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Abstract

We study the relationship between spaces of singular systems

and rational matrices. In a recent paper it is shown that the space

of all rational p�m-matrices of �xed McMillan degree r is embedded

in a space of rational curves of degree r from the Riemann sphere

S
2 to a Grassmannian manifold (see [2]). This space of curves is

locally homeomorphic to the space of all proper rational matrices of

degree r. In this paper we study the space of square irreducible (not

necessarily admissible) singular systems. It is shown that the space

of these systems of order r and dimension r + minfm;pg modulo

strong equivalence is homeomorphic to the above mentioned space

of all rational curves of degree r. The homeomorphism is induced by

the transfer matrix.
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1 Introduction

From the realization theory for state space systems we know that the space

Rat0m;r;p = fG 2 K(s)
p�m

j d(G) = r; G strictly proper g (1.1)

of (real or complex) strictly proper rational matrices G with McMillan

degree d(G) = r is homeomorphic to the quotient space of minimal state
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space systems of order r modulo similarity. Thus, let

~�m;r;p = f(A;B;C) 2 K
r2+rm+pr

j (A;B;C) minimalg (1.2)

be the space of minimal state space systems of order r, where K denotes the

�eld R or C . On ~�m;r;p acts the well-known similarity action, denoted by
s
�: (A;B;C)

s
�(A0; B0; C0) i� (A0; B0; C0) = (TAT�1; TB;CT�1) for some

T 2 Gln. Then it is known from Byrnes/Duncan [1] that the map

T : ~�m;r;p �! Rat0m;r;p

(A;B;C) 7�! C(sI �A)�1B

induces a homeomorphism

~�m;r;p= s
�
=: �m;r;p

homeo
� Rat0m;r;p; (1.3)

if �m;r;p is endowed with the quotient topology and Rat0m;r;p is topologized

as a space of rational maps in a way which is described in [2, Section 3].

The goal of this paper is to generalize this result to arbitrary (i. e. not

only proper) rational matrices of �xed degree on the one hand and singular

systems as their realizations on the other one.

Thus, one object of our study is the space of rational p � m-matrices

of �xed degree r. This space was studied in a preceding paper, see De

Mari/Gl�using-L�uer�en [2]. It can be viewed as a subspace of the space

Im;r;p = fhXi j X 2 K[s]
(p+m)�m ; rkX(s) = m for all s 2 C ; �(X) = rg;

where for X 2 K[s](p+m)�m it is

hXi = fXU j U 2 K[s]m�m ; detU � c 2 K�g

�(X) = maxfdeg� j � m �m-minor of Xg:

Via coprime factorizations, the space of all rational p�m-matrices of degree

r can be identi�ed with the subspace

Ratm;r;p = fh

�
P

Q

�
i 2 Im;r;p j Q 2 K[s]

m�m ; detQ 6� 0g: (1.4)

The equivalence classes hXi of Im;r;p can be interpreted as rational maps

from the Riemann sphere into a Grassmannian, the so-called Hermann-

Martin-maps (cf. Martin/Hermann [7] for the strict proper case). In this

way Im;r;p can be endowed with the compact-open topology. For the details

about the space Im;r;p see [2].
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SINGULAR SYSTEMS

While proper rational matrices can be realized as state space systems,

improper matrices do have realizations as square singular systems, i. e.

systems of the type

E _x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

)
(1.5)

with (E;A;B;C;D) 2 K2n
2+nm+pn+pm. Note that singular systems con-

tain di�erential as well as algebraic equations. Systems of this form oc-

cur naturally as realizations for rational matrices: if � = (E;A;B;C;D)

is admissible, that is det(sE � A) 6� 0 , the transfer matrix T (�) :=

C(sE �A)�1B +D is a (non-proper) rational matrix.

From Verghese et al. [9] it is known that each rational matrix G has

a realization as an irreducible singular system � = (E;A;B;C;D) which

is unique up to equivalence transformations; the order rkE is just d(G).

The notions irreducibility and equivalence transformations generalize the

concepts of minimality and similarity as they are introduced for state space

systems (see De�nition 2.1 and De�nition 2.2).

A glance at the de�nition of the underlying equivalence transformations

tells us that the dimension of the realizing system �, i. e. the size of

the matrices E; A is not determined by the transfer matrix. Thus the

results of [9] are not su�cient to formulate a bijection between the space

Ratm;r;p and a suitable quotient space of singular systems. However, it

can easily be seen that each G 2 Ratm;r;p has an irreducible realization

(E;A;B;C;D) with rkE = r and dimension N = r +minfm; pg. Thus it

follows that the quotient space Am;r;p of all admissible irreducible systems

(1.5) of order rkE = r and dimension N modulo strong equivalence is

bijective to Ratm;r;p, where the bijection comes in an obvious way from the

transfer matrix.

Note that, so far, there are some restrictive regularity conditions in-

volved in this approach. On the one hand, we consider rational maps

induced by matrices [P t; Qt]t with Q non-singular, on the other hand their

counterparts are systems (E;A;B;C;D) with det(sE � A) 6� 0. To estab-

lish the above mentioned bijection as a homeomorphism between Am;r;p

and Ratm;r;p, it is useful to omit this regularity conditions. Hence we

change to the larger space Im;r;p. It is shown in [2] that this space has a

nicer topological structure than Ratm;r;p:

If equipped with the topology of uniform convergence, the space Im;r;p

is locally homeomorphic to the space Rat0m;r;p�K
p�m of all proper rational

matrices of degree r (see [2, Theorem 3.5]). The local homeomorphism is
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given by

X 7�! �X =

�
�P
�Q

�
;

where � is a permutation, which transports an m �m-submatrix �Q of X

with maximal determinantal degree among all these submatrices to the last

m rows. Then �P �Q�1 is proper and the McMillan degree of the rational ma-

trix �P �Q�1 is equal to �(X) (see [2, Lemma 2.3]). If hXi 2 Im;r;p is viewed

as an ARMA-system, this reorganization of data can be interpreted on a

system theoretical level as an interchanging of inputs and outputs. Thus the

elements in Im;r;p can be viewed as reorganized proper systems. It is pos-

sible to associate with hXi 2 Im;r;p an irreducible (non-admissible) system

(E;A;B;C;D), namely by realizing �P �Q�1 as a proper state space system

and making the corresponding reorganization of data backwards with the

system matrices. In the case hXi = h[P t; Qt]ti 2 Ratm;r;p � Im;r;p, this

leads in fact to the usual realization PQ�1(s) = C(sE �A)�1B +D.

Having established in this way a bijection between Im;r;p and the quo-

tient space Lm;r;p of irreducible systems of order r and dimension N =

r + minfm; pg modulo strong equivalence as in the regular case, it is not

hard, to prove this bijection to be a homeomorphism: one uses the lo-

cal structure of these spaces and the well-known homeomorphism (1.3) of

the state space case. In particular, this shows the map (E;A;B;C;D) 7!

C(sE�A)�1B +D to be a homeomorphism between Am;r;p and Ratm;r;p.

The really non-trivial part to be done here is to prove this map being a

bijection between Im;r;p and Lm;r;p.

We proceed as follows:

In the next section we introduce the main concepts for singular systems

and establish some fundamental properties. One main point is Theorem

2.4, which shows the coincidence of strong equivalence and operations of

strong equivalence (in the sense of [9]) for systems of the same dimension.

This result is important for further questions about uniqueness of realiza-

tions.

Moreover, we construct a standard-form for singular systems. It is

mostly the same as the \internal reduced form" given by Grimm [4] and

will be used for the reorganization of data when constructing a map between

rational curves and non-admissible systems. It is associated a state space

system with the standard-form by interpreting the involved matrices in

a di�erent way. Then strong equivalent irreducible standard-forms yield

similar minimal state space systems and vice versa.

In Section 3 the quotient space of irreducible systems modulo strong
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SINGULAR SYSTEMS

equivalence is studied. It can be shown that in the context of this paper,

it is su�cient to consider systems (1.5), where E is of the form

Ên =

�
Ir 0

0 0

�
2 K

n�n ; (1.6)

so that strong equivalence becomes a group action.

In Section 4 a pseudotransfer function is de�ned. It generalizes the

transfer function to non-admissible systems and associates to them a ra-

tional curve, i. e. an element of Im;r;p. It is shown in this section that this

pseudotransfer function induces a homeomorphism on the level of quotient

spaces. The very technical part of proving that in fact this map induces a

bijection between the quotient space Lm;r;p and Im;r;p is deferred to the last

section. Some of the very tedious matrix calculations are a bit shortened;

they can be found in more detail in [3].

