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Abstract

A modi�cation of the trust-region Gauss-Newton method with a

two-parameter approximation for the solution of separable nonlin-

ear least squares problems is described and analysed. Global con-

vergence results are presented. The new method of a regularized

variable projection leads to a numerically stable implementation.
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1 Introduction

In mathematical modelling nonlinear formulations are continuously used.

Numerous problems in physics, mechanical engineering, chemistry and

medicine lead to a special nonlinear regression problem; speci�cally, we

have to �t the model function

�(a; x; t) :=

lX
j=1

aj'j(x; t) + 'o(x; t) (1)

to the given data (ti; yi) 2 Rk � R1 (i = 1; :::;m), x and a are to be esti-

mated. In this paper we consider the analysis of models which are solely

\linear combinations" of certain nonlinear functions. We are often faced

with this problem in the �eld of physics and biology in evaluating spec-

troscopic data, in particular, if one attempts to �t given data in a least
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CHRISTINE B�OCKMANN

squares sense to a nonlinear model, as for example in an exponential �t-

ting. These problems also arise in some speci�c mathematical formulations

when studying, e.g., approximations to solutions of parabolic linear partial

di�erential equation, cf. Gilliam, Lund, Martin [10] or speci�c cases for the

identi�cation of linear ordinary di�erential equations where an exponential

interpolation is used, cf. Ammar, Dayawansa, Martin [1]. The nonlinear

functions 'j (j = 1; :::; l) are given, whereas

f�(x)gij := 'j(x; t
i) (i = 1; :::;m; j = 1; :::; l) (2)

is a matrix function � : x 2 Dx � Rn ! L(Rl; Rm). We face the problem,

however, to estimate a = (a1; :::; al)
T 2 Rl and x = (x1; :::; xn)

T 2 Rn in

the least squares sense. It appears to be necessary to determine

minfr1(a; x) : a 2 Rl; x 2 Rng (3)

whereas r1(a; x) :=
1

2

mX
i=1

(yi � �(a; x; ti))2 =
1

2
kH(a; x)k2

with H(a; x) := z(x)� �(x)a

and z(x) := (y1 � 'o(x; t
1); :::; ym � 'o(x; t

m))T :

The norm is always the Euclidean vector norm, or the spectral norm for

matrices. The problem (3) is a nonlinear least squares problem of the

dimension l + n. Golub and Pereyra [11] proved that this problem can be

reduced to a nonlinear least squares problem of the dimension n comprising

x 2 Rn only, and a linear least squares problem comprising a 2 Rl only. A

variable projection algorithm using the Gauss-Newton method to solve the

problem (3), was developed by Golub and Pereyra. Kaufman [12] proposed

a simpli�cation of this algorithm, which proved to be more e�cient when

using a computer. Ruhe and Wedin [17] o�ered a more general analysis

of di�erent algorithms for separable problems. It was proved that the

Gauss-Newton algorithm when applied to both (6) as well as the original

problem have the same asymptotic convergence rate. In particular, both

converge quadratically for the zero residual problem. This is in contrast

to the naive algorithm when minimizing over a and x alternatively; which

always converges linearly. They also proved that the simpli�ed algorithm

of Kaufman has roughly the same asymptotic convergence rate as the one

proposed by Golub and Pereyra, cf. Bj�orck [2].

2 The Method of Regularized Variable Projection

Let us �rst �x x 2 Rn. We then obtain a linear least squares problem in

a 2 Rl

minfr1(a; x) : a 2 Rlg: (4)

2
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The solution with the smallest Euclidean vector norm is

a�(x) := �(x)+z(x): (5)

This is a function of x 2 Rn, where �(x)+ is the Moore-Penrose pseudoin-

verse of �(x) . Substituting (5) in (3) leads to a reduced nonlinear least

squares problem in x 2 Rn of the dimension n,

minfr2(x) : x 2 Rng (6)

whereas r2(x) := r1(a
�(x); x) =

1

2
kG(x)k2

with G : x 2 Dx � Rn ! G(x) 2 Rm;

and G(x) := (I ��(x)�(x)+)z(x):

