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1 Introduction

In the paper we are going to provide a systematic way of treating abnormal

extrema in variational problems.
Suppose a point x̂ of a Banach space X is a point of extremum for a

smooth functional J : X �! R under equality constraints F (x) = 0, where
F : X �! Y is a smooth mapping of X into a �nite-dimensional vector
space Y . The `Lagrange multiplier rule' claims the existence of a nonzero
pair (�0; �

�) 2 (R� Y �) of Lagrange multipliers, such that

�0J
0(x̂) + ��F 0(x̂) = 0: (1.1)

Here J 0(x̂) 2 X�, is the gradient and ��F 0(x̂) = (F 0(x̂))��� 2 X�,
where F 0(x̂) : X �! Y is the di�erential of F at x̂, and (F 0(x̂))� : Y � �!
X� is its adjoint.

This �rst-order optimality condition is hardly considered to be satisfac-
tory unless so-called normality condition holds. This last is nonvanishing
of �0. For the above mentioned problem this normality can be provided,
for example, by so-called regularity condition, which is: ImF 0(x̂) = Y: In
nonlinear programming the normality condition is provided by Slater con-
dition. In normal case one can renormalize the Lagrange multipliers and
equation ( 1.1) in such a way that �0 = 1:
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The points which meet the condition (1.1) but with vanishing Lagrange
multiplier �0 are called abnormal extremals. One often tries to avoid them
either looking for another set of Lagrange multipliers with nonvanishing �0
or simply by treating the abnormal case as a degeneration of constraints
(see for example [13]) which has little to do with the extremality of x̂:

Banal two-dimensional examples, such like

x1 �! min; x21 + sin2 x2 = 0;

demonstrate a possibility for abnormal extremal points to be isolated (lo-
cally nonvariable) points of the set fx j F (x) = 0g: Traditional approach to
optimization problems treats the functional and the constraints in di�er-
ent ways and hence the impossibility of varying the point x̂ along the set
fx j F (x) = 0g is considered as a pathology which makes further analysis
senseless. The same point of view has been adopted in calculus of varia-
tions (see [19], where these cases are named `sad facts of life') and came
inherently to optimal control.

Therefore the main activity in the �eld was directed to elimination of
abnormal extremals; they either should not exist, or should not be optimal.
Some examples of such activity can be found in sub-Riemannian geometry,
which treats length functional along paths which are tangent to a com-
pletely nonintegrable (nonholonomic) vector distribution on a Riemannian
manifoldM: Preprint [16] of R. Montgomery lists several (given by di�erent
authors) false proofs of the fact, that minimizing sub-Riemannian geodesic
should not be abnormal extremal. The preprint contains also an example
of minimizing abnormal sub-Riemannian geodesic.

In this paper we investigate the phenomenon of abnormality from the
point of view of geometric control theory. The main claim is: abnormal
extremals exist, they can be optimal and optimality conditions for them are
not worse, than in the normal case, although they have di�erent meaning.
Thus we show that 2-nd order su�cient optimality condition implies the
local isolatedness of an abnormal extremal point x̂:

We investigate �rstly the problem of smooth minimization under equal-
ity constraints. Then we pass over to the abnormal extremals of the La-
grange problem of Calculus of Variations. Here we de�ne the second vari-
ation along a corank 1 abnormal extremal and formulate second order nec-
essary/su�cient conditions for weak optimality for abnormal extremals.
Finally we present a method of computation for Morse index and nullity

of abnormal extremals which play crucial role in the veri�cation of the
optimality conditions.

Our attention was attracted to the subject after a discussion on ab-
normal sub-Riemannian geodesics at the Conference `Geometric Methods
in Nonlinear Optimal Control' organized by IIASA in Sopron, Hungary in
July 1991. One more source of inspiration was preprint [9] of B. Bonnard
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and I. Kupka, which treats Legendre-Jacoby-type optimality conditions for
time-optimal a�ne control problems. The authors are grateful to R.V.
Gamkrelidze and H.W. Knobloch for their support. We are thankful to the
anonymous referee who has pointed to an omission in the proof of the The-
orem 3.2 and invested a lot of e�ort improving the style of the paper and
correcting numerous grammatical errors. We also thank J.M. S�a Esteves
for his help in LaTEX-drawing of the �gures of Section 5.

2 Preliminaries

Below we use notation and technical tools of the chronological calculus
developed by A.A. Agrachev and R.V. Gamkrelidze (see [4, 5]).

We will identify C1 di�eomorphisms P : M �! M with automor-
phisms of the algebra C1(M ) of smooth functions on M: �(�) �! P� =
�(P (�)). The image of a point q 2 M under a di�eomorphism P will
be denoted by q � P: C1 vector �elds on M are 1st order di�erential
operators on M or arbitrary derivations of the algebra C1(M ), i.e. R-
linear mappings X : C1(M ) �! C1(M ), satisfying the Leibnitz rule:
X(��) = (X�)� + �(X�). The value X(q) of a vector �eld X at a point
q 2 M lies in the tangent space TqM to the manifold M at the point q.
We denote by [X1; X2] Lie bracket or commutator X1 � X2 � X2 � X1

of vector �elds X1; X2. It is again a 1st order di�erential operator and
if X1 =

Pn

i=1X
1
i @=@xi; X

2 =
Pn

i=1X
2
i @=@xi in local coordinates on M

then the Lie bracket

[X1; X2] =

nX
i=1

(@X2
i =@xX

1 � @X1
i =@xX

2)@=@xi:

This operation introduces in the space of vector �elds the structure of a
Lie algebra denoted Vect M . For X 2 VectM the notation adX stands for
the inner derivation of Vect M : (adX)X0 = [X;X0]; 8X0 2 VectM .

For a di�eomorphismP we use the notation AdP for the following inner
automorphism of the Lie algebra Vect M : AdPX = P �X �P�1 = P�1? X.
The last notation stands for the result of translation of the vector �eld X
by the di�erential of the di�eomorphism P�1.

A 
ow on M is an absolutely continuous w.r.t. � 2 R curve � !
P� (� 2 R) in the group of di�eomorphisms Di� M , satisfying the con-
dition P0 = I (where I is the identity di�eomorphism). We assume all
time-dependent vector �elds X� to be locally integrable with respect to � .
A time-dependent vector �eld X� de�nes an ordinary di�erential equation
_q = X� (q(� )); q(0) = q0 on the manifoldM ; if solutions of this di�erential
equation exist for all q0 2M; � 2 R, then the vector �eld X� is called com-
plete and de�nes a 
ow on M , being the unique solution of the (operator)
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di�erential equation:

dP�=d� = P� �X� ; P0 = I: (2.1)

The solution will be denoted by Pt =
�!
exp

R t
0
X�d� , and is called (see [4])

a right chronological exponential of X� . If the vector �eld X� is time-
independent (X� � X), then the corresponding 
ow is denoted by Pt =
etX .

We introduce also Volterra expansion (or Volterra series) for the chrono-
logical exponential. It is (see [4]):

�!
exp

Z t

0

X�d� � I +

1X
i=1

Z t

0

d�1

Z �1

0

d�2 : : :

Z �i�1

0

d�i(X�i � � � �X�1):

We will exploit only the terms of zero-, �rst- and second-order in this
expansion, which are

�!
exp

Z t

0

X�d� � I +

Z t

0

X�d� +

Z t

0

d�1

Z �1

0

d�2(X�2 �X�1 ) + � � � (2.2)

For time-independent X one obtains

etX � I + tX + (t2=2)X �X + � � � (2.3)

One more tool from the chronological calculus is the `generalized vari-
ational formula' (see [4, 5] for a drawing):

�!
exp

Z t

0

(X̂� +X� )d� =

=
�!
exp

Z t

0

X̂�d��
�!
exp

Z t

0

Ad(
�!
exp

Z �

t

X̂�d�)X� d�: (2.4)

Applying the operator Ad(
�!
exp

R �
0
X̂�d�) to a vector �eld Y and di�er-

entiating Ad(
�!
exp

R �
0
X̂�d�)Y = (

�!
exp

R �
0
X̂�d�) �Y � (

�!
exp

R �
0
X̂�d�)

�1 w.r.t.
� one comes to the equality (see [4, 5]):

d

d�
Ad(

�!
exp

Z �

0

X̂�d�Y ) = Ad(
�!
exp

Z �

0

X̂�d�) ad X̂�Y; (2.5)

which is of the same form as (2.1). Therefore Ad(
�!
exp

R �
0
X̂�d�) can be

presented as an operator chronological exponential
�!
exp

R t
0
ad X̂�d� which

for a time-independent vector �eld X̂� � X̂ can be written as et ad X̂ :
We also have to introduce some notions of symplectic geometry (see

[6, 10, 15] for more details). A symplectic structure in an even-dimensional
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linear space � is de�ned by a nondegenerate skew symmetric bilinear form
�(�; �): Two vectors �1; �2 2 � are called skew orthogonal, written �1[�2;

if �(�1; �2) = 0: If N is a subspace of �, let us denote by N [ its skew
orthogonal complement: N [ = f� 2 � j �(�; �) = 0; 8� 2 Ng: Evidently
dimN + dimN [ = dim�: A subspace � � � is called isotropic, when � �
�[; and coisotropic, when � � �[: A subspace � � � is called Lagrangian,
when �[ = �: Such subspaces have dimension 1

2
dim�.