To save space we will make use of the notations and results of [2], in

particular note the preliminaries and De�nition 3.4 of [2].

2 Preliminaries

In this section we introduce a few general concepts for singular systems. We

show that strong equivalence and operations of strong equivalence, as they

were introduced by Verghese et al. [9], coincide for systems with the same

dimension. Secondly, it is given a standard-form for so-called irreducible

systems under strong equivalence. This will be useful later in order to

describe the local structure of the space of all singular systems.

LetMn
m;p = K

2n2+nm+pn+pm be the set of all quintuples (E;A;B;C;D)

describing singular systems of the form (1.5) over a �eld K, where K is

always R or C .

De�nition 2.1 Let � = (E;A;B;C;D) 2Mn
m;p.

a) dim� = n is the dimension, ord� = rkE the order of the system.

b) � is called admissible, if det(sE � A) 6� 0.

c) � is called irreducible, if it holds rk[sE �A;B] = n = rk[sEt
�At; Ct]t

for all s 2 C and imE+A kerE+imB = K
n = imEt+At kerEt+imCt.

d) � is called canonical, if it is irreducible and ful�lls A kerE � imE.

Put

L
n
m;r;p = f� 2Mn

m;p j ord� = r ; � irreducibleg;
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C
n
m;r;p = f� 2Mn

m;p j ord� = r ; � canonicalg;

A
n
m;r;p = f� 2 Lnm;r;p j � admissibleg:

The condition A kerE � imE is responsible for the fact that the system

has no non-dynamical behaviour, see Verghese et al. [9, p. 816]. Observe

that we call a system irreducible if it is strongly irreducible in the sense

of [9]. The notion of canonicity is taken from Grimm [4] as well as the

following de�nition of strong equivalence, which di�ers slightly from that

used by Verghese et al. [9].

De�nition 2.2

a) Let � = (E;A;B;C;D); �� = ( �E; �A; �B; �C; �D) 2 Mn
m;p. � and �� are

called strongly equivalent (
se
�), if there exist matrices M;N 2 Gln ; Q 2

K
p�n ; R 2 Kn�m such that�

M 0

Q Ip

��
sE � A �B

C D

��
N R

0 Im

�
=

�
s �E � �A � �B

�C �D

�
: (2.1)

b) A trivial l-in
ation, l 2 N, of a system � = (E;A;B;C;D) 2 Mn
m;p is

a system of the form

�0 = (

�
E 0

0 0

�
;

�
A 0

0 Il

�
;

�
B

0

�
; [C; 0]; D) 2Mn+l

m;p : (2.2)

The reverse process is called trivial l-de
ation.

c) Two systems � 2 Mn
m;p and �0 2 Mn0

m;p are called equivalent (
e
�), if

they can be transformed into each other by a �nite sequence of transfor-

mations of the types a) and b), i. e. by strong equivalence transforma-

tions and trivial in
ations/de
ations.

Irreducibility, admissibility, and canonicity are preserved by
se
�, the �rst

two also by
e
�. Note that (2.1) implies QE = 0 and ER = 0; thus strong

equivalence generalizes the similarity action known for state space systems.

Remark 2.3 Since dim(E;A;B;C;D) � dim
�AkerE

=imE\A kerE

�
is in-

variant under equivalence, it follows that equivalent canonical systems are

of the same dimension.

The next theorem shows that for equivalent systems of the same di-

mension trivial in
ations/de
ations are not needed to transform one of the

systems into the other one.

Theorem 2.4 Let �; �� 2Mn
m;p and �

e
���. Then �

se
���.
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Proof: We assume that �� is achieved from � by a sequence of transfor-

mations as in (2.1) or in (2.2) and its inverse process, so let

�� = S1 �Dl1 � S2 �Dl2 � : : : �Dlt � St+1(�); (2.3)

where Sj are transformations of strong equivalence and Dlj are trivial lj-

in
ations (if lj > 0) or lj-de
ations (lj < 0). It holds:
Pt

j=1 lj = 0

(Note that the l-de
ations are only well-de�ned for systems in block-form

as on the right hand side of (2.2); the notation in (2.3) requires the well-

de�nedness of the transformations).

We prove the strong equivalence of � and �� by induction on t.

For t = 1 it has to be l1 = 0, hence there is nothing to prove.

Let t = 2; then (2.3) can be rewritten as (Dl1 )
�1
�S�11 (��) = S2 �Dl2 �

S3(�), which means Dl2 � S
�1
1 (��)

se
�Dl2 � S3(�).

Let S�11 (��) = ( �E; �A; �B; �C; �D); S3(�) = (E;A;B;C;D). If l2 < 0, then

it follows obviously S�11 (��)
se
�S3(�) and thus ��

se
��. If l2 = l > 0, then there

exist matrices M; N 2 Gln+l; Q 2 K
p�(n+l) ; R 2 K(n+l)�m such that

2
4 s �E � �A 0 � �B

0 �Il 0
�C 0 �D

3
5 =

�
M 0

Q Ip

�24 sE � A 0 �B

0 �Il 0

C 0 D

3
5�N R

0 Im

�
: (2.4)

It follows rkE = rk �E =: r and

d = dim
�
A kerE=imE \A kerE

�
= dim

� �A ker �E=
im �E \ �A ker �E

�
;

since these numbers are preserved under strong equivalence.

Thus strong equivalence transformations on both systems in (2.4) leads

to an equation of the type

2
4 sÊn�d �

�F 0 �G

0 Ik 0
�H 0 �J

3
5 =

�
~M 0
~Q Ip

�24 sÊn�d � F 0 G

0 Ik 0

H 0 J

3
5� ~N ~R

0 Im

�
; (2.5)

with k = d + l and F =

�
F1 F2

F3 0

�
; �F =

�
�F1 �F2
�F3 0

�
and Ên�d as in (1.6).

From this it follows by tedious but straightforward matrix manipulations

(Ên�d; F;G;H; J)
se
�(Ên�d; �F; �G; �H; �J)

(for the detailed computation see [3, pp. 107]). The case t > 2 can be

handled by using the fact that for k > 0 a term of the formDk �Sj(�) resp.
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Sj �D�k(�) can be written as Ŝj �Dk(�) resp. D�k �
~Sj(�) with suitable

transformations of strong equivalence Ŝj resp. ~Sj . Hence the sequence in

(2.3) can be reduced from length t to the case t � 1. 2

Remark 2.5 For admissible systems Pugh et al. [8] describe the equiva-

lence of systems in a closed form: two admissible systems (E;A;B;C;D)

and ( �E; �A; �B; �C; �D) (of not necessarily the same dimension) are equivalent

i� they ful�ll equation (2.1) with suitable (non-square) matrices M;N;Q

and R, which satisfy some coprimness conditions with respect to the given

systems. Using this characterization Pugh et al. proved Theorem 2.4 for

admissible systems, cf. [8, Theorem 6, Theorem 7].

In the following we give a standard-form for canonical systems under

strong equivalence. The idea is taken from Grimm [4], who introduced a

so-called \internal reduced form," which is only slightly di�erent from the

following standard-form (cf. [4, De�nition 5a]). As in [2], let P(n) denote

the set of n� n-permutation matrices.

De�nition 2.6 Let % 2 P(m); � 2 P(p). A system � 2Mn
m;p is called in

(%; � )-standard-form, if � 2Mn
m;p is of the structure

� = (Ên;

�
A1 A2

A3 A4

�
;

�
0 B2

In�r B4

�
%; �

�
C1 C2

0 In�r

�
; �

�
0 D2

0 0

�
%) (2.6)

with Ên as in (1.6), A4 2 K
(n�r)�(n�r) ; D2 2 K

(p�n+r)�(m�n+r) and the

remaining matrices in �tting sizes.

The state space system

�̂ = (A1; [A2; B2];

�
C1

�A3

�
;

�
C2 D2

�A4 �B4

�
) 2 Kr

2+rm+pr+pm

is called the associated state space system.

Note that � 2Mn
m;p can be in (%; � )-standard-form only if n � ord�+

minfm; pg, which is always the case for canonical systems. It holds

Proposition 2.7 a) Each system � 2 Cnm;r;p is strongly equivalent to a

system as in (2.6) with A4 = 0 and with suitable permutation matrices

% 2 P(m); � 2 P(p).

b) Each system � 2 Lnm;r;p is strongly equivalent to a system

~� = (

�
E 0

0 0

�
;

�
A 0

0 Ik

�
;

�
B

0

�
; [C; 0]; D) 2 Lnm;r;p
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with (E;A;B;C;D) 2 Cn�km;r;p for some 0 � k � n.

