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H1 Control of Nonlinear Systems with

Sampled Measurement�

Sadanori Suzukiy Alberto Isidoriy Tzhy-Jong Tarny

Abstract

This paper is a continuation of the paper on the H1 control of

nonlinear systems with sampled measurement output [9]. In this

paper, in addition to the results of nonlinear H1 control problem

with sampled measurement output which has been reported in [9],

we present results on the H1 control problem with sampled mea-

surement output for linear systems. The results for linear systems

can be obtained by specializing the methodology developed for non-

linear systems. Comparison with former work is also made for linear

systems.

1 Introduction

The H1 control problem has been actively studied in the last years. In
the state-space formulation, if the perfect continuous or sampled state is
accessible, the H1 control problem is easily solved in the framework of
di�erential game theory [2]. In the case where we can use only measurement
output, then theH1 control problem is more complicated. TheH1 control
problem with continuous-time measurement output for linear systems has
been solved by many researchers, and for nonlinear systems by van der
Schaft [6], by Isidori and Astol� [4], and by Ball, Helton andWalker [1]. The
H1 control problem of linear systems with sampled measurement output
was solved by Ba�sar and Bernhard [2] over �nite time horizon and by Sun,
Nagpal and Khargonekar [8] for �nite and in�nite time horizon.

Recently, we proposed a solution of the H1 control problem with sam-
pled measurement output for nonlinear systems [9]. We gave su�cient
conditions for the existence of a solution. To our best knowledge, [9] is
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the �rst paper on the nonlinear H1 control with sampled measurement
output.

In this paper, we review the results on the nonlinear H1 control prob-
lem with sampled measurement output given in [9], and present results
on linear H1 control problem with sampled measurement output. These
results can be obtained by applying the technique developed for nonlinear
systems.

2 Preliminaries

In the following discussions, we treat di�erential equations with jumps in
the form

_x = F (x); for t 6= kT; 8k 2 N (2.1)

x(kT+) = x(kT ) + xc (2.2)

for some xc with the same dimension of x. Here, we give a precise de�nition
of a solution of the di�erential equation (2.1) with jumps (2.2). Suppose
that x(kT ) is given, and that a solution of (2.1) for the initial condition
x(kT ) + xc exists on [kT; (k + 1)T ]. Let ~x(t) be this solution. Then the
solution of (2.1) with jumps (2.2) is the piecewise continuous function x(�)
de�ned by

x(t) = ~x(t) 8t 2 (kT; (k + 1)T ]:

Once x((k + 1)T ) is given as the �nal value of the solution of (2.1) on the
interval (kT; (k + 1)T ], the solution on the interval ((k + 1)T; (k + 2)T ] is
given in the same way, as long as the equation (2.1) has a solution on that
interval with the initial condition x((k + 1)T ) + xc.

As a speci�c case of a di�erential equation with jumps, we consider the
Riccati di�erential equation with jumps which is quite important in the
following discussion.

Consider the Riccati di�erential equation of the form

_X +XA+ATX +XRX +Q = 0; t 6= kT (2.3)

with jumps given by

X(kT+) = X(kT ) +Xjump; (2.4)

where Xjumps � 0. Then we have the following lemma.

Lemma: The Riccati di�erential equation (2.3) with jumps (2.4) has a

periodic solution with period T if and only if there exists a matrix X0 which

satis�es

X0(�11(T ) + �12(T )X0+) = �21(T ) + �22(T )X0+ ; (2.5)
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det(�11(t) + �12(t)X0+) 6= 0; t 2 (0; T ] (2.6)

where

X0+ = X0 +Xjump

and �
�11(t) �12(t)
�21(t) �22(t)

�
= exp

�
A R

�Q �AT

�
t:

Furthermore, if X0 is positive de�nite then X(t) is also positive de�nite for

all t.

Proof: It is easy to see that a solution X(t) of (2.3) exists on [0; T ] if and
only if (2.6) holds. If this is the case, then we have�

�11(t) �12(t)
�21(t) �22(t)

� �
I

X0+

�
=

�
I

X(t)

�
(�11(t) + �12(t)X0+):

From the second row block,

X(t) = (�21(t) + �22(t)X0+)(�11(t) + �12(t)X0+)
�1: (2.7)

Equating X(T ) = X(0), we can see that there is a periodic solution with
period T if and only if (2.5) holds. If the periodic solution X(t) has a prop-
erty that X0 = X(kT ) is positive de�nite, then it is easily seen from (2.4)
that X0+ = X(kT+) is also positive de�nite. Then positive de�niteness of
X(t) for t 2 [0; T ] follows from the fact that X(t) can be expressed as

X(t) = �T(t; T )X0+�(t; T ) +

Z T

t

�T(t; �)Q�(t; �)d�; (2.8)

where �(�; �) is the transition matrix associated with �(A+ 1
2
RX(t)), i.e.