This is advantageous, because the number of iteration steps in general is

smaller and the iteration is more stable, i.e. the variable projection algo-

rithm is able to solve problems which other methods not using separability

may not be able to solve, cf. Krogh [13]. By solving (6) we get an optimal

x� 2 Rn. So the �rst subproblem is a nonlinear least squares problem

in x 2 Rn and another advantage is that no initial values for the linear

parameters have to be provided, whereas the second subproblem is simply

a linear least squares problem of �nding a� 2 Rl. Now the question is

raised, which method is favourable for the solution of (6). The method of

Kaufman is useful, although there are two other suggestions. The process

of deriving G(x) is extensive. Therefore our algorithm is at �rst without

derivative. A �nite-di�erence approximation with function evaluations for

DG(x) is used. Consequently it is necessary to compute the function evalu-

ations e�ectively. For every evaluation the correction �(x)+z(x) is needed,

although not explicitly. We have to solve the problem

minfkz(x)��(x)ak2 : a 2 Rlg (7)

e�ectively and stably e.g. with the QR-factorization by either Householder

or Givens. If �(x) is singular or the pseudorank is smaller than l, i.e.

�(x) is nearly rank de�cient, then we will need e.g. the singular value

decomposition of �(x) for every function evaluation. Again this requires

great algebraical expense. Let us now assume

rk(�(x)) = r = (constant) � l (8)

for all x 2 Dx. The idea is to determine a := aR(x; ") in a Tikhonov-like

sense. The linear least squares problem is replaced by

minfkz(x)��(x)ak2 + "kak2 : a 2 Rlg (9)
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with " > 0 as regularization parameter. The solution is e�ectively possible

by QR-factorization. What has been described so far is well-known. In

the following let us describe what we would like to call the method of

regularized variable projection from another angle. This method may also

be described as a method with an approximation F (x; ") for the function

evaluation G(x). Then

F : (x; ") 2 Dx �D" � Rn � R1
+ ! F (x; ") 2 Rm (10)

where F (x; ") := z(x)� �(x)aR(x; ") = (I � �(x) ~	(x; "))z(x) ;

and ~	(x; ") :=

�
�(x)+ : " = 0

	(x; ") : " 2 (0; "o]; "o > 0

with 	(x; ") := ("I + �(x)T�(x))�1�(x)T and [0; "o] � D". The param-

eter " is decisive for the quality of the approximation. In this paper we

propose a modi�cation of the Trust-Region Gauss-Newton method with a

two-parameter approximation.

3 Preliminaries

The trust-region Gauss-Newton method is commonly used for solving non-

linear least squares problems

minf
1

2
kG(x)k2 : x 2 Rng: (11)

The solution proceeds iteratively

xk+1 := xk + sk; k = 0; 1; 2; ::: (12)

where the correction sk is an approximate solution of the constrained linear

least squares problem

minfkDG(xk)s + G(xk)k : ksk � �kg: (13)

Here DG(xk) denotes the Jacobian matrix of G(xk) at the current iterate

xk and �k > 0 is the trust-region radius. Let

sGN := �DG(xk)+G(xk) (14)

be the generalized Gauss-Newton step so that the solution of the uncon-

strained linear least squares problem

minkDG(xk)s+ G(xk)k (15)

has minimal norm ksk. It is well-known that the Gauss-Newton step s =

sGN solves (13) if ksGNk � �k. Otherwise, problem (13) has the unique
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solution s = s(�) where s(�) is de�ned as the solution of the unconstrained

regularized linear least squares problem

minfkDG(xk)s +G(xk)k2 + �ksk2 : s 2 Rng (16)

and � > 0 is determined from the scalar equation

�(�) := ks(�)k ��k = 0: (17)

An appropriate algorithm for solving (16) and (17) was described by Mor�e

[14], which has become part of most trust-region codes. Since �(�) is

nonlinear in �, (17) has to be solved iteratively, too, so that the solution

s(�) of (16) has to be repeatedly evaluated for di�erent values of �, as

reported by Mor�e [14] and con�rmed by Gay [9]. Let us now consider a

common function F (x; ")

F : Dx �D" � Rn �R1
+ ! Rm;m � n (18)

and de�ne f(x; ") :=
1

2
kF (x; ")k2

where f is bounded below and then

minff(x; 0) : x 2 Rng (19)

has to be determined.

For a given (xo; "o) 2 Rn �R1
+

Wo := fx 2 Rn : 9" 2 [0; "o] with f(x; ") � f(xo; "o)g (20)

is the level set of F . If F is di�erentiable with respect to x, so is f and the

gradient of f

df(x; ") := DF (x; ")TF (x; ") (21)

is of the above form.