The proofs can be done by simple matrixmanipulationswith the prescribed

operations.

Note that for canonical systems the standard-form is more special than

in De�nition 2.6, namely in this case it is A4 = 0. Since in the case

A4 6= 0 the associated state space system is of the most general form, it

will be useful to study these more general standard-forms also. Via the

reorganization of data, the associated state space systems will describe the

local structure of the irreducible singular systems, as we will see later.

One necessary property for this ensures the next proposition: irreducibility

(resp. strong equivalence) of the standard-forms is translated to minimality

(resp. similarity) of the associated state space systems and vice versa.

Proposition 2.8 Let % 2 P(m); � 2 P(p) and �i
2M

n
m;p be of the form

�i = (Ên;

�
Ai
1 Ai

2

Ai
3 Ai

4

�
;

�
0 Bi

2

In�r Bi
4

�
%; �

�
Ci
1 Ci

2

0 In�r

�
; �

�
0 Di

2

0 0

�
%)

for i = 1; 2. Then for the associated state space systems �̂
i
it holds:

a) �1
2 L

n
m;r;p () �̂

1
2 ~�m;r;p � K

p�m .

b) �1se
��2

() �̂
1 s
��̂

2
.

Proof:

a) For �1 = (Ên; A
1; B1; C1; D1) it holds imÊn + A1 ker Ên + imB1 =

K
n . Further for all s 2 C it is rk

�
sIr � A1

1 �A
1
2 0 B1

2

�A1
3 �A1

4 In�r B1
4

�
= n

i� rk[sIr � A1
1; [�A

1
2; B

1
2 ]] = r. The analogous conditions hold for the

observability.

b) \)" First one observes that we can restrict ourselves to the case % =

Im; � = Ip. For abbreviation let �i = (Ên; A
i; Bi; Ci; Di) for i = 1; 2

with the matrices as given in the proposition. Then from�
M 0

Q Ip

��
sÊn �A

1
�B1

C1 D1

��
N R

0 Im

�
=

�
sÊn �A

2
�B2

C2 D2

�
;

it follows M =

�
M1 M2

0 M4

�
with M1 2 Glr and M4 2 Gln�r.

This yields after some computations

(M1A
1
1M

�1
1 ;M1[A

1
2; B

1
2 ];

�
C1
1

�A1
3

�
M�1

1

�
C1
2 D1

2

�A1
4 �B

1
4

�
) =

9
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(A2
1; [A

2
2; B

2
2 ];

�
C2
1

�A2
3

�
;

�
C2
2 D2

2

�A2
4 �B

2
4

�
):

The implication \(" is trivial. 2

Remark 2.9 Consider the system � given by (2.6). The corresponding

equations are

_x1 = A1x1 + A2x2 + B2u2

0 = A3x1 + A4x2 + u1 + B4u2

y1 = C1x1 +C2x2 +D2u2

y2 = x2

9>>>>=
>>>>;

(2.7)

with respect to suitable partitions of input, state and output. This formu-

lation shows that some of the inputs (those described by u1) are not really

inputs, but satisfy u1 = �(A3x1 + A4x2 + B4u2), whereas the part y2 of

the output is free. Neglecting initial conditions, one can formulate (2.7) as

_x1 = A1x1 + [A2; B2]

�
y2

u2

�
�
y1

u1

�
=

�
C1

�A3

�
x1 +

�
C2 D2

�A4 �B4

��
y2

u2

�
;

which is just the associated state space system. Hence standard-form and

associated state space system are obtained from each other by interchanging

some of the inputs and outputs with each other.

This interpretation was studied in detail for ARMA-systems by Willems

[11]. He de�nes systems via their external behaviour and divides (if possi-

ble) the external variables in inputs and outputs according to their prop-

erties with respect to the dynamical system. Kuijper/Schumacher [5, 6]

followed this approach especially for singular systems. In the sense of [11]

the free external variables of (2.7) are u2 and y2, whereas y1 and u1 process

and do not anticipate y2 and u2. Further x1 satis�es the \axiom of state."

Thus, within this terminology, (2.7) is in fact a state space system (for the

notions see [11, p. 216, p. 186]).

3 A Quotient Space of Singular Systems

This section is devoted to the quotient space modulo strong equivalence of

all irreducible systems with �xed order r and dimension n. Analogously

to the regular case, where E 2 Gln can be transformed to E = In, we
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will consider only those systems (E;A;B;C;D) 2 Lnm;r;p, where E is of

the form Ên as in (1.6). Strong equivalence reduced to this subspace of

systems then becomes a group action. We show that the quotient space

related to this action is homeomorphic to Lnm;r;p=se
�
.

It is obvious that each system � 2 Lnm;r;p is strongly equivalent to a

system �̂ = (Ên; Â; B̂; Ĉ; D̂). Therefore we introduce the space

L̂
n
m;r;p = f(A;B;C;D) 2 KM j (Ên; A;B;C;D) 2 Lnm;r;pg

with M := n2 + nm+ pn+ pm. There is a canonical embedding

� : L̂
n
m;r;p �! L

n
m;r;p

(A;B;C;D) 7�! (Ên; A;B;C;D);
(3.1)

if both spaces are equipped with the Euclidean topology. Having in mind

the identi�cation �(A;B;C;D) = (Ên; A;B;C;D), we also call (A;B;C;D)

a system. De�ne also

Â
n
m;r;p = f(A;B;C;D) 2 L̂nm;r;p j det(sÊn �A) 6� 0g;

Ĉ
n
m;r;p = f(A;B;C;D) 2 L̂nm;r;p j (Ên; A;B;C;D) 2 Cnm;r;pg;

endowed with the topologies induced by L̂nm;r;p. Then Ânm;r;p is an open

subset of L̂nm;r;p. The advantage of the space L̂
n
m;r;p is that strong equiva-

lence, if restricted to this space, becomes a group action: let Hn
m;r;p = H

be the subgroup of Gln+p �Gln+m consisting of elements of the form

�24M1 M2 0

0 M4 0

0 Q2 Ip

3
5;
2
4M

�1
1 0 0

N3 N4 R2

0 0 Im

3
5
�1�

;

where M1 2 Glr; M4; N4 2 Gln�r and M2; N3; Q2; R2 are arbitrary ma-

trices of appropriate size. Denote by � be the algebraic action

� : H� L̂
n
m;r;p �! L̂

n
m;r;p

(h; (A;B;C;D)) 7�! (MAN;M (B + AR); (C � QA)N;

D + CR� QB � QAR)

9>=
>; (3.2)

where h = (

�
M 0

Q Ip

�
;

�
N R

0 Im

��1
) 2 H with M;N;Q;R as in the above

form. Then the equivalence relation

(A;B;C;D)
s
�( �A; �B; �C; �D) :()

9h 2 H : �(h; (A;B;C;D)) = ( �A; �B; �C; �D)

11



H. GL�USING-L�UER�EN

is just the restriction of the strong equivalence to systems in L̂nm;r;p: it

is (A;B;C;D)
s
�( �A; �B; �C; �D) i� (Ên; A;B;C;D)

se
� (Ên; �A; �B; �C; �D). Note

also that
s
� generalizes the similarity action from ~�m;r;p�K

p�m = L̂rm;r;p =

Ĉ
r
m;r;p = Ârm;r;p to L̂nm;r;p for n > r. The restriction to L̂nm;r;p �ts also

topologically as it holds:

Proposition 3.1

a) It is L̂nm;r;p= s
�

homeo
� L

n
m;r;p=se

�
and Ânm;r;p= s

�

homeo
� A

n
m;r;p=se

�
if all spaces

are endowed with the quotient topologies.

b) Ânm;r;p= s
�

is open embedded in L̂nm;r;p= s
�

and Ĉrm;r;p= s
�

= (~�m;r;p �

K
p�m )= s

�
is open embedded in Ânm;r;p= s

�
for all n � r.

Proof:

a) Consider the well-de�ned bijection

f : L̂
n
m;r;p= s

�
�! L

n
m;r;p=se

�

[(A;B;C;D)]1 7�! [(Ên; A;B;C;D)]2

with [�]i as the corresponding equivalence classes. The continuity of

the canonical projections � : Lnm;r;p ! L
n
m;r;p=se

�
and �̂ : L̂nm;r;p !

L̂
n
m;r;p= s

�
and the openness of the last one imply the continuity of f .

Hence it remains to show that f is open.

If U � L̂nm;r;p= s
�

is open, then also V̂ = �̂�1(U ) � L̂nm;r;p. Put V =

f� 2 Lnm;r;p j 9 (A;B;C;D) 2 V̂ : �
se
��(A;B;C;D)g with � as in (3.1).