@�

@t
(t; �) = ��(t; �)

�
A+

1

2
RX(t)

�
:

In fact, di�erentiating both sides of (2.8) with respect to t shows that X(t)
de�ned by (2.8) satis�es (2.3).

3 Nonlinear Results

We consider the nonlinear systems, described by equations of the form

_x = f(x) + g1(x)w + g2(x)u (3.1)

z = h1(x) + k12(x)u (3.2)

y(kT ) = h2(x(kT )) + d(kT ); k 2N (3.3)
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Here, x 2 R
n is the state of the plant, z 2 R

l1 is the regulated output,
y 2 R

l2 is the measurement output, w 2 R
m1 is the disturbance input,

u 2 R
m2 is the control input, and d 2 R

l2 is the measurement noise. T

is the sampling period of measurement. We assume that the mappings f ,
g1, g2, h1, and h2 are all smooth (i.e. C1) mappings, and that f(0) = 0,
h1(0) = 0, and h2(0) = 0. As seen in (3.3), the measurement is available
only at t = kT . Our goal is to design a dynamic feedback controller,
with internal state � 2 R

n, which locally asymptotically stabilizes the
equilibrium (x; �) = (0; 0) of the closed-loop system and is such that, for
every w(�) 2 L2 \ L

c
1 and d(�) 2 l2 \ lc1, the response z(�) from the initial

state (x; �) = (0; 0) is in L2 and satis�esR
1

0
kz(t)k2dtR

1

0
kw(t)k2dt+

P1

i=0 kd(iT )k
2
� 
2 (3.4)

where 
 is a prespeci�ed positive number. Here, c is chosen so that the
trajectory of the closed-loop system stays close enough to an equilibrium
point. This problem is referred to as the H1 control problem with sampled
measurement output. We assume the following:

(AN1) hT1 (x)k12(x) = 0, kT12(x)k12(x) = I , for all x

(AN2) ff; h1g is locally detectable at x = 0 [3], i.e. any bounded trajec-
tory of _x(t) = f(x(t)) satisfying h1(x(t)) = 0 for all t � 0 is such that
limt!1 x(t) = 0.

First, introduce the Hamilton-Jacobi-Isaacs inequality

Vxf(x) + hT1 (x)h1(x) +
1

4
Vx(

1


2
g1(x)g

T
1 (x)� g2(x)g

T
2 (x))V

T
x � 0: (3.5)

Assuming the existence of a (local) solution of this Hamilton-Jacobi-Isaacs
inequality is a standard starting point of the nonlinear H1 control. We
also introduce the Riccati di�erential equation with jumps

_Q+Q(A+
1


2
B1B

T
1 P ) + (A+

1


2
B1B

T
1 P )

TQ

+
1


2
QB1B

T
1 Q+ PB2B

T
2 P = ��1I; t 6= kT (3.6)

Q(kT+) = Q(kT ) + 
2CT
2 C2 � �2I (3.7)

in which �1 > 0; �2 > 0 are suitable parameters, and A = @f

@x

��
x=0

, B1 =

g1(0), B2 = g2(0), C2 =
@h2
@x

��
x=0

, P = 1
2
�
@2V
@x2

��
x=0

. By Lemma, this Riccati
equation with jumps (3.6), (3.7) has a periodic positive de�nite solution if
and only if there is a positive de�nite matrix Q0 satisfying

Q0(�11(T ) + �12(T )Q0+) = �21(T ) + �22(T )Q0+ ; (3.8)

4



H1 CONTROL OF NONLINEAR SYSTEMS

det(�11(t) + �12(t)Q0+) 6= 0;8 t 2 (0; T ] (3.9)

where Q0+ = Q0 + 
2CT
2 C2 � �2I , and�

�11(t) �12(t)
�21(t) �22(t)

�
= exp

�
A+ 1


2
B1B

T
1 P

1

2
B1B

T
1

�(PB2B
T
2 P + �1I) �(A+ 1


2
B1B

T
1 P )

T

�
t:

Theorem 1: Suppose that for some �1 > 0 a positive de�nite solution

V (x) of the Hamilton-Jacobi-Isaacs inequality (3.5) exists in B�1 . Suppose

also that there exists a Q0 > 0 satisfying the two conditions (3.8), (3.9)

and that �2 is small. Under these conditions, the controller

_� = f(�) + g1(�)�1(�) + g2(�)�2(�); t 6= kT (3.10)

�(kT+) = �(kT ) + 
2Q�10+C
T
2 (y(kT )� h2(�(kT ))) (3.11)

u = �2(�); (3.12)

in which �1(x) =
1

2
2
gT1 (x)V

T
x ; �2(x) = �

1
2
gT2 (x)V

T
x solves the H1 con-

trol problem with sampled observation of measurement output.