The symplectic group Sp(�) is the group of those linear transformations
of � which preserve the symplectic form:

Sp(�) = fS 2 GL(�) j �(S�1; S�2) = �(�1; �2) 8�1; �2 2 �g:

The elements of this group are called symplectic transformations. The Lie
algebra of the symplectic group is:

sp(�) = fA 2 gl(�) j �(A�1; �2) = �(A�2; �1) 8�1; �2 2 �g:

Let H be a real quadratic form on � and d�H be the di�erential of H
at a point � 2 �: Then d�H is a linear form on � which depends linearly

on �: For every � 2 � there exists a unique vector
!
H (�) 2 � which satis�es

the equality �(
!
H (�); �) = d�H: It is easy to show that the linear operator

!
H: � ! � belongs to sp(�); and the mapping H !

!
H maps the space

of quadratic forms onto sp(�) isomorphically. The di�erential equation

_� =
!
H (�) is called the linear Hamiltonian system corresponding to the

quadratic HamiltonianH:
Denote by L(�) the Lagrangian Grassmanian, i.e. the set of Lagrangian

planes in �. This is a smooth compact submanifold of of the Grassmanian
of all (n+1)�dimensional subspaces of �. Its dimension is 1

8
dim�(dim�+

2): Symplectic transformations transform Lagrangian planes into
Lagrangian ones, hence the symplectic group acts on L(�): It is easy to
show that it acts transitively.

If � is a Lagrangian plane and � is isotropic, then it is easy to prove,
that (� \ �[) + � = (� + �) \ �[ is a Lagrangian plane. We denote it
by ��: The mapping � ! �� is continuous on a subset of L(�) where
dim(� \ �) = const :

Let us consider the tangent space T�L(�) at � 2 L(�): To every
quadratic form h on � there corresponds a linear Hamiltonian vector �eld
!
h and a one-parameter subgroup t ! et

!

h in Sp(�): Let us consider the
linear mapping

h �! d(et
!

h�)=dt jt=0

of the space of quadratic forms to T�L(�): This mapping is surjective and
its kernel consists of all quadratic forms which vanish on �: Thus two
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di�erent quadratic forms correspond to the same vector from T�L(�) if
and only if the restrictions of these forms on � coincide. Hence we obtain
a natural identi�cation of the space T�L(�) with the space of quadratic
forms on �:

A tangent vector � 2 T�L(�) is called nonnegative if the corresponding
quadratic form is nonnegative on �:An absolutely continuous curve �� (� 2
[0; T ]) in L(�) is called nondecreasing if the velocities _�� 2 T��L(�) are
nonnegative for almost all � 2 [0; T ]:

Treating the action of symplectic group Sp(�) on L(�) one can easily
verify, that pairs of Lagrangian planes (�;�0) have only one invariant w.r.t.
this action, namely dim(�\�0): For triples of Lagrangian planes, there are
more invariants.

Let �1;�2;�3 be Lagrangian planes. Let us present a vector � 2 (�1+
�3)\�2 as a sum � = �1 + �3 and consider on (�1+�3)\�2 a quadratic
form �(�) = �(�1; �3): The Maslov index of the triple (�1;�2;�3) is the
signature of �(�): It is invariant under the action of symplectic group.

In [1] a slightly di�erent invariant was exploited for computation of
Morse indices of singular extremals.

De�nition 2.1 Consider the quadratic form �(�) = �(�1; �3); which is

properly de�ned on the space ((�1 + �3) \ �2)=
T3

i=1 �i: The sum 1
2
dim

ker � + ind�, where ind� is the negative inertia index of �; is called the

modi�ed Maslov index of the triple (�1;�2;�3) of Lagrangian planes and

will be denoted by ind�2
(�1;�3): 2

Let us note, that ker � = ((�1 \�2) + (�2 \�3))=
T3

i=1 �i: We refer to
[1] for a simple formula connecting this modi�ed Maslov index with Maslov
index of the triple and for the proof of the following `triangle inequality':

ind�0
(�1;�3) � ind�0

(�1;�2) + ind�0
(�2;�3):

It also follows directly from the de�nition, that

ind�1
(�1;�3) =

1

2
dimker � =

1

2
(dim�1 � dim(�1 \ �3)): (2.6)

De�nition 2.2 A continuous curve �(� ) 2 L(�); 0 � � � 1; is called

simple if there exists � 2 L(�) such that �(� ) \� = 0 8� 2 [0; 1]: 2

Lemma 2.1 If �(� ) 2 L(�) 0 � � � 1; is a simple nondecreasing curve

in L(�); and � 2 L(�); then

ind�(�(0);�(1)) = ind�(�(0);�(� )) + ind�(�(� );�(1)); 8� 2 [0; 1]:2

Lemma 2.2 Let �0;�1 2 L(�): There exist � 2 L(�) and neighborhoods

V 0 3 �0; V 1 3 �1 in L(�) such that whenever � 2 V 0;�0 2 V 1 and

dim(�\�0) = dim(�0\�1) then there exists a simple nondecreasing curve

�(� ); � 2 [0; 1] such that �(0) = �;�(1) = �0; �(� )\� = 0 8� 2 [0; 1]: 2
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Both lemmas are proved in [1].

De�nition 2.3 Let �(t); 0 � t � T; be a nondecreasing curve in L(�)
and 0 = t0 < t1 < � � � < tl = T be a partition of [0; T ] such that the curves

�(�) j[ti;ti+1]; i = 0; : : : l � 1 are simple and � 2 L(�): The expression

ind��(�) =
l�1X
i=0

ind�(�(ti);�(ti+1)) (2.7)

is called the Maslov index of the curve �(t) with respect to �: 2

It follows from the Lemma 2.1 that (2.7) does not depend on a choice
of t1 < � � � < tl�1: If the curve �(t) is closed (�(0) = �(T )); then ind��(�)
does not depend on � (cf. [1]).

3 Smooth Extremal Problem with Equality

Constraints: Abnormal Case

Let J : X �! Y be a continuously Frechet di�erentiable function on a Ba-
nach space X; while F : X �! Y be a continuously Frechet di�erentiable
mapping of X into a �nite-dimensional vector space Y: Let us consider the
following extremal problem

J (x) �! min; (3.1)

on a set S � X given by an equation

F (x) = 0: (3.2)

The Lagrange multiplier rule says, that if x̂ 2 X supplies the minimum
to problem (3.1)-(3.2), then there exists a nonzero element (�0; �

�) 2 (R�
Y �); such that x̂ is a critical point of the Lagrangian L = �0J (x)+��F (x):
In other words

�0J
0(x̂) + ��F 0(x̂) = 0: (3.3)

(If the point x̂ is a regular point of F , i.e. ImF 0(x̂) = Y , then �0 6= 0
and dividing (3.3) by �0 we come to the canonical pair (1; ��) of Lagrange
multipliers.)

Second-order optimality conditions for the problem (3.1)-(3.2) usually
preassume the regularity condition. If J ; F are twice Frechet di�erentiable
on X and (3.3) holds at a regular point x̂; with �0 = 1; then the non-
negativeness of the quadratic form Lxx(x̂; 1; ��) on kerF 0(x̂) = f� 2 X j
F 0(x̂)� = 0g is necessary for optimality of x̂; while positive de�niteness
(Lxx(x̂; 1; ��)(�; �) � 
k�k2; 8� 2 kerF 0(x̂); and some 
 > 0) is su�cient
for local optimality of x̂:
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Let us investigate what happens, when x̂ does not satisfy the normality
assumption. Namely we assume, that �0 may vanish in (3.3). Still the
above mentioned su�cient optimality condition is true also in this case.