Then it is V = ��1(f(U )), thus we have to show that V � Lnm;r;p is

open. For this let �0 = (E0; A0; B0; C0; D0) 2 V . We will construct

an open neighborhood of �0 in V . Without loss of generality we can

assume that E0 is of the form

�
E01 E02
E03 E04

�
with rkE01 = r = rkE0.

Put

W = f� = (

�
E1 E2

E3 E4

�
; A;B;C;D) 2 Lnm;r;p j rkE1 = rg

and for � 2W let

M (�) =

�
E�11 0

�E3E
�1
1 I

�
; N (�) =

�
I �E�11 E2

0 I

�
2 Gln:

Consider the map

' : W �! L̂
n
m;r;p

� = (E;A;B;C;D) 7�! (M (�)AN (�);M (�)B;CN (�); D) :

12
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Then it is �0 2 '�1(V̂ ) � W \ V . Thus the continuity of ' and the

openness of W in Lnm;r;p imply that '�1(V̂ ) is an open neighborhood of

�0 in V .

The same proof also works for Ânm;r;p= s
�
.

b) The open embedding of Ânm;r;p= s
�

in L̂nm;r;p= s
�

is obvious.

For the last statement of the proposition let � be the embedding

� : Ĉ
r
m;r;p �! Â

n
m;r;p

(A;B;C;D) 7�! (

�
A 0

0 In�r

�
;

�
B

0

�
; [C; 0];D)

and let � : Ânm;r;p ! Â
n
m;r;p= s

�
and �0 : Ĉrm;r;p ! Ĉ

r
m;r;p= s

�
be the

canonical projections. Then the map

	 : Ĉ
r
m;r;p= s

�
�! Â

n
m;r;p= s

�

�0(A;B;C;D) 7�! �(�(A;B;C;D))

is well-de�ned, injective, and continuous. For an open set U � Ĉrm;r;p= s
�

it is �0�1(U ) open in Ĉrm;r;p and thus �(�
0�1(U )) = V open in �(Ĉrm;r;p),

endowed with the subset topology of Ânm;r;p. With the open set

M = f(

�
A1 A2

A3 A4

�
; B;C;D) 2 Ânm;r;p j A4 2 Gln�rg

it is �(�(Ĉrm;r;p)) = �(M) open in Ânm;r;p= s
�

and W = f� 2M j 9�̂ 2

V : �
s
��̂g open inM, which can be proven similar to the openness of

the set V in a). It follows 	(U ) = �(V ) = �(W ) is open in �(�(Ĉrm;r;p))

and hence in Ânm;r;p= s
�
.

2

At the end of this section we give a quotient space Ânm;r;p= s
�

bijective

to Ratm;r;p, where the bijection is induced by the transfer matrix. In order

to establish this bijection as a homeomorphism, we will extend it in the

next section to a map between a quotient space L̂nm;r;p= s
�

and Im;r;p and

use the local structure of the latter space.

From Verghese et al. [9], Theorem 2.4, and (1.4) it follows that the

transfer function

T : A
n
m;r;p �! Ratm;r;p

(E;A;B;C;D) 7�! C(sE � A)�1B +D

�
(3.3)

13
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is well-de�ned and satis�es T (�) = T (�0) i� �
se
��0. Observe that this

holds for every n � r. The map T is also surjective if n is chosen to be

n = r +minfm; pg, as it can be seen from the following facts:

{ to each G 2 K(s)p�m there exists an irreducible realization as a singular

system of order r, i. e. there is an system (E;A;B;C;D) 2 Anm;r;p for

some n, such that G(s) = C(sE � A)�1B +D (cf. [10, p. 242]).

{ By Proposition 2.7 b) every system � 2 A~n
m;r;p with arbitrary ~n � r is

equivalent to a system in some Cn
0

m;r;p. Then it is n0 � r + minfm; pg

since for a canonical system � it is dim� � ord� +minfm; pg.

{ Each system � 2 A~n
m;r;p for some ~n < r +minfm; pg can transformed

via trivial in
ation to a system �0 2 Anm;r;p with n = r +minfm; pg.

The invariance of T under equivalence transformations (see [9, Theorem

5.1]) then implies the surjectivity of T in the case n = r+minfm; pg. Thus,

in this case, the above and Theorem 2.4 yield a bijective correspondence

Â
n
m;r;p= s

�

1�1
 ! Ratm;r;p: (3.4)

4 A Homeomorphism between the Spaces L̂m;r;p= s
�
and

Im;r;p

For the rest of the paper �x N = r + minfm; pg as the dimension of the

systems and put L̂m;r;p = L̂
N
m;r;p; Âm;r;p = Â

N
m;r;p.

In this section we will show that the spaces L̂m;r;p= s
�

and Im;r;p are

homeomorphic, where the homeomorphism is induced by the transfer ma-

trix for admissible systems. For this we extend the map T in (3.3) from

the admissible case to the non-admissible one. This can be done by using

the standard-forms and their associated state space systems introduced in

De�nition 2.6 and Proposition 2.7; the reorganization of data in the sys-

tems is then transported to a reordering of rows in the transfer matrix in

Im;r;p. The idea is demonstrated for the admissible case and then taken as

de�nition for the general case. One has to show a lot of well-de�nedness

for the so-called pseudotransfer matrix, which is deferred to Section 5.

For the following notations, in particular the matrices Vk and �J , but

also the topological structure of Im;r;p, see [2, Section 3].

Lemma 4.1 Let � = (A;B;C;D) =

(

�
A1 A2

A3 A4

�
;

�
0 B2

In�r B4

�
%; �

�
C1 C2

0 In�r

�
; �

�
0 D2

0 0

�
%) 2 L̂nm;r;p (4.1)

14
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and put G(s) =

�
G1 G2

G3 G4

�
(s) =

�
C1

�A3

�
(sIr � A1)

�1[A2; B2] +

�
C2 D2

�A4 �B4

�
: (4.2)

Then � is admissible i� detG3 6� 0. If, in this case, PQ�1(s) = C(sÊn �

A)�1B +D and P̂ Q̂�1 = G are polynomial coprime factorizations, then it

holds

h

"
P̂

Q̂

#
i = hVn�r

�
��1 0

0 %

��
P

Q

�
i 2 Im;r;p:

Proof: The �rst statement follows from

sÊn � A =

�
sI � A1 0

�A3 �A4 �A3(sI � A1)
�1A2

��
I �(sI � A1)

�1A2

0 I

�
:

If detG3 6� 0, then (sÊn �A)
�1 =

�
(sI � A1)

�1[I + A2G
�1
3 A3(sI � A1)

�1] (sI �A1)
�1A2G

�1
3

G�13 A3(sI �A1)
�1 G�13

�
;

thus

��1PQ�1(s)%�1 =

�
C1 C2

0 I

�
(sÊn � A)�1

�
0 B2

I B4

�
+

�
0 D2

0 0

�

=

�
G1G

�1
3 G2 �G1G

�1
3 G4

G�13 �G�13 G4

�
:

Partition P̂ = [P̂ t
1; P̂

t
2]
t, Q̂ = [Q̂t

1; Q̂
t
2]
t with P̂2; Q̂1 2 K[s]

(n�r)�m . Then it

holds

"
P̂1

Q̂1

#"
Q̂1

Q̂2

#�10@
"
P̂2

Q̂2

#"
Q̂1

Q̂2

#�11A
�1

=

�
G1 G2

I 0

��
G3 G4

0 I

��1
=

�
G1G

�1
3 G2 �G1G

�1
3 G4

G�13 �G�13 G4

�
:

Hence the result follows. 2

The lemma says just what one would expect if one looks at h[P t; Qt]ti

as the dual of an ARMA-system: interchanging of inputs and outputs of

15



H. GL�USING-L�UER�EN

the singular system associated with PQ�1 is related to an interchanging of

corresponding rows in h[P t; Qt]ti.

We use this fact for the de�nition of a pseudotransfer matrix for non-

admissible systems in L̂m;r;p.

Having introduced the larger space Im;r;p and not only (non-proper) ra-

tional matrices, we can transform, via a permutation, the transfer matrix of

the associated state space system to one of the original system, even in the

non-admissible case. In the terminology of Willems [11] this construction

is just the dual of ARMA-representations and �rst-order representations of

behaviours.