Proof: It follows from (3.5) that for any z and w,

dV

dt
+ kzk2 � 
2kwk2 � ku� �2(x)k

2
� 
2kw � �1(x)k

2 (3.13)

De�ne xe = [xT; �T]T, and for t 6= kT de�ne the extended system

_xe = fe(xe) + ge(xe)r

v = he(xe) = �2(�)� �2(x)

where r = w � �1(x) and

fe(xe) =

�
f(x) + g1(x)�1(x) + g2(x)�2(�)
f(�) + g1(�)�1(�) + g2(�)�2(�)

�
; ge(xe) =

�
g1(x)
0

�
:

Let e = x � � and W (t; xe) = eTQ(t)e. Obviously, W (t; xe) is a positive
semide�nite function, since Q(t) > 0. De�ne, for t 6= kT , H(t; e; x) as
follows.

H(t; e; x) =Wt +Wxef
e(xe) + heT(xe)he(xe)

+
1

4
2
Wxeg

e(xe)geT(xe)WT
xe : (3.14)

Then, using (3.6) we can show that

H(t; e; x) = eTM(t; e; x)e
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for some matrix M(t; e; x) satisfying M(t; 0; x) < 0. So, there exists a
�2 > 0 such that H(t; e; x) � 0 if (e; x) 2 B�2 . Thus, since W (t; xe) is a
solution to the Hamilton-Jacobi-Isaacs inequality H(t; e; x) � 0, for t 6= kT

we have
dW

dt
+ kvk2 � 
2krk2 � 0: (3.15)

From (3.13) and (3.15) we have

dS

dt
+ kzk2 � 
2kwk2 � 0 (3.16)

for t 6= kT , where S(t) = V (x(t)) +W (t; xe(t)). Integrate both sides of
(3.16) from kT+ to (k + 1)T .

S((k+1)T )�S(kT+) +

Z (k+1)T

kT+

kzk2dt� 
2
Z (k+1)T

kT+

kwk2dt � 0: (3.17)

Next consider the behavior of W (t; xe) at t = kT . Here, for simplicity
of notations, we writeW (t) forW (t; xe(t)). It is easy to see that from (3.7)
and (3.11) we have

W (kT+)�W (kT ) =

�
2(C2e(kT ) + d(kT ))T(I � 
2C2Q
�1
0+
CT
2 )(C2e(kT ) + d(kT ))

+
2kd(kT )k2 � �2ke(kT )k
2o3(x(kT ); �(kT )) (3.18)

where o3(x(kT ); �(kT )) consists of terms of order higher than or equal to
3 in x(kT ) and �(kT ) and satis�es

o3(x(kT ); �(kT ))
��
e(kT )=0

= 0:

When �2 = 0,

I � 
2C2Q
�1
0+
CT
2 = (I + 
2C2Q

�1
0 CT

2 )
�1 > 0:

So, for �2 > 0 small enough, we still have

I � 
2C2Q
�1
0+
CT
2 > 0:

Hence, from (3.18),

W (kT+)�W (kT )� 
2kd(kT )k2 � ��2ke(kT )k
2 + o3(x(kT ); �(kT ))

and we can say that there is a �3 > 0 such that

W (kT+)�W (kT )� 
2kd(kT )k2 � 0 (3.19)
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if (e(kT ); x(kT )) 2 B�3 .
From (3.17) and (3.19) we have

S((k + 1)T )� S(kT ) +

Z (k+1)T

kT

kzk2dt

� 
2

 Z (k+1)T

kT

kwk2dt+ kd(kT )k2

!
(3.20)

since V (x(kT+)) = V (x(kT )). Summing both sides of (3.20) from 0 to K,
we have

S(KT )�S(0)+

Z KT

0

kzk2dt � 
2

 Z KT

0

kwk2dt+

K�1X
i=0

kd(iT )k2

!
(3.21)

for any integerK. Now recall that S(0) = 0, because x(0) = 0 and �(0) = 0,
and that S(KT ) � 0. If the disturbances w(�) and d(�) are such that xe(�)
is always in B�, where � = minf�1; �2; �3g, we can conclude from the
previous inequality that w 2 L2 and d 2 l2 implies z 2 L2 and, moreover,
(3.4) holds.