Theorem 3.1 (Su�cient Optimality Condition) Let J ; F be twice

Frechet di�erentiable on X: If for some (�0; �
�) 2 (R+ � Y �) the point

x̂ is a critical point of the Lagrangian L(x) = �0J (x) + ��F (x) and the

quadratic form L00xx(x̂)(�; �) is positive de�nite on kerF 0(x̂), then x̂ supplies

a local minimum to the problem (3.1)-(3.2). If in addition �0 = 0; then x̂
is an isolated point of the set S = fx j F (x) = 0g: 2

Remark. For �0 6= 0 this is a standard fact (see [11]). It is de�nitely
known also for �0 = 0; but we could not �nd a corresponding source for a
reference. 2

We will weaken now the requirement of positive de�niteness, assuming
that Banach space X is densely embedded into a separable Hilbert space
H : X ,! H and L00xx(x̂) is positive de�nite w.r.t. the norm of H: The
relevant example is Lr1[0; T ]; trivially densely embedded into Lr2[0; T ]:

Theorem 3.2 (Modi�ed Su�cient Optimality Condition) Let a

Banach space X be densely embedded into a separable Hilbert space

H : X ,!H. Let x̂ 2 X be such a point, that: i) F (x̂) = 0, ii) J ; F
are Frechet di�erentiable at x̂, and iii) for some (�0; �

�) 2 (R+ � Y �) the
di�erential of Lagrange function L(x) = �0J (x)+��F (x) vanishes at x̂ (x̂

is critical point of L(x)). Let

kF (x̂+ x)� F (x̂) � F 0(x̂)xk = O(1)kxk2H ; as kxkX ! 0; (3.4)

and the Lagrange function L(x) admit Taylor expansion at x̂ of the form:

jL(x̂+ x)� L(x̂) �
1

2
L00xx(x̂)(x; x)j = o(1)kxk2H ; as kxkX ! 0; (3.5)

with the quadratic form L00xx(x̂)(x; x) continuously extendable onto H:

If the quadratic form Lxx(x̂)(�; �) is H�positive de�nite on kerF 0(x̂),
i.e.:

for some 
 > 0; L00xx(x̂)(�; �) � 2
k�k2H ; 8� 2 kerF 0(x̂); (3.6)

then x̂ supplies strict local minimum to the problem (3.1)-(3.2). If, in

addition, �0 = 0; then x̂ is an isolated point of the set S = fx j F (x) = 0g:
2

Proof: We start with the abnormal case: �0 = 0; that implies L(x̂) =
��F (x̂) = 0: Without loss of generality we may assume, that x̂ coincides
with the origin of X:

8
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We are going to establish (for some b > 0) an estimate kF (x)k � bkxk2H
for all x from some small (in X) neighborhood of the origin.

Let us present X as a direct sum of kerF 0(0) and a (�nite-dimensional)
complement Z; which is mapped isomorphically by F 0(0) onto the image
F 0(0)X: Any x 2 X can be split uniquely into the sum x1 + x0; where
x1 2 Z, x0 2 kerF 0(0). Obviously

for some � > 0 : kxk2H � �(kx0k
2
H + kxk2H); 8x 2 X; (3.7)

and

for some c > 0 : kF 0(0)xk = kF 0(0)x1k � ckx1kH ; 8x 2 X: (3.8)

Denote N = fy 2 Y j��y = 0g and choose a vector � 2 Y such, that
��� = 1: Evidently Y = R� � N and ImF 0(0) � N: The value of the
mapping F (x) can be split into two addends:

F (x) = (��F (x))� +RN (x)

with
RN (x) = F 0j0x1 + BN (x; x);

taking its values in N: Evidently, for some a > 0 :

kF (x)k � a(j��F (x)j+ kRN (x)k); 8x 2 X:

In virtue of (3.5)

��F (x) = L(x)� L(x̂)

=
1

2
L00xx(x̂)(x; x) + o(1)(kx0k

2
H + kx1k

2
H); as kxkX ! 0;

while the continuity of L00xx(x̂)(x; x) in the norm of H implies

jL00xx(x̂)(x; x)� L00xx(x̂)(x0; x0)j = O(1)kxkHkx1kH ;

providing us with an estimate:

��F (x) =
1

2
L00xx(x̂)(x0; x0) + o(1)(kx0k

2
H + kx1k

2
H) + O(1)kxkHkx1kH =

=
1

2
L00xx(x̂)(x0; x0) + o(1)kx0k

2
H +O(1)kxkHkx1kH ; as kxkX ! 0:

Choosing � > 0 and a neighborhood V of the origin in X; where the
rest terms admit upper estimates �kx0k2H (with � � 
=2) and �kxkHkx1kH
correspondingly, we derive from (3.6) an estimate:

L(x)� L(x̂) = ��F (x) � max(0;



2
kx0k

2
H � �kxkHkx1kH); 8x 2 V: (3.9)
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In virtue of (3.4) we may assume for some �0 > 0 an estimate kBN (x; x)k
� �0kxk2H to hold for any x 2 V: Together with (3.8) this provides for
� = �0� :

kR(x)k � max(0; ckx1kH ��
0kxk2H) � max(0; ckx1k��(kx0k

2
H + kx1k

2
H)):

Without loss of generality we may assume that 8x 2 V :

kxkH � �; kx0kH � �; kx1kH � �; �� � c=2; 8���=c � 
=4; c=4�� � 1:

Then

kR(x)k � max(0; (c� ��)kx1kH � �kx0k
2
H) �

� max(0;
c

2
kx1kH � �kx0k

2
H): (3.10)

The two estimates (3.10) and (3.9) imply for any x 2 V

kF (x)k � a(max(0;
c

2
kx1kH ��kx0k

2
H)+max(0;




2
kx0k

2
H � �kxkHkx1kH):

Assume �rstly that ckx1kH � 8�kx0k2H . Then

kF (x)k � a(
c

2
kx1kH � �kx0k

2
H) �

a(
c

4
kx1kH + �kx0k

2
H) � a(

c

4�
kx1k

2
H + �kx0k

2
H):

If, on the contrary, ckx1kH � 8�kx0k2H ; then:

kF (x)k � amax(0;



2
kx0k

2
H � �kxkHkx1kH) �

� amax(0;



2
kx0k

2
H � ��

8�

c
kx0k

2
H) � a




4
kx0k

2
H �

� a



8
(kx0k

2
H +

c

8��
kx1k

2
H):

For the normal case �0 6= 0 (�0 = 1) the proof can be proceeded along
the same line. To this end let us consider an extended mapping � =
(J (x)�J (x̂); F (x)) in place of F (x) and (1; ��) in place of ��: Repeating
just presented reasoning we conclude that, under the conditions of the
theorem, x̂ is an isolated (in X) point of the set ��1(0); and for some
b > 0 k�(x)k � bkx � x̂k2H in a small enough neighborhood of x̂ in X:

This last estimate implies obviously jJ (x)�J (x̂)j � bkx� x̂k2H , whenever
F (x) = 0. Given, in addition (see (3.9)), J (x)�J (x̂) = L(x)� L(x̂) � 0;
we come to the conclusion of the theorem. 2

When setting 2nd-order necessary optimality conditions, one should
distinguish in both, normal and abnormal, situations the cases, when the

10
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range of the di�erential (J 0(x̂); F 0(x̂)) at a critical point x̂ of the mapping
(J ; F ) has codimension 1; and when this range has codimension � > 1:

In the second case the investigation of optimality amounts essentially
to investigation of the images of R�-valued quadratic forms (see [2] for
treatment of the subject); for � > 2 the images of these forms in R� can be

nonconvex and one can not use standard separation arguments for setting
optimality conditions. We restrict ourselves to the abnormal corank 1 case;

namely we assume

codim Im(J 0(x̂); F 0(x̂)) = 1 in R� Y:

Actually this means, that there is unique (up to a constant multiplier)
pair (�0; �

�) of Lagrange multipliers. The following proposition is almost
evident.

Proposition 3.3 Let x̂ be a local minimizer for the problem (3.1)-(3.2)

and x̂ is twice Frechet di�erentiable at x̂. Then for some nonzero pair of

Lagrange multipliers (�0; �
�) 2 R+�Y � the point x̂ is a critical point of the

Lagrangian L = �0J (x) + ��F (x); and if such a pair is (up to a constant

multiplier) unique, then

L00xx(x̂; �0; �
�)(�; �) � 0

on

ker(J 0(x̂); F 0(x̂)) = f� 2 XjJ 0(x̂)� = 0; F 0(x̂)� = 0g:

2

Proposition 3.3 is valid whether �0 vanishes or not. Actually if the
quadratic form L00xx(x̂; �0; �

�) is inde�nite on ker(J 0(x̂); F 0(x̂)) in this
corank 1 case, then (J ; F ) maps a neighborhood of x̂ onto some neigh-
borhood of (J (x̂); 0) in R� Y and hence x̂ can not be point of extremum.

Note an essential gap between the su�cient condition, given by Theo-
rem 3.1, and the necessary condition of Proposition 3.3: the domains of the
quadratic forms in these two statements di�er by dimension 1: The follow-
ing theorem removes this gap, giving true necessary optimality condition
for an abnormal extremum.

