get

Theorem 4.6 The map F in (4{.3) is a homeomorphism and satisfies
F(H(ﬁ])) = N2 (ch(J)). Further F(Amyryp/ s ) = Raty, ;. p, so in particu-

lar Ay p/ s is homeomorphic to Raty, ;.
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Proof: The bijectivity of F' as well as F(H(ENJ)) = I (ch(J)) and

F(Anrp/s) = Raty, ,p are fulfilled by construction. It remains to be
proven the bicontinuity of F'. For this consider the commutative diagram

M(a(H x L)) s Tz (ch(]))

5| |v

K
Yonrp X KPX7 s Rat)  x KPX™

m,r,p

Q Q
]>, where PQ~1(s) = C(sI ©A)"'B+ D is a co-

with 3 as in (4.6), the homeomorphism V ({o; [P]>) = <[P]> and

K[(A,B,C, D)] = <[g

prime factorization of the transfer matrix of (A, B, C, D). Then K is known
to be a homeomorphism (see Byrnes/Duncan [1, p. 43, p. 46]). Thus
Fli(a(nxc,)) is a homeomorphism. Since Ly, ,, is covered by the open
sets I(a(H x L)) it follows that F' is a homeomorphism too. a

Of course, it is also possible to define the pseudotransfer matrix 7 for
systems ¥ = (E, A, B,C, D) in LY

m,rps 1. € with arbitrary matrix E'. Using

Proposition 3.1, this leads to

Corollary 4.7 The quotient space E%T,p/ e of all irreducible systems mod-
ulo (strong) equivalence is homeomorphic to the space I, ,,, the homeo-

morphism is induced by the pseudotransfer matriz.

5 Proof of Theorem 4.3

We have to prove a lot of lemmata showing the invariance of the map 7
in Theorem 4.3 under various system transformations. Parts of the rather
technical computations are a bit shortened; they can be found in more
detail in [3].

The following relation between factorizations of the transfer matrices
of state space systems, which are related by output feedback, will often be
used. It 1s easy to prove:

C(sI A)"'B+D=PQ"! = C(sI A+ BFC)"'B+D
i _ _ - 5.1
- ((1 + DF)P + (DD @DFD)Q) (FP +(I @FD)Q) SR

In the following lemma the claimed properties of the pseudotransfer
matrix are proven in the case of canonical systems.
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Lemma 5.1 Let ¥ = (A, Bo,7C,7Dg), ¥ = (A, Bp,7C,7Dg) € CA,’}%TVP
with ¢ € P(m), 7 € P(p) and the matrices be partitioned as follows:

(A1 A, 0 B ¢y Oy ODz)
As 0 || Iy Ba|'| O I,—[]O0O 0O |7

- - - _ i Al fiz 0 Bz Cl Cz 0 DZ
(A,8,C,D) = ([As 0]’[171_7« B4H0 In_rHO 0])'

(A,B,C, D)

Then it holds: SAY <= T(X) = T(%).

Proof: First, note the following fact, which holds also, if in the system X
the matrix A4 is non-trivial. If

0 Dy

6= | S Jerean s+ | 0 F

_ -1
o ]_PQ (s)
I Cy

0 I

| Ba _
andS_[O I]gEGlm,T_T[

] € Glp, then it holds T(X) =

<[€ S(zl ] Vier [g]> This can be verified at once by using partitions of
the matrices P and @. This fact will often be used in the following.
a) We show: YRY = T(E) = T(i)

Assume
M 0][sE, <A ©Bo][N R _ sE, <A eBo (5.2)
LI C Do || 0 T]| 7C Do |’ ’

Since ME,N = E,, and LE, = 0, E,R= 0, one can specify the following
matrices

My M, M0
M:: NIZ
[ 0 MJ [ N3 Ny
I <C)_ 0 Lo . [1 eBa 0 0
L:: =
[o I ]T [0 L4] o™y Rs Ryl

where M;, N;, L; and R; are suitable matrices. Moreover, put

38 )

T3 Ty I 0 I
_ (5.3)
S .— S1 S o I B, __1 1 <By
Tlss sl T lo 1]% o 1|
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Then after some computations from (5.2), one gets

Sy =0 Ty =0

S1=M;? Ty=N;!