To analyze (asymptotic) stability, set w = 0 and d = 0. Then the
closed-loop system becomes

_x = f(x) + g2(x)�2(�)

_� = f(�) + g1(�)�1(�) + g2(�)�2(�); t 6= kT (3.22)

�(kT+) = �(kT ) + 
2Q�10+C
T
2 (h2(x(kT ))� h2(�(kT ))):

By de�nition of f , �1, �2, h1 and h2, the origin (x; �) = (0; 0) is an
equilibrium point of the closed-loop system.

The function S(t; x) = V (x)+W (t; xe) is positive de�nite function and
S(t) = V (x(t)) + W (t; xe(t)) satis�es _S(t) � �kzk2 � 0; t 6= kT and
S(kT+) � S(kT ) along the trajectories of (3.22). Standard arguments -
with minor modi�cations due to the presence of jumps in xe(t) - show that
S(t; x) is a Lyapunov function of the closed-loop system (3.22), i.e. the
closed-loop system (3.22) is stable at the origin.

To prove asymptotic stability of the closed-loop system, we only have
to show that the closed-loop system has the origin as an attractor. Note
that, by the de�nition of �3, S(kT+) = S(kT ) if and only if e(kT ) =
0. _S(t) � 0 for t 6= kT implies S((k + 1)T ) � S(kT+), and therefore
S((k + 1)T ) � S(kT ) for any k 2 N . Thus, the sequence fS(kT )g is
monotonically nonincreasing and bounded from below by 0 ( S(t) � 0 ).
Hence, limk!1 S(kT ) exists. Let limk!1 S(kT ) = c0.

Choose any xe(0) in B� and let 
xe(0) denote the !-limit set of the
trajectory starting at xe(0). 
xe(0) is nonempty and invariant [7] and, by

7
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de�nition, S(t; xe) = c0 on 
xe(0). Thus, for any initial state in 
xe(0), we

have _S(t) = 0 and S(kT+) = S(kT ) there. _S(t) = 0 implies h1(x(t)) = 0
and �2(�(t)) = 0. Furthermore, S(kT+) = S(kT ) implies e(kT ) = 0, i.e.
x(kT ) = �(kT ) for any k 2 N and this, in turn, implies x(kT+) = �(kT+)
(see jump condition in (3.22) Thus, the closed-loop system restricted to

xe(0) is given by

_x = f(x)

_� = f(�) + g1(�)�1(�); 8t � 0:

Note that the closed-loop system restricted on 
 has no jumps in the
state. x(t) being a trajectory of _x = f(x) which satis�es h1(x(t)) = 0,
it follows from local detectability (AN2) that limt!1 x(t) = 0, in par-
ticular limk!1 x(kT ) = 0. This, together with x(kT ) = �(kT ) implies
limk!1 S(kT ) = 0. Therefore, c0 is necessarily zero and therefore, from
positive de�niteness of S(t; xe) we conclude that xe(t) tends to 0.

Remark: The controller state � is regarded as an estimation of the plant
state x, and �1(�) and �2(�) are interpreted as estimations of the worst
disturbance and the optimal control input, respectively. (3.10) is a copy of
the plant with these estimations as its input. This is quite understandable,
because if � coincides x then it is well-known that the control input (3.12)
is a solution of the H1 control with full state information.

At sampling instants, information of the plant is available through the
sampled measurement output, and the estimation � is corrected using this
information. Corrections only at the sampling instants causes jumps in �,
and Q(t) also must have jumps to compensate these jumps in �.

In the stability analysis, the scalar function S(t) plays the roll of a
Lyapunov function, although it has jumps at the sampling instants.

4 Linear Results

In this section, we consider the linear plant given by

_x = Ax +B1w +B2u

z = C1x+D12u

y(kT ) = C2x(kT ) + d(kT ):
(4.1)

x, w, u, z, y, and d are the same as those of nonlinear plant and the matrices
A, B1, B2, C1, C2, and D12 are supposed to have compatible dimensions.
As in the nonlinear case, we assume that

(AL1) CT
1 D12 = 0, DT

12D12 = I

(AL2) (C1; A) is detectable.
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The goal is to design a controller which internally stabilizes the closed-loop
system and renders R

1

0
kz(t)k2dtR

1

0
kw(t)k2dt+

P1

i=0 kd(iT )k
2
< 
2 (4.2)

for any w 2 L2 and any d 2 l2. Note that we have strict inequality in (4.2).
In the case of linear systems, we have su�cient conditions as follows.