Theorem 3.4 (Necessary Optimality Condition) Let x̂ be a local

minimizer for the problem (3.1)-(3.2) and F be twice Frechet di�eren-

tiable at x̂. Then for some nonzero pair of Lagrange multipliers (�0; �
�) 2

R+ � Y �; x̂ is a critical point of Lagrangian L = �0J (x) + ��F (x) and if

such pair is (up to a constant multiplier) unique, then

L00xx(x̂; �0; �
�)(�; �) � 0;

11
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on

kerF 0(x̂) = f� 2 XjF 0(x̂)� = 0g: 1
2

Proof: For �0 6= 0 the theorem is standard.
When proving it for �0 = 0; one may assume without loss of generality,

that x̂ coincides with the origin of X: If �0 = 0; then dimImF 0(0) =
dimY � 1; and �� is an annihilator of ImF 0(0):

Assume, that the quadratic form L00xx(0; 0; �
�) = ��F 00j0(�; �) is indef-

inite on kerF 0(0); namely there are two such vectors �1; �2 2 kerF 0(0);
that

��F 00j0(�1; �1) = ���F 00j0(�2; �2) = 1:

It follows from the uniqueness of the multiplier that rank(J 0(0); F 0(0)) =
dimY; rank F 0(0) = dimY � 1; and J 0(0) does not vanish identically on
kerF 0(0); i.e. there exists such a vector �0 2 kerF 0(0); that J 0(0)�0 6=
0: If � > 0 is small enough, then the vectors �1 + ��0; �2 + ��0 span a
two-dimensional subspace X0 � kerF 0(0); on which the quadratic form
��F 00j0(�; �) is inde�nite, while J 0(0) does not vanish identically on X0:

Let us take again a subspace Z � X; which F 0(0) maps onto ImF 0(0)
isomorphically. Let us put �Z = Z + X0: We are going to prove, that 0 is
not a point of local minimum for J j �Z\F�1 (0):

In order to investigate the set �Z \ F�1(0) let us note that corank
F 0(0)j �Z = 1; and the Hessian of F j �Z is a nondegenerate inde�nite quadratic
form which coincides with the restriction of ��F 00j0 on X0: It follows from
the `Parametric Morse Lemma' (see [7, pp.163-165]), that by proper coor-
dinate changes in �Z and Y one can transform F j �Z into the mapping

(z1; : : :zn�1; x1; x2) �! (z1; : : :zn�1; x
2
1 � x22);

(here x1; x2 coordinatize X0). In these coordinates the intersection of �Z
with F�1(0) is given locally by the equation: x1 = �x2: Since J 0(0) does
not vanish identically on X0; then the restriction of J on one of the two
curves


�(s) = (0; : : : ; 0| {z }
n�1

; s;�s); 
+(s) = (0; : : : ; 0| {z }
n�1

; s; s);

has nonzero derivative at s = 0. Both curves lie in X0\F�1(0); and hence
J j �Z\F�1 (0) has no extremum at the origin of �Z. 2

1In [8] it was proved (for weaker type of abnormal extremum), that negative index of
Lxx(x̂; �0; �

�)(�;�) at optimal point should not exceed corankF 0(x̂); which in our case
is 1: Actually in this case the index must vanish.

12



LAGRANGE VARIATIONAL PROBLEMS

4 Extremals for Lagrange Problem of Calculus of Vari-

ations

Let us consider Lagrange problem of calculus of variations

J (T; u(�)) =

Z T

0

'(q(� ); u(� ))d� �! min; (4.1)

for a nonlinear control system

_q = f(q; u); q(0) = q0; (4.2)

with end-point condition
q(T ) = q1; (4.3)

and free �nal time T . Here for given u 2 Rr f(�; u) is a C1 vector �eld on
the n�dimensional manifoldM; f(q; u) is C3 w.r.t. u; admissible controls
u(� ) 2 Lr1[0; T ]:

We investigate whether a given time T; an admissible control û(�) and
corresponding trajectory q̂(�); meeting the conditions (4.2)- (4.3), supply
L1-local or weak minimum for the problem (4.1)-(4.3).

We assume û(�) to be continuous at T�0. The prolongation of û(�) from
[0; T ] onto [0; T + �] by the constant û(T ) will be denoted also by û(�). We
assume that the solution q̂(�) of the equation _q = f(q; û(t)); q(0) = q0 exists
on [0; T + �]. The weak minimality of the pair (T; û(�)) for the problem
(4.1)-(4.3) means existence of a ��neighborhood U� of û(�) in Lr1[0; T + �]
such that J (T 0; u(�)) � J (T; û(�)) for any control u(�) 2 U� which steers
the system (4.2) from q0 to q1 in a time T 0 2 (T � �; T + �):

We will introduce now classical 1st-order optimality condition (Euler-
Lagrange equation) in Hamiltonian form

Theorem 4.1 If û(�) supplies a weak minimum for the problem (4.1)-

(4.3), then there exists a nonzero pair ( ̂0;  ̂(�)) where  ̂0 � 0 is a constant

and  ̂(� ) is an absolutely continuous covector-function with domain [0; T ])

such that the 5-tuple (û(�); q̂(�);  ̂0;  ̂(�); T ) :

1) satis�es Hamiltonian system

_q = @H=@ ; q(0) = q0; q(T ) = q1; (4.4)

_ = �@H=@q; (4.5)

with a Hamiltonian

H =  ̂0'(q; u) + h ; f(q; u)i; (4.6)

13
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2) meets the stationarity condition

@H

@u
(û(�); q̂(�);  ̂0;  ̂(�)) = 0; a:e: on [0; T ]; (4.7)

and transversality condition

H(û(�); q̂(�);  ̂0;  ̂(�)) = 0; a:e: on [0; T ]: (4.8)

2

De�nition 4.1 The 5-tuple (û(�); q̂(�);  ̂0;  ̂(�); T ) is called an extremal for

the Lagrange problem (4.1)-(4.3). It is called a corank 1 extremal if the

corresponding pair ( ̂0;  ̂(�)) is uniquely de�ned up to a scalar multiplier.

The control û(�) is called an extremal control. 2

It follows from Theorem 4.1 that for any extremal (û(�); q̂(�);  ̂0;  ̂(�); T )

its restriction (û(�)j[0;t]; q̂(�)j[0;t];  ̂0;  ̂(�)j[0;t]; t) to an interval [0; t]; (0 < t �
T ) is also an extremal for the Lagrange problem (4.1)-(4.3).

De�nition 4.2 An extremal (û(�); q̂(�);  ̂0;  ̂(�); T ) is called normal, if  ̂0
6= 0, and abnormal, if  ̂0 = 0: 2

Remark: For an abnormal extremal the functional (4.1) does not enter
the �rst-order optimality conditions.

Normal corank 1 extremals of problem (4.1)- (4.3) were intensively stud-
ied, and necessary and su�cient optimality conditions for them were estab-
lished. Most of the results were obtained in the scope of Theory of Second

Variation, developed by Legendre, Jacobi and M. Morse.
For the Simplest Problem of the Calculus of Variations

J =

Z T

0

F(t; x(t); _x(t)) �! min; x(0) = x0; x(T ) = x1;

(which has only corank 1 extremals) the scheme is as follows. Nonnegative-
ness and positive de�niteness of the second variation are the necessary and
su�cient optimality conditions correspondingly. These conditions can be
formulated in terms of the Morse Index and Nullity (see the monography
[17] of M. Morse) of an extremal, which are correspondingly the negative
inertia index and the dimension of kernel of the second variation along the
extremal.

The Legendre Condition F _x _x � 0 and the Strong Legendre Condition

F _x _x(�; �) � kk�k2; are correspondingly necessary and su�cient conditions
for �niteness of the Morse Index.

14
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When restricting the Second Variation to subspaces C1[0; t] � C1[0; T ]
(t 2 [0; T ]) one obtains a family of quadratic forms depending on t: A
point t� is called a conjugate point of multiplicity � for the extremal if
nullity of the corresponding quadratic form equals �: For the `Simplest
Problem of the Calculus of Variations' under Strong Legendre Condition
conjugate points of an extremal are isolated, and the Morse Index equals to
sum of the multiplicities of the conjugate points located on (0; T ) (Morse
Index Theorem; see [17]). Finally, if the Morse Index and the Nullity of
an extremal on [0; T ] both vanish, then the second variation along it is
positive de�nite, and the extremal is optimal (Jacobi Su�cient Optimality
Condition). Vice versa, if an extremal is optimal, then its Morse Index
must vanish and hence there must be no conjugate points on (0; T ):

For the Lagrange Problem of the Calculus of Variations the situation
becomes more complicated. On one hand the Legendre Condition may
degenerate along a subarc of an extremal (this happens, for example, if the
problem is a�ne w.r.t. control). On another hand the conjugate points of
extremal can be nonisolated and even �ll whole subintervals of the time axis
(see [12]). This phenomenon is connected with violation of some regularity
condition along the extremal (see [18]).