De�nition 4.2 Let � 2 L̂nm;r;p be as in (4.1) with % 2 P(m) and � 2 P(p),

G as in (4.2), and PQ�1 = G 2 Rat0m;r;p � K
p�m a polynomial coprime

factorization. De�ne

T̂ (�) = h

�
� 0

0 %�1

�
Vn�r

�
P

Q

�
i 2 Im;r;p:

In [4, p. 1335] Grimm de�nes the pseudotransfer function for a system

in \internal reduced form" as the transfer function of its associated state

space system, which, in his approach, looks a bit di�erent from ours. Thus,

the information about the reorganization of the system, which is contained

in the matrices %; � and Vn�r, is not included in Grimm's de�nition.

It is possible to de�ne T̂ (�) not only for systems in standard-form but

for arbitrary irreducible systems via transforming them to a standard-form.

For this remember the map � as in (3.1). We have to use this map only for

the formal reason that there is no notion of equivalence
e
� introduced for

systems in L̂km;r;p.

Theorem 4.3 The map

T : L̂m;r;p �! Im;r;p

� 7�! T̂ (�0), where �(�)
e
��(�0), and �(�0) 2 Lnm;r;p for some

n � N is in a (%; � )-standard-form with suitable % 2

P(m); � 2 P(p)

is well-de�ned, surjective, and ful�lls �
s
��� () T (�) = T (��) for �; �� 2

L̂m;r;p.

If � = (A;B;C;D) 2 Âm;r;p and T (�) = h[P t; Qt]ti 2 Im;r;p, then it

holds detQ 6� 0 and PQ�1(s) = C(sÊn �A)
�1B +D.

We call T (�) a pseudotransfer matrix of �. � 2 L̂m;r;p is named a

realization of hT i 2 Im;r;p, if � ful�lls T (�) = hT i.

16
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Proof: The well-de�nedness of T and the property �
s
���, T (�) = T (��)

are rather technical to prove. We put the proof of this fact in Section

5. The surjectivity of T holds, since each hT i 2 Im;r;p can be written as

hT i = h

�
� 0

0 %�1

�
Vk

�
P

Q

�
i with � 2 P(p); % 2 P(m); k � minfm; pg and

PQ�1 2 Rat0m;r;p �K
p�m (remember the bijection 	J in equation (3.6) of

[2]). Then De�nition 4.2 and the realization theory for state space systems

yield at once a realization for hT i in L̂r+km;r;p, which can be trivially in
ated

to one in L̂m;r;p. 2

Remark 4.4 The map T could have been formulated also by setting T (�)

= T̂ (�0) where �0 is in addition to the given requirements also canonical.

This would have made the proof of the well-de�nedness of T and of the

property T (�) = T (��) , �
s
��� much easier. But this approach would

make it much more complicated to prove that T induces a homeomorphism

between L̂m;r;p= s
�
and Im;r;p. The reason for this is that the transfer matrix

of the associated state space system of a canonical system in standard-form

has a special structure in the direct feedthrough matrix (see Proposition

2.7 a)). Thus, with that formulation, one could not use the local structure

of Im;r;p, which is (due to [2, Theorem 3.5]) homeomorphic to the space of

all proper (minimal) state space systems.

Put Lm;r;p := L̂m;r;p= s
�
. Theorem 4.3 shows that

F : Lm;r;p �! Im;r;p

[�] 7�! T (�)
(4.3)

is a bijection, where [�] denotes the equivalence class of �. In the following

we will show that F is in fact a homeomorphism.

As it can be seen from [2, Theorem 3.5], the space Im;r;p looks locally

like Rat0m;r;p � K
p�m . We will give the corresponding local structure for

the space Lm;r;p and then establish the bicontinuity of F via this local

structure. For this remember De�nition 3.4 in [2] and the de�nition of the

matrix �J 2 P(p+m) as in equation (3.4) of [2].

For r � l � N let

� : L̂
l
m;r;p �! L̂m;r;p

(A;B;C;D) 7�! (

�
A 0

0 IN�l

�
;

�
B

0

�
; [C; 0]; D):

17
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For J 2 J := f(j1; : : : ; jm) 2 N
m
j 1 � j1 < � � � < jm � p +mg with �J as

in (3.4) of [2] and k(J) = k put

L̂J = f� 2 L̂r+km;r;p j �(�) is in a (%�1; � )-standard-formg

~LJ = f� 2 L̂m;r;p j �(�)
e
��(�0); for some�0 2 L̂Jg:

Proposition 4.5 a) It is L̂m;r;p =
S
J2J

~LJ . The subsets ~LJ are open in

L̂m;r;p.

b) Let � : L̂m;r;p ! Lm;r;p be the canonical projection. Then it holds

�( ~LJ )
homeo
� �m;r;p � K

p�m , where �( ~LJ ) � Lm;r;p is endowed with the

subset topology.

Proof:

a) The �rst part is obvious. For the second part, �x J 2 J and let

�J be as in (3.4) of [2]. Put k = k(J); l = N � r � k and partition

� = (A;B%�1; �C; �D%�1) 2 L̂m;r;p as follows:

� =
� h

(Aij)
i;j=1;2;3

i
;

�
(Bij) i=1;2;3

j=1;2

�
%�1; �

�
(Cij) i=1;2

j=1;2;3

�
;

�
h
(Dij)

i;j=1;2

i
%�1

� (4.4)

with A11 2 K
r�r ; A22; B21; C22; D21 2 K

k�k and B31; C
t
23 2 K

l�k , which

�xes the sizes of the remainingmatrices as well. In the case A33 2 Gll de�ne
~A = A22�A23A

�1
33 A32; ~B = B21�A23A

�1
33 B31; ~C = C22�C23A

�1
33 A32 and

~D = D21 �C23A
�1
33 B31. Let

LJ = f(A;B%�1; �C; �D%�1) 2 L̂m;r;p j

A33 2 Gll; ~B; ~C; Ik � ~D ~B�1 ~A ~C�1 2 Glkg:
(4.5)

Then it is �(L̂J ) � LJ � ~LJ . The �rst inclusion is obvious; the second one

can be seen by transforming the system (Ên; A;B%
�1; �C; �D%�1) 2 LJ via

strong equivalence into (%�1; � )-standard-form, which goes straightforward

because of the non-singularity of the speci�ed matrices in LJ : a) invert

A33, b) delete (the new matrices) A13; A23; A31; A32, c) delete the last row

of B and the last column of C, d) transform the matrices at the position

(2,1) in B and at (2,2) in C to Ik, e) delete the entries D11; D21; D22 in the

matrix D. The detailed transformations can be found in [3, pp. 153]. Note

that all these transformations depend continuously on the given entries

in � = (A;B%�1; �C; �D%�1) 2 LJ . Thus there exists a continuous map

f : LJ ! �(L̂J ) such that f(�)
s
�� for � 2 LJ .
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Since LJ is open, the same holds for �(H� LJ ) � L̂m;r;p, but this is

just the set ~LJ (remember the map � in (3.2)).

b) It is �(L̂J )
homeo
� L̂J

homeo
� ~�m;r;p � K

p�m and with Proposition 2.8

�( ~LJ ) = �(�(H � �(L̂J ))) = �(�(L̂J ))
1�1
 ! �m;r;p � K

p�m . Hence we

have to prove the bicontinuity of the above bijection, where �(�(L̂J )) has

to be endowed with the subset topology induced from Lm;r;p. For this

consider the commutative diagram

~�m;r;p � K
p�m

�

����! �(L̂J )
�

����! �(H�LJ )

�1

??y ??y�j�(L̂J ) ??y�j�(H�LJ )
�m;r;p � K

p�m
��

����! �(�(L̂J ))
id

����! �(�(H�LJ )):

(4.6)

Here �1 is the canonical projection �1 : ~�m;r;p �K
p�m

! �m;r;p �K
p�m ,

the map � is the homeomorphism � : ~�m;r;p �Kp�m
! �(L̂J ), which is

de�ned as

�(A1; [B1; B2];

�
C1

C2

�
;

�
D1 D2

D3 D4

�
) = �(

�
A1 B1

�C2 �D3

�
;

�
0 B2

Ik �D4

�
%�1; �

�
C1 D1

0 Ik

�
; �

�
0 D2

0 0

�
%�1)

and � is the canonical inclusion from �(L̂J ) in �(H � LJ ). Then, by

Proposition 2.8, �� is a well-de�ned bijection. Further id : �(�(L̂J )) !

�(�(H � LJ )) is a homeomorphism by the chosen topologies. The maps

�j�(L̂J )
and �j�(H�LJ) are continuous, the latter one is also open. If we can

show that �j
�(L̂J )

is an open mapping, too, then �� is an homeomorphism

and hence �( ~LJ ) = �(�(H� LJ ))
homeo
� �m;r;p � K

p�m .