Ly =Ty DyS357" Ry = &I T3 D45,
By = My(By & ATy T5D5)S, Dy =T, D35,

Cy = Ty(Cy & Dy S5 ST Az) M Ay = My AN,

Ay = MyAT M7+ Mo AsMTH + MyAsNs Az = MyAsM[?.
With these equations, (5.2) and the definitions
e [T4_1T3 T4_1T3D25351_1]

0 &8558Tt
T, L 7' R 54
_ 1 2 _ 4 4
U—[O 51—1:|€Glpa V—|: 0 S4:|€Glma
it follows
G(s) =
Ch T-1ri B 0 Dy
C}A3:| (SI C}Al) [Az, Bz] =+ |:0 0 :|
. i i _1 0 Dy
= U([C}Ag](SIC}Al+[A2’Bz]F|:C>A3:|) [AZ,BQ]+|:0 0 :|)V
If
C 0 D
G(S) = [@23] (SI C}Al)_l[Az,Bz] + |:0 02:| = PQ_l(S)

is a coprime factorization of GG, then by (5.1) it is

G=U(P+DF(P&DQ))(Q+F(PDQ)) %

Using DF D = 0, one checks that this is in fact a coprime factorization of
G. The explicit structure of the involved matrices as given in (5.4) leads

to
U o0 P+ DF(P<DQ) _v T 0 v P
0 v-! Q+F(PeDQ) | "TTlo sTHTMTT @)
The definition of the map 7' (see Definition 4.2) and (5.3) now yield
1 0 0

Chy
I o 0 [T O]V [P]>
0 I oB|l0o s @
0 0 I

o O O
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Cs

0
0 o7 !

-

b) We show: T(E) =T(Z) = TR,
Let S, S € Gl and T, T € Gl, be

O O O~
O O~
O~ o ©

0
. vn_w[gb = 7(%)
I

[ Bsl & I Bal_ ..  [IC] = _[I Co
S—[O I]Q,S—[O I]Q,T_T[O I],T_T[O I]' (5.5)
Further put PQ~! =
- - - - - - =1
4 _1 0 Dy P Py Q1 Q2
I <A Ao, B = 5.6
@A3_(5 G4 Az Bo] + 10 0] | Pz Py [QS Qas] (5:6)
and PQ~! =
- - - |
Cy ia—1r i B 0 Dy P Py Q1 Q2
! IR=Y Ao, B = _ vx 5.7
¢>A3_(5 G4 Az Bo] + 10 0| |Ps P4 [Qs Q4] (5:1)
Then 1t follows
. T 0 P T 0 P .
7)) = — = - mer | =Y =T(2 .
© = oo = su ]| o) =T 6
With the definition
- T1 T2 ao—1 Sl SQ
71T = { = ln
[Ts T4] €Gl,, SS9 [53 54] ed

and the partition of the matrices P, P, @, @ as in (5.6) and (5.7) equation

(5.8) can be rewritten as

i

0
0 5

T 0

]PQ‘1+ [ 0 S,

Nl

Ty 0 !

0 S5

7 0

]PQ‘1+ [ 0 5,

)

This leads to the following equation of proper rational matrices

0

Tl T2 0
0 S

]PQ‘1+ [ 0 S,

R

T3 0
0 S

Ty 0

]PQ‘1+ [ 0 S,

)

A comparison of the constant parts on both sides yields S, =0, 75 = 0.