Finiteness of the Morse Index, which is necessary for optimality, can be
guaranteed in this case, by the so-called Generalized Legendre Conditions

(see [3, 14, 1] for their invariant setting). An algorithm for the computa-
tion of the Morse Index, when intervals of conjugate points present, was
proposed in [18]. General computations which withstand various degener-
ations of Legendre and regularity conditions were presented in [1]. They
are based on techniques of symplectic geometry.

Using these techniques one can compute the Index and the Nullity for
normal extremals of the Lagrange Problem. Then the Strong Legendre
Condition together with vanishing of both the Index and the Nullity for the
given extremal guarantees the positive de�niteness of the second variation

which is su�cient for weak optimality of the extremal if the extremal is
normal.

For abnormal extremals new e�ects appear. One of them is that an
abnormal extremal can be locally nonvariable, namely, as for our problem
(4.1)-(4.3), no admissible control di�erent from û(�) and in some small L1-
neighborhood of û(�) can steer the system (4.1) from point q0 to q1 in a time
close to T: This possibility, looking disappointing, has inspired attempts to
eliminate abnormal extremals from consideration by proving, that they
either do not exist, or are not optimal, or `are not better' than normal
ones, i.e. that for any abnormal extremal of some Lagrange problem there
exist normal extremal with the same value of cost.

What we are suggesting is on the contrary a systematic approach to
investigation of the abnormal extremals of a Lagrange problem. The �rst
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step will be reduction of this problem to the one, which was treated in the
previous section.

Let us introduce �rstly (time � input)/state mapping (see [5]) for the
system (4.2). Namely, let us consider the mapping F : R+ � Lr1[0; T ] �!
M; which maps a pair (t; u(�)) into the point x(t); where x(�) is the tra-
jectory of the system (4.2), produced by the control u(�): Obviously, if t is
�xed, then the image of F (t; �) is the attainable set of the system (4.2) in
time t: Also q1 = F (T; û(�)):

A well-known fact is that for (T; û(�)) to be optimal the point (T; û(�))
of R � Lr1 must be a critical point of the mapping (J ; F )(t; u(�)); which
maps R� Lr1 into R�M: Indeed otherwise the system of equations

J (t; û(�) + u(�)) = J (T; û(�))� �; F (t; u(�)) = q1;

is solvable for any su�ciently small � � 0; and hence the system (4.2)
can be steered from q0 to q1 with the value of the functional J equal to
J (T; û(�))� � < J (T; û(�)):

For (T; û(�)) to be a critical point for the above mentioned mapping is

equivalent to the fact that (T; û(�)) is part of an extremal (û(�); q̂(�);  ̂0;

 ̂(�); T ): If  ̂0 = 0; then the functional J does not enter the extremality
condition and it follows that the pair (T; û(�)) is part of an abnormal ex-

tremal (û(�); q̂(�); 0;  ̂(�); T ) if and only if it is a critical point of the mapping
F:

Let us put

f̂� (q) = f(q; û(� )); g� (q; u) = f(q; u)� f̂� (q):

Further we often write f̂� and g� (u) instead of f̂� (q) and g� (q; u) corre-
spondingly. Then

F (t; u(�)) = q0�
�!
exp

Z t

0

(f̂� + g� (u(� )))d�;

or in virtue of the generalized variational formula (2.4)

F (t; u(�)) = q0�
�!
exp

Z t

0

f̂� d��
�!
exp

Z t

0

Yt;� (u(� ))d� =

= q̂(t)�
�!
exp

Z t

0

Yt;� (u(� ))d�; (4.9)

where

Yt;� (q; u) = Ad
�!
exp

Z �

t

f̂�d�g� (q; u): (4.10)

From the formula (2.5) it follows that

dYt;�=dt = � ad f̂tYt;� : (4.11)
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We will need the �rst and the second di�erentials of F at the point
(T; û(�)) 2 R� Lr1: Putting Y� = YT;� and taking the Taylor expansion of
Y� (u) at the point û(� ) 2 Rr :

Y� (u) = Y 1
� u+

1

2
Y 2
� (u; u) + � � � ; (4.12)

where

Y 1
� = Ad

�!
exp

Z �

T

f̂�d�
@f

@u
jû(�); Y

2
� = Ad

�!
exp

Z �

T

f̂�d�
@2f

@2u
jû(�);

one obtains for the �rst di�erential of F at the point (T; û(�)) :

F 0j(T;û(�))(��; u(�)) = f̂T (q
1)�� +

Z T

0

Y 1
� (q

1)u(� )d�: (4.13)

The pair (T; û(�)) is part of an abnormal extremal if and only if
ImF 0 6= Tq1M: In this case there exists a nonzero covector  T 2 T �

q1
M

such that:
h T ; f̂T (q

1)i = 0; (4.14)

and

8u(�) 2 Lr1[0; T ] : h T ;

Z T

0

Y 1
� (q

1)u(� )d� i = 0;

or in virtue of Dubois-Raymond Lemma:

h T ; Y
1
� (q

1)i = 0 a:e: on [0; T ]: (4.15)

These conditions can be transformed in a standard way to the stationarity
and transversality conditions (4.7)-(4.8) of Theorem 4.1 with `abnormal'
(�0 = 0!) Hamiltonian H = h ; f(q; u)i; the covector  T entering (4.14)

and (4.15) corresponds to the end-point value  ̂(T ) of the solution of the
adjoint equation (4.5). The equality (4.8) can be transformed into

h ̂(� ); f̂� (q̂(� ))i = h ̂(� ); f(q̂(� ); û(� ))i = 0; a:e: on [0; T ]: (4.16)

For the abnormal case we set

De�nition 4.3 The �rst di�erential F 0 : R � Lr1 �! Tq1M; given by

the formula (4.13) is called �rst variation along the abnormal extremal

(û(�); q̂(�); 0;  ̂(�); T ): 2

We now de�ne the second variation along an abnormal extremal. It is
the Hessian or quadratic di�erential of F at the critical point (T; û(�)) 2
R � Lr1 (see [7]). Let us choose a function � : M �! R; such that
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d�jq1 =  T ; and consider the function �(F (t; u(�))): In virtue of (4.13 -
4.15) the point (T; û(�)) is a critical point for this function.

Let us compute the quadratic term of the Taylor expansion of
�(F (t; u(�))) at (T; û(�)): Appealing to the Taylor expansion (4.12) and
to the Volterra expansion (2.2) for the right chronological exponential, we
derive

((
1

2

Z T

0

Y 2
� (u(� ); u(� ))d� �

Z T

0

[f̂T ��; Y
1
� u(� )]d� + (f̂T � f̂T )

��2

2
+

+

Z T

0

Z �

0

Y 1
� u(�)d� � Y

1
� u(� )d� + f̂T �� �

Z T

0

Y 1
� u(� )d� )�)(q

1):

(4.17)

(When proceeding with the computation one should take into account the
equalities (4.11), (4.14) and (4.15)).

When restricting the quadratic form (4.17) to the kernel of F 0; we are
able to subtract from (4.17) the vanishing quantity:

1

2
((f̂T �� +

Z T

0

Y 1
� u(� )d� ) � (f̂T �� +

Z T

0

Y 1
� u(� )d� )�)(q

1);

to obtain

1

2
((

Z T

0

Y 2
� (u(� ); u(� ))d� +

Z T

0

[�f̂T �� +

Z �

0

Y 1
� u(�)d�; Y

1
� u(� )]d� )�)(q

1):

The last expression does not depend on choice of � but only on  T =
d�jq1 : Hence we have

2F 00j(T;û(�))[ T ](��; u(�)) = h T ; (

Z T

0

Y 2
� (u(� ); u(� ))d�+

+

Z T

0

[�f̂T �� +

Z �

0

Y 1
� u(�)d�; Y

1
� u(� )]d� )(q

1)i; (4.18)

where (��; u(�)) satisfy an equation

f̂T (q
1)�� +

Z T

0

Y 1
� (q

1)u(� )d� = 0: (4.19)

De�nition 4.4 The quadratic form F 00j(T;û(�))[ T ]; de�ned by (4.18)

- (4.19), is called the second variation along the abnormal extremal

(û(�); q̂(�); 0;  ̂(�); T ) 2

Now we are prepared to formulate necessary-su�cient optimality con-
ditions for abnormal extremals. These conditions are similar to the ones
for normal extremals.
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Theorem 4.2 (Necessary Optimality Condition) If a corank 1 ab-

normal extremal (û(�); q̂(�); 0;  ̂(�); T ) supplies weak minimum to the La-

grange problem (4.1)-(4.3), then the second variation (4.18)- (4.19) along

it is nonnegative. 2

De�nition 4.5 The second variation along an abnormal extremal is called

positive de�nite, if on its domain there holds an inequality of the form:

F 00j(T;û(�))[ T ](��; u(�)) � �(��2 + ku(�)k2L2
):

2

Theorem 4.3 (Su�cient Optimality Condition) If the second varia-

tion along an abnormal extremal (û(�); q̂(�); 0;  ̂(�); T ) is positive de�nite,

then the pair (û(�); T ) supplies weak minimum to the problem (4.1)-(4.3).