Thus it remains to be shown that �j�(L̂J )
is open. As noted in a), there

is a continuous map f : LJ ! �(L̂J ) with f(�)
s
��. Thus, if O � �(L̂J ) is

open, then f�1(O) � LJ also. But then f�1(O) is open in �(H�LJ ) and

thus �j�(L̂J )
(O) = �j�(H�LJ)(f

�1(O)) is open. 2

With this preparation and the notations of equation (3.5) and Theorem

3.5, both in [2, Section 3], we �nally get

Theorem 4.6 The map F in (4.3) is a homeomorphism and satis�es

F (�( ~LJ )) = ��1
1
(ch(J)). Further F (Âm;r;p= s

�
) = Ratm;r;p, so in particu-

lar Âm;r;p= s
�

is homeomorphic to Ratm;r;p.
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Proof: The bijectivity of F as well as F (�( ~LJ)) = ��1
1
(ch(J)) and

F (Âm;r;p= s
�
) = Ratm;r;p are ful�lled by construction. It remains to be

proven the bicontinuity of F . For this consider the commutative diagram

�(�(H� LJ))
F

����! ��1
1
(ch(J))

���1

??y ??yV
�m;r;p � K

p�m
K

����! Rat0m;r;p � K
p�m

with �� as in (4.6), the homeomorphism V (h�J

�
P

Q

�
i) = h

�
P

Q

�
i and

K[(A;B;C;D)] = h

�
P

Q

�
i, where PQ�1(s) = C(sI � A)�1B + D is a co-

prime factorization of the transfer matrix of (A;B;C;D). Then K is known

to be a homeomorphism (see Byrnes/Duncan [1, p. 43, p. 46]). Thus

F j�(�(H�LJ)) is a homeomorphism. Since Lm;r;p is covered by the open

sets �(�(H�LJ )) it follows that F is a homeomorphism too. 2

Of course, it is also possible to de�ne the pseudotransfer matrix T for

systems � = (E;A;B;C;D) in LNm;r;p, i. e. with arbitrary matrix E. Using

Proposition 3.1, this leads to

Corollary 4.7 The quotient space LNm;r;p= e
�

of all irreducible systems mod-

ulo (strong) equivalence is homeomorphic to the space Im;r;p, the homeo-

morphism is induced by the pseudotransfer matrix.

5 Proof of Theorem 4.3

We have to prove a lot of lemmata showing the invariance of the map T

in Theorem 4.3 under various system transformations. Parts of the rather

technical computations are a bit shortened; they can be found in more

detail in [3].

The following relation between factorizations of the transfer matrices

of state space systems, which are related by output feedback, will often be

used. It is easy to prove:

C(sI �A)�1B +D = PQ�1 =) C(sI � A+ BFC)�1B + �D

=
�
(I + �DF )P + ( �D �D � �DFD)Q

��
FP + (I � FD)Q

��1
:

9=
; (5.1)

In the following lemma the claimed properties of the pseudotransfer

matrix are proven in the case of canonical systems.
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Lemma 5.1 Let � = (A;B%; �C; �D%); �� = ( �A; �B�%; �� �C; �� �D�%) 2 Ĉnm;r;p

with % 2 P(m); � 2 P(p) and the matrices be partitioned as follows:

(A;B;C;D) = (

�
A1 A2

A3 0

�
;

�
0 B2

In�r B4

�
;

�
C1 C2

0 In�r

��
0 D2

0 0

�
);

( �A; �B; �C; �D) = (

�
�A1

�A2

�A3 0

�
;

�
0 �B2

In�r �B4

�
;

�
�C1

�C2

0 In�r

��
0 �D2

0 0

�
):

Then it holds: �
s
���() T̂ (�) = T̂ (��).

Proof: First, note the following fact, which holds also, if in the system �

the matrix A4 is non-trivial. If

G(s) =

�
C1

�A3

�
(sI �A1)

�1[A2; B2] +

�
0 D2

�A4 0

�
= PQ�1(s)

and S =

�
I B4

0 I

�
% 2 Glm; T = �

�
I C2

0 I

�
2 Glp, then it holds T̂ (�) =

h

�
T 0

0 S�1

�
Vn�r

�
P

Q

�
i. This can be veri�ed at once by using partitions of

the matrices P and Q. This fact will often be used in the following.

a) We show: �
s
��� =) T̂ (�) = T̂ (��).

Assume�
M 0

L I

��
sÊn � A �B%

�C �D%

��
N R

0 I

�
=

�
sÊn �

�A � �B �%

�� �C �� �D�%

�
: (5.2)

Since MÊnN = Ên and LÊn = 0; ÊnR = 0, one can specify the following

matrices

M =:

�
M1 M2

0 M4

�
N =:

�
M�1

1 0

N3 N4

�
�
I � �C2

0 I

�
���1L =:

�
0 L2

0 L4

�
R�%�1

�
I � �B4

0 I

�
=:

�
0 0

R3 R4

�
;

where Mi; Ni; Li and Ri are suitable matrices. Moreover, put

T :=

�
T1 T2

T3 T4

�
:=

�
I � �C2

0 I

�
���1�

�
I C2

0 I

�
;

S :=

�
S1 S2

S3 S4

�
:=

�
I B4

0 I

�
%�%�1

�
I � �B4

0 I

�
:

9>>>=
>>>;

(5.3)
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Then after some computations from (5.2), one gets

S2 = 0 T2 = 0

S1 =M�1
4 T4 = N�1

4

L2 = T1D2S3S
�1
1 R4 = �T

�1
4 T3D2S4

�B2 =M1(B2 �A2T
�1
4 T3D2)S4 �D2 = T1D2S4

�C1 = T1(C1 �D2S3S
�1
1 A3)M

�1
1

�A2 = M1A2N4

�A1 = M1A1M
�1
1 +M2A3M

�1
1 +M1A2N3

�A3 = M4A3M
�1
1 :

With these equations, (5.2) and the de�nitions

F =

�
T�14 T3 T�14 T3D2S3S

�1
1

0 �S3S
�1
1

�
;

U =

�
T1 L2

0 S�11

�
2 Glp; V =

�
T�14 R4

0 S4

�
2 Glm;

(5.4)

it follows

�G(s) :=�
�C1

� �A3

�
(sI � �A1)

�1[ �A2; �B2] +

�
0 �D2

0 0

�

= U

��
C1

�A3

�
(sI �A1 + [A2; B2]F

�
C1

�A3

�
)�1[A2; B2] +

�
0 D2

0 0

��
V:

If

G(s) :=

�
C1

�A3

�
(sI � A1)

�1[A2; B2] +

�
0 D2

0 0

�
= PQ�1(s)

is a coprime factorization of G, then by (5.1) it is

�G = U
�
P +DF (P �DQ)

��
Q+ F (P �DQ)

��1
V:

Using DFD = 0, one checks that this is in fact a coprime factorization of
�G. The explicit structure of the involved matrices as given in (5.4) leads

to �
U 0

0 V �1

��
P +DF (P �DQ)

Q+ F (P �DQ)

�
= Vn�r

�
T 0

0 S�1

�
Vn�r

�
P

Q

�
:

The de�nition of the map T̂ (see De�nition 4.2) and (5.3) now yield

T̂ (��) = h

�
�� 0

0 �%�1

�2664
I �C2 0 0

0 I 0 0

0 0 I � �B4

0 0 0 I

3
775
�
T 0

0 S�1

�
Vn�r

�
P

Q

�
i
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= h

�
� 0

0 %�1

�2664
I C2 0 0

0 I 0 0

0 0 I �B4

0 0 0 I

3
775Vn�r

�
P

Q

�
i = T̂ (�):

b) We show: T̂ (�) = T̂ (��) =) �
s
���.

Let S; �S 2 Glm and T; �T 2 Glp be

S =

�
I B4

0 I

�
%; �S =

�
I �B4

0 I

�
�%; T = �

�
I C2

0 I

�
; �T = ��

�
I �C2

0 I

�
: (5.5)

Further put PQ�1 =

�
C1

�A3

�
(sI �A1)

�1[A2; B2] +

�
0 D2

0 0

�
=

�
P1 P2

P3 P4

��
Q1 Q2

Q3 Q4

��1
; (5.6)

and �P �Q�1 =�
�C1

� �A3

�
(sI � �A1)

�1[ �A2; �B2] +

�
0 �D2

0 0

�
=

�
�P1 �P2
�P3 �P4

��
�Q1

�Q2

�Q3
�Q4

��1
: (5.7)

Then it follows

T̂ (�) = h

�
T 0

0 S�1

�
Vn�r

�
P

Q

�
i = h

�
�T 0

0 �S�1

�
Vn�r

�
�P
�Q

�
i = T̂ (��): (5.8)

With the de�nition

�T�1T =

�
T1 T2

T3 T4

�
2 Glp; �SS�1 =

�
S1 S2

S3 S4

�
2 Glm

and the partition of the matrices P; �P; Q; �Q as in (5.6) and (5.7) equation

(5.8) can be rewritten as

�P �Q�1=

��
T1 0

0 S1

�
PQ�1 +

�
T2 0

0 S2

����
T3 0

0 S3

�
PQ�1 +

�
T4 0

0 S4

���1
:

This leads to the following equation of proper rational matrices�
T1 0

0 S1

�
PQ�1 +

�
T2 0

0 S2

�
= �P �Q�1

��
T3 0

0 S3

�
PQ�1 +

�
T4 0

0 S4

��
:

A comparison of the constant parts on both sides yields S2 = 0; T2 = 0.