Assumption 3.1 Let us agree that the function F in (18) ful�lls the as-
sumption (3.1), if the following conditions are satis�ed

i) The level set Wo is compact for a given (xo; "o). There exists
Do := conv(Wo) � Dx with Dx open.

ii) The derivative DF (x; ") exists with respect to x on Dx and is bounded,
i.e.

kDF (x; ")k �M1 (22)

for all (x; ") 2 Do �D" with M1 > 0.
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iii) The functions F and DF are Lipschitz-continuous at the point " = 0.
There are two constants Lo; L1 > 0 with

kF (x; ")� F (x; 0)k � Lo" (23)

and kDF (x; ")�DF (x; 0)k � L1" (24)

for all (x; "); (x; 0) � Do �D".

iv) The function DF is also Lipschitz-continuous with respect to x. There
exists a constant L2 > 0 with

kDF (x; ")�DF (y; ")k � L2kx� yk (25)

for all (x; "); (y; ") 2 Do �D".

De�nition 3.1 The approximation A of DF

A : Dx �D" �Dh � Rn �R1
+ � Rn ! L(Rn; Rm)

is said to be a uniformly strongly consistent approximation, or shorter a
(C; r)-approximation if

kA(x; "; h)�DF (x; ")k � Ckhk (26)

for all (x; "; h) 2 Dx �D" �Dr
h with two constants C; r > 0.

Dh � Rn is called the discretisation domain, where 0 2 Rn is an accumu-

lation point of Dh and

Dr
h := fh 2 Dh : khk � rg � Dh: (27)

The constant C is independent of ". From our assumptions the (C; r)-

approximation exists, cf. Schwetlick [18]. The discretisation of the gradient

is given by

b := b(x; "; h) = A(x; "; h)TF (x; "): (28)

Lemma 3.1 Let the function F satisfy the assumption (3.1) and A be a
(C; r)-approximation on Wo � D". Then there exist constants K1;K2;K3

and M2 > 0 in such a way that we have for all (x; "; h) 2 Wo �D" �Dr
h

and for all (x; ") 2Wo �D"

i)

kb(x; "; h)� df(x; ")k � K1khk; (29)

ii)

kdf(x; ")� df(x; 0)k � K2"; (30)
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iii)

kdf(x; ")� df(y; ")k � K3kx� yk; (31)

iv)

kA(x; "; h)k �M2: (32)

Proof: The proof is simple. Indeed, when the conditions (20), (27) and

the inequalities (22), (23), (24), (25) and (26) are satis�ed, we deduce the

assertions (29), (30), (31) and (32). 2

De�nition 3.2 The function f : Dx � D" � Rn � R1
+ ! R1 is called

parameter monotone on Do �D", if

f(x; "1) � f(x; "2) (33)

for all (x; "1); (x; "2) 2 Do �D" with "1 � "2.

4 Algorithm: Statement and Convergence

Following (13) we now have to determine

minfmk : s 2 Rn; ksk � �kg (34)

with mk(s) := kA(xk; "k; h
k)s + F (xk; "k)k:

Let us use the notations

ared := f(xk; "k) � f(xk + sk; "k)

for the actual reduction of the nonlinear function,

pred := f(xk; "k) �
1

2
mk(s

k)2

for the predicted reduction of the linear model and

�k :=
ared

pred

for the ratio measuring the agreement between the linear model and the

nonlinear function. The iteration step is successful if �k � �1 otherwise

unsuccessful. In the latter case the trust-region radius �k has to be

reduced. After a successful iteration step, �k is increased, if �k > �2,

0 < �1 < �2 < 1, compare step 7.

Lemma 4.1 Let ~s be a solution to (34). Then

pred �
1

2
kbkmin(�;

kbk

kAk2
): (35)
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In fact, the inequality in Lemma (4.1) is obtained by Powell's \dog-leg"

step [16]. This inequality is the main ingredient used to show that the

sequence of gradients tends to zero for the following algorithm.

Lemma 4.2 Let the function F satisfy the assumption (3.1) and let A be
a
(C; r)-approximation on Wo �D". Then there exists a constant K4 > 0 so
that for all (x; "; h) 2Wo �D" �Dr

h

jared� predj � K4(� + khk)(1 + �)�: (36)

Proof: The assertion (36) can be deduced by using Taylor's theorem there-

fore employing condition (20) and the inequalities (22), (25), (26) and (32).