Now it is possible to transform the system X via strong equivalence to

Y. This transformation was first used by
this result in his approach:

23
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I 0
&0, Tt

0 0

First ith N =
irst, wi [ 0 ¢>T4_1T3D2

holds
[sﬁn@A C}BQ:H:N R] B [I 0] [sE, <A @BHI 0]
“loT > ’

[t = | Jsi

7C Do |0 T C D 0 S

where

~ o~ o~ o~ 1‘111‘12 OBQ- élo ODZ
A B D)= .
asco= (11wl TS D
suitably. This can be verified directly.
Secondly with

A [1 BZS;lsg]J [0 @Dzsjsg]

=T
0 Sh 0 0
1t can be seen that
[M 0] [sEn oA @BS] B [I 0]

LI TC  TDS 0T C D ||lo S
where

A._AAAA_JZMAZ 032 010 OBQ

E'_(A’B’C’D)_( As 0 ’[I 0]’[0 I]’[o 0])

with some matrices fli, Bz, C’l and ﬁz. Therefore it is

0 0

(sI <Ay)" Ay, B + [0 ﬁz]

be a coprime factorization. The invariance of 7" under < yields T(E) =

<[€ 591]%_7« g y. Thus with (5.8) it is PO~ = PQ! and
A A N [ él 0 Dz
Ay, [As, B 4
e ’[0 0])
and i o
A A N Cl 0 D2 ~
Avlda Bl S X FPXT
(A1, [As, 2]’[<:)A3]’_0 0])6 p X
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are similar state space systems. With Proposition 2.8 this implies
YR (A, BS, TC,TDS)~X. O
By the above lemma, the map

T: Lr S= Lorp

m,r,p
Y e T(XNI), if 1/(2)51/(2) and I/(i) € Cff%ryp for (5.9)
some k£ < n is in a (g, 7)-standard form

with suitable ¢ € P(m), 7 € P(p)

is well-defined for every n > r. Here the map v is as before defined as in
(3.1). We will use the map T to show the well-definedness of 7.

The next two lemmata establish the equality of T(E) and T(E), 1. e.
the equality of the pseudotransfer matrices T(E) of a non-canonical system
in standard-form and an equivalent canonical system.

Lemma 5.2 Letl+t=nor, ¥ =(A,B,C,D) =
Ay As Ag 0 0 B ¢y Cy Cs

0 D 5
(| A1 00 0 |,|L 0 Bs|,| 0O I 0© ,[0 02])611?”«71,
Ass 0 I, 0 I, Bs 0 0 I s
and
01 CZ CS D2
PQ_l(S) = C}Agl (SI@Al)_l[Azl,Azz, Bl]—|— 0 0 C}Bz (510)
@Agz 0 @It C}Bg

be a coprime factorization of the transfer matriz of the associated state

space system. Then T(E) = (Vigs [g]> = T(E) €L yrp (the case [ =0 is
included).

Proof: By direct computation one gets (EH,A, B,C, D)~

i Ay Az Azs Ay 0 <Az By ©ABs3
e Azt o 'l o0 By ’
(1 03435 Oy 0 «C3 Dy <=C3Bs
M <Az 0|, M|0 <, SUE )
0 I 0 0 0
Loy 00
with M = 0 0 I; | € P(p), which gives a canonical system. The
0 I; 0

transfer matrix G of the associated state space system of this canonical
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system is
G(s) =
4 Cy Cy 0 Do
Fl( gt |(sI oA+ BF | oy )B4 0 0 B | )5
&Asza ©Asy 0 I; 0

with the matrices B = [A21, A2o, B1] and

Ii_iqr 0 Cs I 0 0 00 0
F=| 0 0FL| Fo=|0e B |,F=|00 <f|.
00 0

0 I 0

With (5.1) and

Cz 03 Dz CZ 0 D2
D = 0 0 B |,D:= 0 0 &b,
0 <, &Bs 0 I 0

it follows from (5.10)

FIlG(s)Fyt =

((1+DF)P+ (D &D &DFD)Q)(FP+(14FD)Q)