Theorem 2: The H1 control problem of linear systems with sampled mea-

surement output can be solved if the algebraic Riccati equation

PLA+ATPL + PL

�
1


2
B1B

T
1 �B2B

T
2

�
PL + CT

1 C1 = 0 (4.3)

has a positive semide�nite solution P such that

�

�
A+

1


2
B1B

T
1 PL �B2B

T
2 PL

�
� C

�;

and there is a positive de�nite matrix U0 satisfying

U0(�11(T ) + �12(T )U0+) = �21(T ) + �22(T )U0+ (4.4)

det(�11(t) + �12(t)U0+) 6= 0;8t 2 [0; T ] (4.5)

where U0+ = U0 + 
2CT
2 C2, and�

�11(t) �12(t)
�21(t) �22(t)

�
= exp

�
A+ 1


2
B1B

T
1 PL

1

2
B1B

T
1

�PLB2B
T
2 PL �(A+ 1


2
B1B

T
1 PL)

T

�
t:

If these conditions are satis�ed, then the controller

_� =

�
A+

1


2
B1B

T
1 PL �B2B

T
2 PL

�
�; t 6= kT (4.6)

�(kT+) = �(kT ) + 
2U�10+
CT
2 (y(kT )� C2�(kT )) (4.7)

u = �BT
2 PL� (4.8)

solves the problem of H1 control with sampled measurement output.

Proof: Let VL(x) = xTPlx, WL(t; x
e) = eTU(t)e, and SL(t; x

e) = VL(x)+
WL(t; x

e). Then a similar discussion as in the proof of Theorem 1 shows
that the inequality (4.2) holds.

For stability analysis, set w = 0 and d = 0. Then we have

_SL(t) = �kC1xk
2
� kuk2 � 0; t 6= kT (4.9)

9
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SL(kT+)� SL(kT ) = �
2eT(kT )CT
2 (I + C2U

�1(kT )CT
2 )
�1C2e(kT )

� 0: (4.10)

From (4.9) and (4.10) it can be seen that along the trajectory of the closed-
loop system SL is monotonically nonincreasing, and by its de�nition SL is
bounded from below by 0. Therefore SL has a limit, which might depend
on the initial state, if we take t! 1. Let this limit be c0 for some initial
state (x0; �0). Boundedness of SL and positive de�niteness of U imply that
x� � is also bounded. From (4.1) and (4.8), we have

_x = (A�B2B
T
2 PL)x+B2B

T
2 PL(x� �):

The basic results of H1 control problem shows that all of the eigenvalues
of A�B2B

T
2 PL is in the left half plane [5]. If x� � is regarded as the input

of this system, then we can conclude that x is bounded, and so is �.
Since the trajectory of the closed-loop system is bounded, its !-limit

set exists, is nonempty and invariant. Suppose the initial state is on the
!-limit set, then whole the trajectory is on the !-limit set and SL(t) = c0.
Therefore we have

_SL(t) = 0; SL(kT+)� SL(kT ) = 0:

From (4.9) and (4.10), on the !-limit set,

C1x = 0; u = 0;

C2(x(kT )� �(kT )) = 0:

So, the trajectory restricted on the !-limit set is given as the solution of

_x = Ax

_� =

�
A+

1


2
B1B

T
1 PL

�
�; 8t � 0:

Detectability of (C1; A) implies that

lim
t!1

x(t) = 0:

Then
lim
t!1

SL(t) = lim
t!1

�T(t)Q(t)�(t) = c0:

Q(t) has jumps and �(t) does not. So, the only possibility for �TQ� to have
a limit is that

lim
t!1

�(t) = 0; and c0 = 0:

Thus, on the !-limit set the trajectory converges to the origin. Therefore
the closed-loop system is attractive at the origin. In the case of linear
systems, attractivity implies asymptotic stability.

Remark: It can be shown that change of variable ~U = 
2U�1 yields the
essentially equivalent equations of the controller given in [8].
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5 Conclusions

In this paper, we reviewed a new approach to solve the H1 control problem
of nonlinear systems with sampled measurement output [8]. The (su�cient)
conditions for existence of such a solution are expressed in terms of the
existence of a positive de�nite solution of the standard Hamilton-Jacobi-
Isaacs inequality and by the existence of a periodic positive de�nite solution
of a Riccati di�erential equation with jumps. We also showed that if we
apply the method developed for the nonlinear H1 control problem with
sampled measurement output to linear systems, then we have su�cient
conditions for the existence of a solution. The controller thus obtained for
linear systems is equivalent to the controller given in [8].
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