Now it is possible to transform the system � via strong equivalence to
��. This transformation was �rst used by Grimm [4, p. 1343], who needed

this result in his approach:
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First, with N =

�
I 0

�T�14 T3C1 T�14

�
and R =

�
0 0

0 �T�14 T3D2

�
S it

holds �
sÊn � A �B%

�C �D%

��
N R

0 I

�
=

�
I 0

0 �T

��
sÊn �

~A � ~B
~C ~D

��
I 0

0 S

�
;

where

( ~A; ~B; ~C; ~D) =
�� ~A1

~A2

~A3 0

�
;

�
0 ~B2

I 0

�
;

�
~C1 0

0 I

�
;

�
0 ~D2

0 0

��
;

suitably. This can be veri�ed directly.

Secondly with

M =

�
I ~B2S

�1
4 S3

0 S1

�
; L = �T

�
0 � ~D2S

�1
4 S3

0 0

�

it can be seen that�
M 0

L I

��
sÊn �

~A � ~BS
�T ~C �T ~DS

�
=

�
I 0

0 �T

�"
sÊn � Â �B̂

Ĉ D̂

#�
I 0

0 �S

�

where

�̂ := (Â; B̂; Ĉ; D̂) =
�"

Â1 Â2

Â3 0

#
;

�
0 B̂2

I 0

�
;

�
Ĉ1 0

0 I

�
;

�
0 D̂2

0 0

��

with some matrices Âi; B̂2; Ĉ1 and D̂2. Therefore it is

�
s
�(Â; B̂ �S; �TĈ; �TD̂ �S):

Let

P̂ Q̂�1(s) =

"
Ĉ1

�Â3

#
(sI � Â1)

�1[Â2; B̂2] +

�
0 D̂2

0 0

�

be a coprime factorization. The invariance of T̂ under
s
� yields T̂ (�) =

h

�
�T 0

0 �S�1

�
Vn�r

"
P̂

Q̂

#
i. Thus with (5.8) it is P̂ Q̂�1 = �P �Q�1 and

(Â1; [Â2; B̂2];

"
Ĉ1

�Â3

#
;

�
0 D̂2

0 0

�
)

and

( �A1; [ �A2; �B2];

�
�C1

� �A3

�
;

�
0 �D2

0 0

�
) 2 ~�m;r;p � K

p�m
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are similar state space systems. With Proposition 2.8 this implies

�
s
�(Â; B̂ �S; �T Ĉ; �TD̂ �S)

s
���. 2

By the above lemma, the map

~T : L̂nm;r;p �! Im;r;p

� 7�! T̂ (~�), if �(�)
e
��(~�) and �(~�) 2 Ckm;r;p for

some k � n is in a (%; � )-standard form

with suitable % 2 P(m); � 2 P(p)

9>>>=
>>>;

(5.9)

is well-de�ned for every n � r. Here the map � is as before de�ned as in

(3.1). We will use the map ~T to show the well-de�nedness of T .

The next two lemmata establish the equality of T̂ (�) and ~T (�), i. e.

the equality of the pseudotransfer matrices T̂ (�) of a non-canonical system

in standard-form and an equivalent canonical system.

Lemma 5.2 Let l + t = n� r, � = (A;B;C;D) =

(

2
4 A1 A21 A22

A31 0l 0

A32 0 It

3
5;
2
4 0 0 B1

Il 0 B2

0 It B3

3
5;
2
4C1 C2 C3

0 Il 0

0 0 It

3
5; � 0 D2

0l+t 0

�
) 2 L̂nm;r;p

and

PQ�1(s) =

2
4 C1

�A31

�A32

3
5(sI�A1)

�1[A21; A22; B1]+

2
4C2 C3 D2

0 0 �B2

0 �It �B3

3
5 (5.10)

be a coprime factorization of the transfer matrix of the associated state

space system. Then ~T (�) = hVl+t

�
P

Q

�
i = T̂ (�) 2 Im;r;p (the case l = 0 is

included).

Proof: By direct computation one gets (Ên; A;B;C;D)
e
��

Êr+l;

�
A1 � A22A32 A21

A31 0l

�
;

�
0 �A22 B1 �A22B3

Il 0 B2

�
;

M

2
4C1 �C3A32 C2

�A32 0

0 Il

3
5;M

2
40 �C3 D2 �C3B3

0 �It �B3

0 0 0

3
5�

with M =

2
4 Ip�l�t 0 0

0 0 Il

0 It 0

3
5 2 P(p), which gives a canonical system. The

transfer matrix Ĝ of the associated state space system of this canonical
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system is

Ĝ(s) =

F1

�24 C1

�A31

�A32

3
5(sI �A1 + B̂F

2
4 C1

�A31

�A32

3
5)�1B̂ +

2
4C2 0 D2

0 0 �B2

0 It 0

3
5�F2

with the matrices B̂ = [A21; A22; B1] and

F1 =

2
4 Ip�l+t 0 C3

0 0 It

0 Il 0

3
5; F2 =

2
4 Il 0 0

0 �It �B3

0 0 Im�l�t

3
5; F =

2
40 0 0

0 0 �It

0 0 0

3
5:

With (5.1) and

D0 :=

2
4C2 C3 D2

0 0 �B2

0 �It �B3

3
5; ~D :=

2
4C2 0 D2

0 0 �B2

0 It 0

3
5

it follows from (5.10)

F�11 Ĝ(s)F�12 =�
(I + ~DF )P + ( ~D �D0

� ~DFD0)Q
��
FP + (I � FD0)Q

��1
:

Hence it is

~T (�) = h

�
M 0

0 I

�
Vl

�
F1 0

0 F�12

��
I + ~DF ~D �D0

� ~DFD0

F I � FD0

��
P

Q

�
i

which, after a few computations, yields ~T (�) = hVl+t

�
P

Q

�
i. 2

Lemma 5.3 Let r � n � N; l = n � r; k = l + t � minfm; pg, and

� = (A;BS; TC; TDS) 2 Ĉnm;r;p with matrices

S =

�
U 0

0 Im�k

�
2 Glm; T =

�
Ip�k 0

0 W

�
2 Glp;

and

(A;B;C;D) = (

�
A1 A2

A3 0

�
;

�
0 B1 B2

Il B3 B4

�
;

2
4C1 C2

C3 C4

0 Il

3
5;
2
4 0 D1 D2

0 D3 D4

0l 0 0

3
5)
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where B3; C
t
4 2 K

l�t ; D3 2 K
t�t . Then ~T (�) =

�
T 0

0 S�1

�
~T (A;B;C;D),

if for M 2 Glp+m the map M : Im;r;p ! Im;r;p hXi 7! hMXi denotes the

induced homeomorphism.

Proof: Let

PQ�1(s) =

2
4 C1

C3

�A3

3
5(sI �A1)

�1[A2; B1; B2] +

2
4C2 D1 D2

C4 D3 D4

0l �B3 �B4

3
5 (5.11)

be a coprime factorization of the transfer matrix of the state space system

associated with (A;B;C;D). Then it is ~T (A;B;C;D) = hVl [P
t; Qt]ti. Let

� 2 P(k) be such that with �W =

�
W1 W2

W3 W4

�
it is

�
W1 W2

W3 W4

��
C4

Il

�
=�

�V2
�V4

�
where �V4 2 Gll. With �̂ =

�
Ip�k 0

0 ��1

�
2 P(p) it holds

T = �̂

�
Ip�k 0

0 �W

�
: (5.12)

Further let ~V1 :=W1 �
�V2 �V

�1
4 W3. Then one can see that ~V1 2 Glt.