2

Algorithm 4.1

step 0 Choose x0 2 Rn;�o > 0; "�1 > 0; jmax 2 f1; 2; :::g; �1; �2 2 (0; 1);

0 < �1 < �2 < 1; 0 < 
1 < 1 < 
2, tol and set k := 0.

step 1 Choose "k with 0 � "k � "k�1 and hk 2 Dh with hk 6= 0.

step 2 Compute F k := F (xk; "k).

If F k = 0

then N := k, stop

else compute Ak := A(xk; "k; h
k) and bk := AT

k F
k, set

j := 0.

step 3 If kbkk >tol then goto step 5.

step 4 Choose ~"k with 0 � ~"k � �2"k and ~hk 2 Dh with k~hkk � �1kh
kk,

~hk 6= 0, set "k := ~"k; h
k := ~hk, goto step 2.

step 5 Compute sk as minimum-norm-solution of

minfkF k + Aksk : ksk � �kg;

set j := j + 1.

step 6 Compute F (xk + sk; "k) and �k.

step 7 If �k < �1
then if j < jmax

then �k := 
1�k, goto step 5

else goto step 4
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else xk+1 := xk + sk, if �k > �2
then �k+1 := 
2�k

else �k+1 := �k

k := k + 1; goto step 1.

It should be added, it might happen that bk = 0 in step 3 even though

df(xk; "k) 6= 0. Then bk is not a good approximation and we have to choose

a smaller " and khk in step 4. The constant jmax controls the approxima-

tions Ak and F (xk; "k). If we have decreased �k jmax-times successively

without success, we will have to choose a smaller " and khk in step 4, too.

Theorem 4.1 Assume the function F : Dx �D" � Rn � R1
+ ! Rm sat-

isfy the assumption (3.1), the approximation A of DF on Wo � D" be a
(C; r)-approximation, and the function f be parameter monotone. Then
the algorithm (4.1) is practicable and produces either a �nite or an in�-
nite sequence fxkg whereas the sequence ff(xk; "k)g is strictly monotone
decreasing and exactly one of the following three cases holds:

i) The algorithm �nishes after N iterations because F (xN ; "N ) = 0.

ii) After M iterations a cycle occurs where khMk; "M and �M are de-
creased unsuccessfully in its progress. Then xM is a stationary point
of f, i.e. df(xM ; 0) = 0.

iii) The algorithm is in�nite. In case the parameters hk and "k are chosen
in such a way that

lim
k!1

khkk = lim
k!1

"k = 0 (37)

then
lim
k!1

bk = lim
k!1

df(xk; "k) = lim
k!1

df(xk; 0) = 0: (38)

Proof: At �rst we will consider the case df(xk; 0) 6= 0 and show that

the inner cycles between the steps 3, 4 and 2 and between the steps 7, 4

and 2 are �nite. Because of inequality (30) there exists a jo > 0 so that

df(xk; "kj ) 6= 0 for all j � jo and furthermore by inequality (29) then exists

j1 � jo so that kb
kk > � > 0 for all j � j1. So the �rst inner cycle is �nite.

By (36), (35) and (32) we obtain

j�k � 1j �
K4(�k + kh

kk)(1 + �k)�k

jpredj

�
K4(�k + kh

kk)(1 + �k)�k

1

2
�min(�k; �=M

2
2 )

(39)

for all j � j1. Because of the instructions of decreasing "k; kh
kk and �k

the sequence j�k � 1j tends to zero and so �k tends to 1 so that the second
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cycle is �nite, too. Assume the algorithm has been iterated k times. Then

this may be assumed to be true

f(xk; "k) < f(xk�1; "k�1) < ::: < f(x0; "o):

Case 1: In step 2 F (xk; "k) = 0. Then N := k and the algorithm stops.

Condition (33) implies F (xk; 0) = 0.

Case 2: Although F (xk; "k) 6= 0, an inner cycle begins in the iteration

step M := k. Then xM is a stationary point, i.e. df(xM ; 0) = 0. This need

not necessarily lead to F (xk; 0) = 0.