Moreover for some � > 0 no other control in the �- neighborhood of û(�)
in Lr1[0; T ] is able to steer the system (4.2) from q0 to q1 in time T 0 2
[T � �; T + �]: 2

Proof of Theorem 4.2 is a direct corollary of the proof of Theorem 3.4.
To realize it let us present the Lagrange problem (4.1)-(4.3) in the following
form:

J (t; u(�)) �! min; (4.20)

F (t; u(�)) = q1; (4.21)

where J (t; u(�)) is given by (4.1) and F is the de�ned above mapping of
the Banach space R�Lr1[0; T ] intoM: Since our consideration is local,M
can be identi�ed with Rn and q1 with the origin of Rn:

The (time�input)/state mapping is not smooth w.r.t. t, but its re-
striction onto the space of C`�smooth controls u(�) is C`�smooth. The
Hessian of this restriction coincides with the restriction of the 2nd varia-
tion (4.18)-(4.19) onto R � C`. Corank of our abnormal extremal, which

is by the de�nition corank of the di�erential (J 0; F 0)j(T;û(�)); is equal to 1:
Therefore, by virtue of Theorem 3.4, the 2nd variation must be nonnegative
on R�C` and, by virtue of continuity, on R� L2 as well. 2

Proof of Theorem 4.3 follows from the proof of Theorem 3.2 in the same
way as the previous theorem follows from Theorem 3.4. Considering again
the extremal problem (4.20)-(4.21) and applying to it Theorem 3.2, where
the pair X ,! H is R � Lr1 ,! R � Lr2; we conclude that whenever the
second variation (4.18) is Lr2�positive de�nite on the kernel of the �rst
variation (4.19), the point (T; û(�)) is an isolated point of the set F�1(q1):

2
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5 Index and Nullity Theorems for Abnormal

Extremals

In this section we are going to provide a method for computing Index and
Nullity (see [17]) of the second variation (4.18)-(4.19). This will give a
possibility of verifying necessary and su�cient optimality conditions for
abnormal extremals established in the previous section (theorems 4.2 and
4.3).

If we put �� = 0 in formulae (4.18)-(4.19) for the second variation along
a corank 1 abnormal extremal then the resulting quadratic form

2F 00r j(T;û(�))[ T ](0; u(�)) = h T ; (

Z T

0

Y 2
� (u(� ); u(� ))d�+

+

Z T

0

[

Z �

0

Y 1
� u(�)d�; Y

1
� u(� )]d� )(q

1)i; (5.1)

with domain consisting of those pairs (0; u(�)); which satisfy

Z T

0

Y 1
� (q

1)u(� )d� = 0; (5.2)

coincides with the Hessian of input/state mapping (see [5]) u(�) !
F (T; u(�)):

We will call (5.1)-(5.2) the reduced second variation. Its domain has
codimension 1 or 0 in the domain of the second variation (4.18)-(4.19).
Its index is not larger and di�ers at most by 1 from the index of the
second variation. Starting with a formula for the index of the reduced
second variation we derive from it an expression for the index of the second
variation (4.18)-(4.19).

Let us start with the conditions of �niteness of index, which are evi-
dently the same for the second variation and the reduced second variation.

It is known, for the index to be �nite it is necessary, that for almost all
� 2 [0; T ] the quadratic forms h T ; Y 2

� (q
1)(u; u)i on the space Rr of control

parameters which enter both (4.18) and (5.1), must be nonnegative. This
is the so-called Legendre Condition for extremal of Lagrange Problem. It
is also known that if for some � > 0


� (u; u) = h T ; Y
2
� (q

1)(u; u)i � �kuk2 a:e: on [0;T]; (5.3)

then the indices of the reduced second variation and hence of the second
variation are �nite, and these variations are positive de�nite on some sub-
spaces of �nite codimension of their domains. The condition (5.3) is called
a Strong Legendre Condition for an extremal.
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If the Legendre Condition degenerates, i.e. h T ; Y 2
� (q

1)(u; u)i = 0; then
one can proceed further and derive a series of Generalized Legendre Con-
ditions which provide �niteness of index. Each condition of the series be-
comes e�ective, if all the previous conditions of the series degenerate. Here
we treat only the nondegenerate abnormal case assuming that the Strong
Legendre Condition (5.3) holds.

In what follows we use an approach developed in [1]. For computation
of the Index and the Nullity we introduce a symplectic representation of
the second variation (4.18)-(4.19). Let us put

V = spanfff̂T (q
1)g [ fY 1

� (q
1)j� 2 [0; T ]gg;

evidently V � Tq1M coincides with the image ImF 0 of the �rst variation
(4.13). It follows from (4.15)-(4.16), that  T annihilates V:

Consider skew symmetric bilinear form on EV , the space of vector �elds,
whose values at q1 lie in V :

h T ; [X;X
0](q1)i; 8X;X0 2 EV : (5.4)

This form has a kernel of �nite codimension in EV ; which is de�ned by the
following equalities:

X(q1) = 0; h T ; (@X=@�)(q
1)i = 0; 8� 2 V:

Taking the quotient of EV w.r.t. this kernel, one obtains �nite-
dimensional quotient space � with nondegenerate skew symmetric bilinear
form �(�; �) induced from (5.4), that is a symplectic structure on �: Direct
calculation gives us dim� = 2dimV = 2(n�1):We denote byX the image
of an X 2 EV under the canonical projection EV �! �:

Choose local coordinates (x1; : : :xn) : O �! Rn on some neighborhood
O of q1 in M; such that xi(q

1) = 0; (i = 1; : : :n); the subspace V is
de�ned by the equality xn = 0 and  T = (0; : : :0;  n): Then the canonical
projection X ! X is:

X =

nX
i=1

Xi(x)@=@xi ! X =

= (X1(0); : : :Xn�1(0); @( nXn)=@x1(0); : : :@( nXn)=@xn�1(0)):

The symplectic form is then:

�(X;Y ) =

n�1X
j=1

(Xj(0)@( nYn)=@xj(0)� Yj(0)@( nXn)=@xj(0)):

Let � be the image under the canonical projection of the space of those
vector �elds which vanish at q1: Direct calculation proves, that � is a
Lagrangian subspace given in the coordinates byXj(0) = 0; j = 1; : : :n�1.
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Instead of notations Y 1
� and f̂T for the images of the vector �elds Y 1

�

and f̂T under the canonical projection EV ! � we use �� and f . By the
de�nitions of �(�; �); � and 
� the second variation (4.18)-(4.19) is:

2F 00j(T;û(�))[ T ](��; u(�)) =

Z T

0


� (u(� ); u(� ))d�+

+

Z T

0

�(�f �� +

Z �

0

��u(�)d�;��u(� ))d�; (5.5)

and its domain is:

f(��; u(�))jf�� +

Z T

0

��u(� )d� 2 �g: (5.6)

If we put �� = 0 in (5.5)-(5.6), then we obtain the symplectic presenta-
tion for the reduced second variation (5.1)-(5.2):

2F 00r j(T;û(�))[ T ](0; u(�)) =

Z T

0


� (u(� ); u(� ))d�+

+

Z T

0

�(

Z �

0

��u(�)d�;��u(� ))d�; (5.7)

with domain

f(0; u(�))j

Z T

0

��u(� )d� 2 �g: (5.8)

Certainly the domain (5.8) either is a codimension 1 subspace of the domain
(5.6) or coincides with it.

We now introduce a Hamiltonian form of the Jacobi Equation for ab-
normal extremals of the Lagrange Problem (4.1)-(4.3) (see [1] for more
details). Let �
� be the nonsingular selfadjoint operator �
� : Rr �!
Rr� ; which induces the positive de�nite form 
� (u; u) on R

r : 
� (u; v) =
h�
�u; vi; 8u; v 2 Rr : De�ne a bilinear form 
�1� on Rr� by 
�1� (u�; v�) =
h�
�1� u�; v�i; 8u�; v� 2 Rr� : Apparently for any x 2 � the mapping u �!
�(�� �; x) de�nes a linear form on Rr; i.e. an element of Rr� ; which depends
linearly on x 2 �: This means, that the correspondence

x �!
1

2

�1� (�(�� �; x))

de�nes a quadratic form on �:
Treating this quadratic form as a time-dependent Hamiltonian on �;

one obtains on � the time-dependent linear Hamiltonian system:

_x = �� �

�1
� (�(�� �; x)); (5.9)
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which will be called the Jacobi equation for the abnormal extremal
(û(�); q̂(�); 0;  ̂(�); T ) of the Lagrange Problem (4.1)- (4.3).