Hence 1t is
. M 0], [FL 0 |[I+DF DeD <DFD'|[P
TX) =
(%) <[0 I]V’[o F2—1H F IsFD Q )
. . . ~ P
which, after a few computations, yields T(Z) = (Vi [Q] ). a

Lemma 5.3 Let r < n < N, |l =n<er, k =1+t < min{m,p}, and
Y =(A,BS,TC, TDS) € cr with matrices

m,r,p
U o0 I_x O
= ln, T=17 {
s<[0 0 Jeanr=[b ea,
and
01 Cz 0 Dl D2
A A 0 B, B
(A,B,C,D):([A1 02]’[1 31 BZ]’ Cs Cal, |0 Ds D4])
3 bos 0 I 0, 0 0
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t Ixt Xt T — T 0 T
where Bz, C§ € K!*' D3 € KIX'. Then T(X) = 0 S-1 T(A, B,C, D),

if for M € Glpir, the map M : Iorp = Ionyp (X) — (MX) denotes the
mduced homeomorphism.

Proof: Let
01 Cz D1 D2
PQ7'(s)= | Cs |(sI ©A)) [As, By, Bs]+ |Cys D3 Dy | (5.11)
A3 0; ©B; B,y

be a coprime factorization of the transfer matrix of the state space system
associated with (A4, B, C, D). Then it is T(A, B,C, D) = (Vi[P",Q"]"). Let
W Wz] s [Wl Wz] [04] _

k) b h that with =
T € P(k) be suc at with 7W [WS W, we wall 1,

2| where T4 € Gl With 7 = | 7= ?1 € P(p) it holds
V4 0 T
(e 0
T=r|" : 12
T[ 0 TW] (5-12)

Further let f/l =W, @VQV[le. Then one can see that Vl € Gly.
First we will consider the system ¥ := (A, B,T7C,TD). By some
straightforward matrix transformations one gets LY :=

- _ L Cy OVt 0 Dy Ds
Ay A, vt 0 B, B - “e4 . St
([A; s ] [Il B; Bi]’T ViCs VoVt |, 71 0 Dy Dy |)

0 I 0, 0 0

with matrices 1‘11 = A @A2V4_1W303, él =, C}CQV4_1W303,

Dl Dz . D1 C}CQV4_1W3D3 D2 C}CQV4_1W3D4

D3 D4 - W1D3 C}VQV4_1W3D3 W1D4 C}VQV4_1W3D4 ’

[Bl, Bz] = [Bl C}AQV4_1W3D3, B> C}AQV4_1W3D4].

Let
PQ™(s) =

4 CoVit Dy Dy
ViCs | (sT AT AV By, Bo) + | VoVY D3 Dy
A3 0 By ©By
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be a coprime factorization of the transfer matrix of the state space system
associated with X.

In the next step we will establish the relation between PQ~! and PQ~1.
Put

I «C V7 'Ws 0 0 V,'Wws 0
Fi=10 %1 0(eGl,, F=]0 0 0| e K>
0 0 1 0 0 0
and - - B
Vit eV, WaDs <Vt Wa D,y
Fy = 0 1 0 € Glp,.
0 0 1
Further let
~D’17 ) D . Dy ) Cy Dy Dy
D= |V VYWD VitWaiDy |, D= |Cy Ds Dy |,
0 b3 <Dy 0; ©Bs B,
where
D/1 = CZ(I+ V4_1W3‘~/1_1‘72),
Dlz = D+ 02V4_1W3‘~/1_1W1D3,
Dé = Dy + 02V4_1W3‘71_1W1D4.

Then with (5.11) and (5.1) it holds

PQ™'(s) =
01 Cl

Fl( 03 (SI@A1+[A2,31,BQ]F 03 )_1[A2,Bl,Bz]+D/)FQI
Az Az

_ _ _ -1
i ((1 +D'F)P+ (D' <D @D’FD)Q) (FP +(I @FD)Q) .