Case 3: Let F (xk; "k) 6= 0 and df(xk; 0) 6= 0 so that with hk; "k and �k

the new iteration can be formed. If step 4 is run through i-times then with

condition (33) we have

f(xk; "ki) � f(xk; �i2"k) < f(xk; "k):

Moreover xk+1 = xk + sk including bk 6= 0 and �k � �1. This implies that

f(xk ; "k)� f(xk+1; "k+1) � f(xk ; "k)� f(xk+1; "k) � �1pred

�
1

2
�1kb

kkmin(�k;
kbkk

kAkk2
) > 0: (40)

Indeed xk+1 2Wo: The sequence ff(x
k; "k)g is strictly monotone decreas-

ing and bounded below. The second part of the proof is indirect and follows

a well-known idea, cf. Thomas [20] or Sorensen [19]. Supposing that a sub-

sequence fxkjg � fxkg exists so that kbkjk � � > 0 for all j. We select an

integer lj corresponding to each j so that

lj = maxfl 2 [kj; kj+1) : kb
ik �

�

2
; kj � i � lg: (41)

The existence is guaranteed because lj = kj is always possible. By the

condition (33) and the inequalities (35) and (32) we obtain

f(xl; "l)� f(xl+1; "l+1) � f(xl ; "l)� f(xl+1; "l)

� �1pred

�
1

4
�1�min(�l;

�

2M2
2

): (42)

Furthermore we get that

fkj � flj+1 =

ljX
l=kj

fl � fl+1 �
1

4
�1�min(

ljX
l=kj

�l;
�

2M2
2

): (43)

10



SEPARABLE NONLINEAR LEAST SQUARES PROBLEMS

So it can be deduced

lim
j!1

ljX
l=kj

�l = 0

because f is bounded below and strictly monotone decreasing. By

kxkj � xlj+1k �

ljX
l=kj

kslk �

ljX
l=kj

�l

we obtain

lim
j!1

kxkj � xlj+1k = 0: (44)

Since (29), (30) and (31) are satis�ed it follows

kbkj � blj+1k = kbkj � df(xkj ; "kj ) + df(xkj ; "kj ) � df(xlj+1; "kj )

+df(xlj+1; "kj ) � df(xlj+1; 0) + df(xlj+1; 0)

�df(xlj+1; "lj+1) + df(xlj+1; "lj+1)� blj+1k

� K1kh
kjk+K3kx

kj � xlj+1k+K2"kj

+K2"lj+1 +K1kh
lj+1k: (45)

Moreover, because of (44) and (45) there exists an index jo > 0 so that

kbkj � blj+1k < �=4 for all j � jo. Therefore

kbkjk = kbkj � blj+1 + blj+1k �
�

4
+
�

2
< � (46)

for all j � jo. Obviously, this is a contradiction and so with (29) and (30)

the proof is complete. 2

We shall only brie
y describe the local asymptotic properties. Let the

assumptions of Theorem(4.1) be satis�ed. Roughly speaking, if the se-

quence fxkg converges to x� with df(x�; 0) = 0 and if the model has a suf-

�ciently small residuum at x� and rk(DF (x�; 0)) = n then ksGNk � �k,

i.e. we have that �k = 0 for all k � ko, cf. (15) and (16). This means

that the algorithm(4.1) for k � ko becomes the undamped Gauss-Newton

method with a two-parameter approximation and then it even converges

superlinearly, i.e. faster than linearly. For a closer look at the proof of

local convergence results, cf. B�ockmann [4].

5 Implementation

The algorithm developed in Section 4 has been applied mainly for parame-

ter estimation in models whose parameters are separated, i.e. the algorithm
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is applied to function (10). The approximation parameter " is used as the

regularization parameter of the variable projection. It is easy to show that

function (10) satis�es the assumption (3.1) and the properties (26) and

(33) are ful�lled under simple assumptions on �(x) and z(x). Roughly

speaking, �(x) and z(x) have to be di�erentiable, D�(x) and Dz(x) have

to be Lipschitz-continuous and condition (8) has to be ful�lled. For the

detailed proof of these properties, cf. B�ockmann [4].

We compared three methods for solving problem (1). The �rst and the

second ones are methods without separation, cf. (3). They are common

trust-region Gauss-Newton methods with a one-parameter approximation

for the derivative of ~H(a; x) = y � �(x)a with 'o = 0. The �rst method

uses a complete approximation for D ~H. The second method on the other

hand uses a subapproximation. Because of the special structure of ~H(a; x),

we determine

D ~H(a; x) = [D ~HajD ~Hx] = [��(x)jD�(x)a]

and only the second part has to be discretized. The third method is the

presented algorithm (4.1) with a two-parameter approximation. For the im-

plementation we use the LINPACK-routines, cf. Dongarra, Bunch, Moler,

Stewart [7] and the NL2SOL-algorithm, cf. Dennis, Gay, Welsch [6]. We

used our algorithms for solving di�erent problems known from literature

for a comparison. The results for some of these problems are presented

below.