If for any � 2 [0; T ] the vectors u1(� ); : : :ur(� ) form a basis of Rr

such that 
� (ui(� ); uj(� )) = �ij ; (i; j = 1; : : :r) then the equation can be
presented as

_x =

rX
i=1

�(��ui(� ); x)��ui(� ):

Since a Hamiltonian 
ow preserves the symplectic structure of �; the Ja-
cobi equation transforms Lagrangian planes into Lagrangian ones. There-
fore one may consider the Hamiltonian 
ow as a 
ow on the Lagrangian
Grassmanian L(�): It is generated by the following time-dependent Hamil-
tonian system on L(�) :

_� =
1

2

�1� (�(�� �; x))j�

(see Section 2 for details).

De�nition 5.1 The Jacobi curve corresponding to the reduced second vari-

ation (5.7)-(5.8) is the trajectory � �! �� of the Jacobi equation on the

Lagrangian Grassmanian, with the initial condition �� j�=0 = �: 2

The following proposition, gives a formula for the index of the reduced
second variation, i.e. of the quadratic form (5.7)-(5.8). It is a corollary of
Theorem 1 in [1].

Proposition 5.1 Let � �! �� be the Jacobi curve corresponding to the

reduced second variation (5.7)-(5.8) along a corank 1 abnormal extremal

(û(�); q̂(�); 0;  ̂(�); T ) of the Lagrange problem (4.1)-(4.3). Then for any

subdivision �m+1 = 0 = �0 < �1 < � � � < �m = T of [0; T ]; such that all arcs

�j[�i;�i+1 ]; (i = 0; : : :m�1) are simple (see the De�nition 2.2), the negative

index of the reduced second variation (5.7)-(5.8) along the extremal equals

mX
i=0

ind�(��i ;��i+1
) + dim\�2[0;T ]�� � (n � 1): 2 (5.10)

Starting from the formula (5.10) we now compute negative index of the
second variation (5.5)-(5.6). To this end we use one more technical result
(see [1]).

Proposition 5.2 Assume, that a quadratic form Q(�; �) is de�ned on a

Hilbert space and is positive de�nite on a subspace of �nite codimension.

Let QN be the restriction of Q on a closed subspace N of the Hilbert space

and N?
Q be the Q-orthogonal complement to N : N?

Q = fyjB(x; y) =
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0; 8x 2 Ng; where B is corresponding to Q symmetric bilinear form (i.e.

Q(x) = B(x; x)). Then:

indQ = indQN + indQjN?
Q

+ dim(N \N?
Q )� dim(N \ kerQ):2 (5.11)

To apply the result in our case we de�ne the Hilbert space H as the set
of pairs (��; u(�)) meeting the condition (5.6), while the subspace N is the
set of pairs (0; u(�)) meeting the condition (5.8). Let Q be the quadratic
form (5.5). Evidently codimN = 1:

For index of the restriction QN we have formula (5.10). Let us compute
the other addends in the right-hand side of (5.11).

To this end let us characterize the space N?
Q : Let us de�ne �rstly the

constraints of (5.6) by the system of equations:

8� 2 � : �(�; f)�� +

Z T

0

�(�;�� )u(� )d� = 0; (5.12)

and (5.8) by:

8� 2 � :

Z T

0

�(�;�� )u(� )d� = 0: (5.13)

Then let us introduce a symmetric bilinear form B on the space (5.6)
which corresponds to the quadratic form (5.5). This is:

B(��1; u1(�); ��2; u2(�)) =

Z T

0


� (u1(� ); u2(� ))d�+

+

Z T

0

�(

Z �

0

��u1(�)d�;��u2(� ))d� +

Z T

0

�(�f��2;

Z T

0

��u1(� )d� ):

(5.14)

Assuming that ��2 = 0 and u2(�) satis�es (5.13) we obtain for any pair
(��; u(�)) 2 N?

Q an equation: for some � 2 �


�u(� ) + �(

Z �

0

��u1(�)d�;�� ) = ��(�;�� );

or

u(� ) = �
�1� �(�� ; � +

Z �

0

��u1(�)d�): (5.15)

Putting

y(� ) = � +

Z �

0

��u1(�)d�; (5.16)

and di�erentiating it w.r.t. � , we obtain

_y(� ) = �� �

�1
� �(�� ; y(� ));
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i.e. y(� ) satis�es the Jacobi equation (5.9).
Substituting (5.15) in (5.5) we derive, that

QjN?
Q

= �(

Z T

0

��u(� )d�; f�� + �) = �(y(T ) � �; f�� + �):

Since in virtue of (5.6) f��+�+
R T
0
��u(� )d� = f��+y(T ) 2 � and hence

is skew orthogonal to � 2 �; then

QjN?
Q

= �(y(T ); f ��): (5.17)

Let us consider the starting at � Lacobi curve � ! �� and take the
Lagrangian plane �f

T = �T\f
[+span f: De�ne for the triple (�T ;�;�

f
T ) of

Lagrangian planes the quadratic form � on ((�T +�f
T )\�)=(�\�T \�

f
T )

according to De�nition 2.1. Evidently indQjN?
Q

= ind� and according to

the same de�nition the modi�ed Maslov index of the triple of Lagrangian
planes equals ind � + 1

2
dimker �: Calculating

dimker � = dim(� \ �T ) + dim(�f

T \�) � 2 dim(� \ �T \ �f

T )

we come to the formula

indQjN?
Q

= ind�(�T ;�
f
T )

�
1

2
(dim(�T \�) + dim(�f

T \�)) + dim(�T \ �f

T \�): (5.18)

We now proceed with the other addends of (5.11). Note, that the in-
clusion (��; u(�)) 2 (N \ N?

Q ) implies the equation (5.15) and �� = 0:

This means that the elements (��; u(�)) 2 (N \ N?
Q ) correspond to the

solutions (5.16) of the Jacobi equation (5.9), which start and �nish in �:
These solutions form a space of dimension dim(� \ �T ): Note that the
mapping y(� ) �! u(�) may have a nontrivial kernel, consisting of constant
solutions of Jacobi equation. The dimension of this kernel is then equal to
dim\�2[0;T ]�� : Hence

dim(N \N?
Q ) = dim(� \ �T ) � dim\�2[0;T ]�� : (5.19)

In order to compute dim(N \kerQ) we should suppose (5.14) to vanish
for all pairs (��2; u2(�));meeting the condition (5.12). Then we obtain, that
u1(�) must satisfy the equation (5.15) and

�(� +

Z T

0

��u1(� )d�; f) = �(y(T ); f ) = 0:
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Together with the condition y(T ) = � +
R T
0
��u1(� )d� 2 � this implies

y(T ) 2 �\f [: Such solutions form the space of dimension dim(�T\�
f
T\�),

and

dim(N \ kerQ) = dim(�T \ �f
T \�)� dim(\�2[0;T ]�� \ f

[):

Since \�2[0;T ]��\f
[ consists of � 2 � that �(�;�� ) = 0 and �(�; f ) = 0

for all � 2 [0; T ]; we have

\�2[0;T ]�� \ f
[ � �[ \ f [ \\�2[0;T ](�� )

[ =

(� + spanffg+ spanf�� j � 2 [0; T ]g)[ = �[ = f0g;

and we obtain: dim(N \ kerQ) = dim(�T \ �f
T \�):

Summarizing all the computations we conclude that the di�erence be-
tween the indices of the second variation (4.18)-(4.19) and of the reduced
second variation (5.1)-(5.2) equals

ind�(�T ;�
f
T ) +

1

2
(dim(�T \�) � dim(�f

T \�)) � dim\�2[0;T ]�� :

This last formula together with Proposition 5.1 gives for the index of
an abnormal extremal the following expression

mX
i=0

ind�(��i ;��i+1
) + ind�(�T ;�

f
T )+

+
1

2
(dim(�T \�) � dim(�f

T \�))� (n� 1): (5.20)

Note that

1

2
dim(�T \�) =

n� 1

2
� ind�(�T ;�);

1

2
dim(�f

T \�) =
n� 1

2
� ind�(�

f
T ;�):

Since in Proposition 5.1 ��m = �T ;��m+1
= � then the last addend of the

sum
Pm

i=0 in (5.20) is ind�(�T ;�) and the formula (5.20) can be trans-
formed into

m�1X
i=0

ind�(��i ;��i+1
) + ind�(�T ;�

f
T ) + ind�(�

f
T ;�)� (n� 1): (5.21)

According to De�nition 2.3 this expression corresponds to the Maslov
index of some curve which we will call Jacobi curve corresponding to an ab-

normal extremal (û(�); q̂(�); 0;  ̂(�); T ) of the Lagrange problem (4.1)-(4.3).