Thus

_ <F1 0 |[I+D'F D' <D&D'FD P>
- 0 it F I<FD Q

/\
| —— |
L tiavh
| I
=

Ly 0 0 p
| 0" o 2],
0 0 I,
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where the last equality can be verified by wusing the equations
(I—|— V4_1W3‘~/1_1V2) V4_1W3 = V4_1W3 f/l_lWl and C}f/l_lf/z V4_1W3 =
1 CHN/l_lWl and making some matrix calculations.

With the equation (5.12) it follows finally

o = [ lEh= (01 o le)
= o ulgh=[3 e

In a further step we can assume ¥ = (A, B,TC,TD) = (A, B,C, D) in
standard-form and then we get analogously

T(S) = T(A, BS,C, DS) = [é 591]T(A, B.C,

ol

).
]

Now we can show the coincidence of the maps 7" and T defined in
Definition 4.2 and in (5.9).

Lemma 5.4 Letr <n < N, k=n<r, and
Al Az 0 Bz 01 Cz 0 D2 ~
Y= n
ot e 5 el B e Y-
with Dy € KE=F)X(m=k) - Thep T(X) = T(X).

Proof: Let tkAy =t < k, k=141, and U,V € Gl such that UALV =
H o= [0’ 0]. Put U[As, Ba] = [As, Ba] and [AL, G5V = [AL, €3], Tt

0 Iy
follows
s | A1 Ay | [0 B Cy Oy 0 D
EN ~ A T T =
(Ag H ’[Ik 34]5’ [0 Ik]’ [0 O]S)
Y =: (A, BS,TC, TDS)
with

U 0 I,y O
= ln, T = P l,.
s [0 Im_k]QEG , T[ ; V]ec;,,
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For the transfer matrices of the state space systems associated with X
and X = (4, B, C, D) choose coprime factorizations

o) = | 01 ferean -t m+ | 20 22 .
P = [ S Jerean i m s | D2 | <oraow
with 07 = [fpo—k g] € Gly, V = [g Imo_k] € Glyn. Then
ey = 7 Ww[oh =5 ]wly Ll o] e
= ([ o] Lh=m) (5.14)
With Lemma 5.2 it holds
7() =19 = (| ] ) (5.15)

Moreover, one can transform via equivalence

eqvil(En,A, B,C, E)

8

(En, [13 g] [f],M[é,O],MD)

~ (En_t,A,B,MC,MD)

I—x 0 0
with M = 0 0 I;| and suitable matrices
0 I, 0
- - C1 Cy 0 Dy Dy
PSR Ay A B, B ~ S
(A,B,C,D):([Al 02],[? 01 BQ], Cs 0,0 Ds D4]).
3 : Lo o] Lop o o

Therefore (En, A, BS, TC, TDS)g(En_t, A,BS, TMC, TMDS) and
Lemma 5.3 together with the equations (5.13), (5.14), and (5.15) yield

T(¥) = T(A,BS,TMC,TMDS) = [g Sgl]T(A,B,M@,Mﬁ)
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_ [g 591]@: [g Sgl]f(i)ﬂ[? Sgl]vk

- 1)

p
Q

Now we can close with the

Proof of Theorem 4.3: It remains to prove the well-definedness of 7 and
the property LY & T(X) = T(X') for &, ¥/ € ﬁm,r,p Let X € ﬁmmp
and 1/(2’)51/(2)51/(2) with v(X') € ﬁﬁlmp and I/(i) €Ly, ,in(d,7)
standard-form resp. (g, 7)-standard-form, where v is as in (3.1). Then
1/(2’)51/(2) and by Lemma 5.4 it is f(E’) = T(E’) and f(i) = T(i) On
the other side it is f(E’) = f(i), since canonical standard-forms equivalent
to ¥’ and ¥ must be strong equivalent to each other (by Remark 2.3 and
Theorem 2.4), so we can use Lemma 5.1. This shows the well-definedness
of 7 and part “=” of the equivalence. For “<=” note that by Lemma 5.4
T(X) = T(), thus we can use Lemma 5.1 again. O
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