Example 1: Willers [21]

�(a; x; t) = a1 + a2e
x1t; m = 10

t 2 4 6 8 10

y 92.4 86.2 80.5 75.2 70.3

t 12 14 16 18 20

y 65.8 61.6 57.7 54.1 50.8

1. initial value vector: [10; 100; (�0; 01)]T

2. initial value vector: [�145; 250; (�0:01)]T

Example 2: Golub/Pereyra [11]

�(a; x; t) = a1 + a2e
x1t + a3e

x2t; m = 33

For the measuring series cf. [11].

Initial value vector: [0:4; 1:5;�1:5; (0:01; 0:02)]T
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Example 3: Ruhe/Wedin [17]

�(a; x; t) = a1 + a2
1

t + x1
; m = 9

t 0 0.15625 0.3125 0.625

y 20182 19585 19190 17746

y 20100 19237 18228 16630

t 1.25 2.5 5 10 20

y 15244 12177 9175 6406 4970

y 13826 10748 8200 6287 4946

1. initial value vector: [2000; 60000; (3)]T

2. initial value vector: [3000; 30000; (3)]T

Example 4: Ekenberg [8] / Clair,Rigler [5]

�(a; x; t) = a1expf�
4ln2(x1 � t)2

x22
g+ a2expf�

4ln2(x3 � t)2

x24
g

Two measuring series with di�erent parameters were generated.

1) m=57, t=0(0.1)5.6

a = [65:97176; 76:66948]T

x = [3:97588; 0:61526;2:52642; 0:87850]T

initial value vector: [70; 80; (3:2111; 1:7813;3:0817;1:7795)]T

2) m=71, t=0(0.1)7

a = [57:5361; 68:62627]T

x = [2:50158; 1:46932;2:25775; 0:74416]T

initial value vector: [60; 70; (3:2111; 1:7813;3:0817;1:7795)]T

Example 5: Ottoy, Vansteenkiste [15]

�(a; x; t) = a1 + a2tanh(x1(lnt� x2)); m = 50

The measuring series were generated by t = 0:2(0:2)10; a= [200; 150]T

and x = [3; 1]T .

initial value vector: [180; 180; (7; 2)]T

13
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Example 6:

�(a; x; t) = a1e
x1tcos(x2t) + a2e

x1tsin(x2t); m = 5

t 0.5 1 1.5 2 2.33

y 5.3 -2.3 -9 2.2 13.2

1. initial value vector: [1:5; 4:5; (0:3; 2)]T

2. initial value vector: [1:5; 4:5; (0:3; 2)]T

Example 7: chemical problem

�(a; x; t) = a1
t

1 + x1t+ x2t2
+ a2

t2

1 + x1t+ x2t2
; m = 24

See B�ockmann [3] for the measuring series.

1. initial value vector: [800; 1500; (0:0595; 1:846)]T

2. initial value vector: [304:976; 174:65; (0:09776; 1:9159)]T

3. initial value vector: [150; 200; (0:09398; 2:274)]T

Table 5.1 Runtime (R) and Number of Iteration Steps (I)

Example method 1 method 2 method 3

R I R I R I

1.1 2 5 1 5 1 3

1.2 8 24 8 24

2 6 4 5 4 5 4

3.1 3 11 3 11 <1 3

3.2 4 15 4 15 1 4

4.1 d d 26 9

4.2 d d 36 11

5 54 41 47 43 46 41

6.1 4 8 3 8 2 5

6.2 d d 2 5

7.1 4 6 4 6 3 4

7.2 5 7 5 7 4 5

7.3 4 5 3 5 3 4

The type of the approximation of D ~H does not a�ect the number of itera-

tion steps, but as expected the runtime is di�erent. Method 2 is somewhat

better. This fact is to be seen in Table 5.1, columns 1 and 2. Table 5.1,

column 3 shows the advantage of separation. The number of iteration steps

is smaller and so is the runtime. The examples 4.1, 4.2 and 6.2 cannot be

solved by employing methods 1 or 2. This is remarkable, since solutions

14
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could be obtained using method 3. Moreover, method 3 is able to solve ex-

ample 4.1, but it has to be taken into consideration that "o is truly greater

than 0. So the reduction of the dimension and the regularization of the

variable projection stabilize the computation at a low expense. This is very

important. The algorithm is user-friendly, because it does need neither an

initial value for a 2 Rl nor the derivative DF.

Our numerical experience shows that the method of regularized variable

projection provides an e�cient and stable algorithm for solving separable

nonlinear least squares problems.
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