26



LAGRANGE VARIATIONAL PROBLEMS

De�nition 5.2 The Jacobi curve corresponding to the abnormal extremal

(û(�); q̂(�); 0;  ̂(�); T ) is the curve � ! �a
� (� 2 [0; T ]) in the Lagrangian

Grassmanian such that �a
0 = �; �a

� coincides for � 2 [0; T ) with the start-

ing at � solution �� of the Jacobi equation (5.9) and jumps at � = T � 0

to �f

T = (�T )
Rf = �T \ f

[ + spanffg: 2

Now we are able to state

Theorem 5.3 (Index Theorem for Abnormal Extremals)

Let � ! �a
� be the Jacobi curve in the Lagrangian Grassmanian L(�);

which corresponds to the corank 1 abnormal extremal (û(�); q̂(�); 0;  ̂(�); T ):
Then for any subdivision �s+1 = 0 = �0 < �1 < � � � < �s = T of [0; T ] such
that all arcs �j[�i;�i+1]; (i = 0; : : :s� 1) are simple, the Morse index of the

abnormal extremal equals

sX
i=0

ind�(�
a
�i
;�a

�i+1
) � (n� 1): 2 (5.22)

In order to formulate the Nullity Theorem for an abnormal extremal
we have to investigate the kernel of the bilinear form (5.14) de�ned on the
subspace (5.6). If a pair (��1; u1(�)) belongs to kerB; then u1(�) must satisfy

the equation (5.15) and the condition � +
R T
0
��u(� )d� = y(T )[f : Taking

into account the condition y(T )+f �� 2 � we conclude that the dimension

of the space of these solutions equals dim(�f
T \ �) and the dimension of

the space of those (constant) solutions of (5.9), which correspond to zero

elements of kerQ; is dim(\�2[0;T ]�� \ f
[) = 0:

Hence
dimkerQ = dim(�f

T \�) = dim(�a
T \�):

Thus we obtain

Theorem 5.4 (Nullity Theorem for Abnormal Extremals) Let the

Jacobi curve � �! �a
� in the Lagrangian Grassmanian L(�); correspond

to the abnormal extremal (û(�); q̂(�); 0;  ̂(�); T ): Then the Nullity of the ab-

normal extremal, i.e. the dimension of the kernel of the second variation

(5.5)-(5.6), equals dim(�a
T \�): 2

What follows is a corollary of theorems 5.3 and 5.4.

Corollary 5.5 (Local Rigidity of Abnormal Extremals)

Let the Strong Legendre Condition hold along an abnormal extremal

(û(�); q̂(�); 0;  ̂(�); T ) whose restrictions (û(�)j[0;t]; q̂(�)j[0;t]; 0;  ̂(�)j[0;t]; t) on
[0; t] for t 2 (0; T ] all have corank 1. Then for any small enough �t > 0 the
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restriction (û(�)j[0;�t]; �t) is a weak minimizer for the Lagrange problem (4.1)-

(4.2) with endpoint condition q(�t) = q̂(�t): For some (depending on �t) � > 0
no one other admissible control from the ��neighborhood of û(�) in L1 is

able to steer the system (4.2) from q0 to q̂(�t) in any time t0 2 [�t��; �t+�]: 2

Proof: It is enough to prove that both the index and nullity along the
restriction vanish. In fact then the Strong Legendre Condition implies
positive de�niteness of the second variation along the restriction and we
can apply Theorem 4.3.

To compute the index of the restriction (û(�)j[0;t]; q̂(�)j[0;t]; 0;  ̂(�)j[0;t]; t)
let us consider the corresponding Jacobi curve of De�nition 5.2. Since
f 62 � then f 62 �a

� for any small enough � > 0 and therefore starting at

�f curve � ! �f
� where �f

� = �a
� \ f

[ + f is continuous on a su�ciently
small interval [0; t]: Then according to Lemma 2.2 there exist t > 0 and
a Lagrangian plane � such that for any � 2 [0; t] �a

� can be connected
with �f

� by a simple nondecreasing curve �� (s); 0 � s � 1 such that
�� (s)\�= 0; 8s 2 [0; 1]:Then the concatenation of the curve �aj[0;t] with
the corresponding curve �t(s) is also simple and evidently nondecreasing.

According to Proposition 5.1 and Theorem 5.3 the index of the (having

corank 1) restriction (û(�)j[0;t]; q̂(�)j[0;t]; 0;  ̂(�)j[0;t]; t) equals

ind�(�;�t) + ind�(�t;�
f
t ) + ind�(�

f
t ;�)� (n� 1):

According to Lemma 2.1 ind�(�;�t) + ind�(�t;�
f
t ) = ind�(�;�

f
t ) for all

small enough t > 0 and we obtain for the Morse index the expression:

ind�(�;�
f
t ) + ind�(�

f
t ;�)� (n� 1) =

= 2
1

2
(n� 1� dim(�f

t \�))� (n� 1) = � dim(�a
t \�) � 0:

Being nonnegative this Morse index must vanish, i.e. dim(�f
t \ �) = 0:

According to Theorem 5.4 the last dimension coincides with the nullity of
the restriction (û(�)j[0;t]; q̂(�)j[0;t]; 0;  ̂(�)j[0;t]; t) provided the restriction has
corank 1: 2

Let us consider a corank 1 abnormal extremal (û(�); q̂(�); 0;  ̂(�); T ) meet-
ing the Strong Legendre Condition. We would like to characterize the time
evolution of the attainable sets A�

t = F (t;U�) (here U� is a small �� neigh-
borhood of û(�) in L1):

Considering the restrictions (û(�)j[0;t]; q̂(�)j[0;t]; 0;  ̂(�)j[0;t]; t) of the ab-
normal extremal to subintervals [0; t] � [0; T ] let us put

i(t) = indF 00j(t;ûj[0;t])[ T ]; ir(t) = indF 00r j(t;ûj[0;t])[ T ]

for the indices of the second variation and the reduced second variation
along the restricted extremals. It is known, that i(t) and ir(t) are non-
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decreasing functions of t; ir(t) � i(t) � ir(t) + 1; and according to the
Corollary 5.5 both i(t) and ir(t) vanish for small t > 0:

Let us put

��r = infftjir(t) > 0g; �� = infftji(t) > 0g:

Obviously �� � ��r :
The points �� and ��r ; where the indices i(t) and ir(t) jump, will be

called correspondingly �rst conjugate point and �rst reduced conjugate
point for the abnormal extremal (û(�); q̂(�); 0;  ̂(�); T ) (compare with [9],
where the di�erence between these two points was pointed out).

If �� < ��r ; then the time evolution of the attainable sets A�
t looks like

Fig. 1 (compare with [9]).

r

q̂(0)
r

q̂(t1)
r

q̂(t2)
r

q̂(��)
r

q̂(t3)
r

q̂(t4)
r

q̂(��r )
r

q̂(t5)

Fig. 1

Let us assume now �� = ��r : It happens, for example, when f̂T (q
1) 62

spanfY 1
� (q

1)j� 2 [0; T ]g and the reduced second variation (5.1)-(5.2) coin-
cides with the second variation (4.18)-(4.19). As an illustrative example
one may consider the control system:

_x = 1� z; _y = u; _z = u2 � y2; x(0) = 0; y(0) = 0; z(0) = 0

driven by the control û(t) � 0. Constructing `abnormal' Hamiltonian:
H =  x(1 � z) +  yu +  z(u

2 � y2) and introducing the adjoint system
_ x = 0; _ y = 2y z; _ z =  x we establish easily that

û(t) = 0; x̂(t) = t; ŷ(t) = 0; ẑ(t) = 0;  ̂x(t) = 0;  ̂y(t) = 0;  ̂z(t) = 1

is an abnormal extremal for this system on any interval [0; T ]. To �nd
the conjugate point �� = ��r we write the Jacobi equation (5.9) for the
reduced second variation. It is one-degree time-dependent Hamiltonian
system, which in canonical coordinates (q; p) has form: _q = 1

2
(p�2tq); _p =

t(p � 2tq): The corresponding initial condition is q(0) = 0. One derives
from the Hamiltonian system the equation

::
q= �q: Starting at 0 solutions

of this equation are q(t) = A sin t: The conjugate point �� = ��r = � is the
�rst point where these solutions vanish.
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We draw the projections of the portraits of the attainable sets A�
t onto

xz plane. The evolution of A�
t with the growth of t di�ers from the one

shown in Fig. 1 and looks like Fig. 2.
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