First we will consider the system �� := (A;B; TC; TD). By some

straightforward matrix transformations one gets ��
s
�~� :=

(

�
~A1 A2

�V �14

A3 0

�
;

�
0 ~B1

~B2

Il B3 B4

�
; �̂

2
4 ~C1 C2

�V �14
~V1C3

�V2 �V
�1
4

0 Il

3
5; �̂

2
4 0 ~D1

~D2

0 ~D3
~D4

0l 0 0

3
5)

with matrices ~A1 = A1 � A2
�V �1
4 W3C3, ~C1 = C1 �C2

�V �14 W3C3,�
~D1

~D2

~D3
~D4

�
=

�
D1 �C2

�V �14 W3D3 D2 �C2
�V �14 W3D4

W1D3 �
�V2 �V

�1
4 W3D3 W1D4 �

�V2 �V
�1
4 W3D4

�
;

[ ~B1; ~B2] = [B1 �A2
�V �14 W3D3; B2 � A2

�V �14 W3D4]:

Let

~P ~Q�1(s) =2
4 ~C1

~V1C3

�A3

3
5(sI � ~A1)

�1[A2
�V �1
4 ; ~B1; ~B2] +

2
4C2

�V �14
~D1

~D2

�V2 �V
�1
4

~D3
~D4

0 �B3 �B4

3
5
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be a coprime factorization of the transfer matrix of the state space system

associated with ~�.

In the next step we will establish the relation between ~P ~Q�1 and PQ�1.

Put

F1 =

2
4 I �C2

�V �14 W3 0

0 ~V1 0

0 0 I

3
5 2 Glp; F =

2
40 �V �14 W3 0

0 0 0

0 0 0

3
5 2 Km�p

and

F2 =

2
4 �V �14 ��V �1

4 W3D3 �
�V �1
4 W3D4

0 I 0

0 0 I

3
5 2 Glm:

Further let

D0 =

2
4 D0

1 D0

2 D0

3
~V �11

�V2 ~V �11 W1D3
~V �1
1 W1D4

0 �B3 �B4

3
5; �D :=

2
4C2 D1 D2

C4 D3 D4

0l �B3 �B4

3
5;

where

D0

1 = C2(I + �V �14 W3
~V �11

�V2);

D0

2 = D1 + C2
�V �1
4 W3

~V �11 W1D3;

D0

3 = D2 + C2
�V �1
4 W3

~V �11 W1D4:

Then with (5.11) and (5.1) it holds

~P ~Q�1(s) =

F1

�24 C1

C3

�A3

3
5(sI �A1 + [A2; B1; B2]F

2
4 C1

C3

�A3

3
5)�1[A2; B1; B2] +D0

�
F2 =

F1

�
(I +D0F )P + (D0

� �D �D0F �D)Q
��
FP + (I � F �D)Q

��1
F2:

Thus

h

�
~P
~Q

�
i = h

�
F1 0

0 F�12

��
I +D0F D0

� �D �D0F �D

F I � F �D

��
P

Q

�
i

= hVl

2
4 Ip�k 0 0

0 �W 0

0 0 Im

3
5Vl

�
P

Q

�
i;
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where the last equality can be veri�ed by using the equations

(I + �V �14 W3
~V �1
1

�V2) �V �14 W3 = �V �14 W3
~V �1
1 W1 and �~V �1

1
�V2 �V �14 W3 =

I � ~V �1
1 W1 and making some matrix calculations.

With the equation (5.12) it follows �nally

~T (��) = h

�
�̂ 0

0 I

�
Vl

�
~P
~Q

�
i = h

�
�̂ 0

0 I

�24 Ip�k 0 0

0 �W 0

0 0 Im

3
5Vl

�
P

Q

�
i

= h

�
T 0

0 I

�
Vl

�
P

Q

�
i =

�
T 0

0 I

�
~T (A;B;C;D):

In a further step we can assume �� = (A;B; TC; TD) = ( �A; �B; �C; �D) in

standard-form and then we get analogously

~T (�) = ~T ( �A; �BS; �C; �DS) =

�
I 0

0 S�1

�
~T ( �A; �B; �C; �D):

2

Now we can show the coincidence of the maps T̂ and ~T de�ned in

De�nition 4.2 and in (5.9).

Lemma 5.4 Let r � n � N , k = n� r, and

� = (

�
A1 A2

A3 A4

�
;

�
0 B2

Ik B4

�
%; �

�
C1 C2

0 Ik

�
; �

�
0 D2

0 0

�
%) 2 L̂nm;r;p

with D2 2 K
(p�k)�(m�k) . Then T̂ (�) = ~T (�).

Proof: Let rkA4 = t � k; k = l + t, and U; V 2 Glk such that UA4V =

H :=

�
0l 0

0 It

�
. Put U [A3; B4] = [Â3; B̂4] and [At

2; C
t
2]
tV = [Ât

2; Ĉ
t
2]
t. It

follows

�
s
�(

"
A1 Â2

Â3 H

#
;

�
0 B2

Ik B̂4

�
S; T

�
C1 Ĉ2

0 Ik

�
; T

�
0 D2

0 0

�
S) =:

�̂ =: (Â; B̂S; T Ĉ; T D̂S)

with

S =

�
U 0

0 Im�k

�
% 2 Glm; T = �

�
Ip�k 0

0 V

�
2 Glp:
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For the transfer matrices of the state space systems associated with �

and ~� = (Â; B̂; Ĉ; D̂) choose coprime factorizations

PQ�1(s) =

�
C1

�A3

�
(sI � A1)

�1[A2; B2] +

�
C2 D2

�A4 �B4

�
;

P̂ Q̂�1(s) =

�
C1

�Â3

�
(sI � A1)

�1[Â2; B2] +

"
Ĉ2 D2

H �B̂4

#
= ÛPQ�1(s)V̂

with Û =

�
Ip�k 0

0 U

�
2 Glp; V̂ =

�
V 0

0 Im�k

�
2 Glm. Then

T̂ (�) = h

�
� 0

0 %�1

�
Vk

�
P

Q

�
i = h

�
T 0

0 S�1

�
Vk

"
Û 0

0 V̂ �1

#�
P

Q

�
i (5.13)

= h

�
T 0

0 S�1

�
Vk

"
P̂

Q̂

#
i = T̂ (�̂): (5.14)

With Lemma 5.2 it holds

~T (~�) = T̂ (~�) = hVk

"
P̂

Q̂

#
i: (5.15)

Moreover, one can transform via equivalence

eqvil(Ên; Â; B̂; Ĉ; D̂)
se
� (Ên;

�
~A 0

0 It

�
;

�
~B

0

�
;M [ ~C; 0];M ~D)

e
� (Ên�t; ~A; ~B;M ~C;M ~D)

with M =

2
4 Ip�k 0 0

0 0 Il

0 It 0

3
5 and suitable matrices

( ~A; ~B; ~C; ~D) = (

�
~A1

~A2

~A3 0

�
;

�
0 ~B1

~B2

Il 0 ~B3

�
;

2
4 ~C1

~C2

~C3 0

0 Il

3
5;
2
4 0 ~D1

~D2

0 ~D3
~D4

0l 0 0

3
5):

Therefore (Ên; Â; B̂S; T Ĉ; T D̂S)
e
�(Ên�t; ~A; ~BS; TM ~C; TM ~DS) and

Lemma 5.3 together with the equations (5.13), (5.14), and (5.15) yield

~T (�) = ~T ( ~A; ~BS; TM ~C; TM ~DS) =

�
T 0

0 S�1

�
~T ( ~A; ~B;M ~C;M ~D)
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=

�
T 0

0 S�1

�
~T (~�) =

�
T 0

0 S�1

�
T̂ (~�) = h

�
T 0

0 S�1

�
Vk

"
P̂

Q̂

#
i

= T̂ (�):

2

Now we can close with the

Proof of Theorem 4.3: It remains to prove the well-de�nedness of T and

the property �
s
��0 , T (�) = T (�0) for �; �0 2 L̂m;r;p. Let � 2 L̂m;r;p

and �(�0)
e
��(�)

e
��(~�) with �(�0) 2 Lkm;r;p and �(~�) 2 Lnm;r;p in (%0; � 0)-

standard-form resp. (~%; ~�)-standard-form, where � is as in (3.1). Then

�(�0)
e
��(~�) and by Lemma 5.4 it is ~T (�0) = T̂ (�0) and ~T (~�) = T̂ (~�). On

the other side it is ~T (�0) = ~T (~�), since canonical standard-forms equivalent

to �0 and ~� must be strong equivalent to each other (by Remark 2.3 and

Theorem 2.4), so we can use Lemma 5.1. This shows the well-de�nedness

of T and part \)" of the equivalence. For \(" note that by Lemma 5.4

T (�) = ~T (�), thus we can use Lemma 5.1 again. 2
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