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Abstract

This paper considers minimax problems for estimating a function

of an unobservable variable from the measurement of another one sta-

tistically connected with the �rst. It is supposed that the statistically

uncertain parameter presenting in the joint distribution may depend

on the realizations of the above variables. This supposition extends

the range of the uncertain parameter and leads to estimates that are

simply realizable particularly in multistage and dynamical systems.

The case when the parameter depends only on the observable vari-

able is discussed separately. The proposed schemes are applied to

the �ltering of statistically uncertain Markov sequences and to the

investigation of discrete and continuous time Kalman �ltering with

uncertain parameters.
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1 Introduction

In many problems of statistics, �ltering, and control [1-5] it is necessary to
estimate some function h(x) of the unobservable variable x on the basis of
observations of another value y. In this connection, the joint distribution
P�(dx; dy) of the random variables x and y may depend on an unknown but
bounded parameter � 2 �. One possible approach [6-10] to the solution
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B.I. ANAN'EV

of the problem consists in the choice of a certain class � of estimates
�(y), for example, those linear in y or nonlinear but complying with some
conditions of measurability and integrability, and the determination of an
optimal minimax estimate:

sup
�

E�kh(x)� �(y)k2 ! min
�(�)

: (1.1)

Under certain conditions of regularity the optimal minimax solution
to the problem exists and may be constructed [8]. The method of the
solution includes the randomization of the set �, the conversion of (1.1)
to a supremum over all probability measures on �, and the application
of various minimax theorems. The above approach when applied to the
dynamical systems meets considerable di�culties connected with increasing
dimension of the de�ning correlations. The latter is typical not only for
the nonlinear case but also for the linear one when only linear estimates
are used [9].

There are other approaches to estimation under conditions of statistical
uncertaity. In paper [11] a recurrent procedure of estimation has been
constructed. Paper [12] deals with stochastic approximation procedures
for the guaranteed �ltering scheme. We also refer to paper [13] as well.

In problem (1.1) the parameter � is in no way connected with the re-
alizations of random variables x and y. It stays constant (but unknown)
while the random experiment is repeated to obtain values x and y. This
paper o�ers some statements of the problem of minimax estimation other
than (1.1) when the parameter � is formed on the basis of realizations of
x; y or only of y. These statements expand the possibilities of the parame-
ter � and they are more rough with respect to the statistician who selects
the estimate �(y). However these new problems turn out to be more conve-
nient when applied to estimating the states and parameters of dynamical
systems. This assertion is justi�ed in the present work by examples of
�ltering of Markov sequences and by the investigation of extending the
Kalman-Bucy scheme to uncertain parameters.

The importance of minimax estimation methods can be motivated by
the fact that in many practical engineering problems the detailed informa-
tion on the dynamics of the process and its statistics turns out to be un-
available [14 ,16]. The approach presented in this paper assures numerical
robustness for respective approximation schemes. Other results concerned
with robustness of estimation can be found in paper [15].

2 The One-stage Minimax Estimation Problems

Consider a static situation. Let X;Y be separable metrizable spaces, �
be a Polish space. These may be interpreted as the state, measurement,
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STATISTICALLY UNCERTAIN SYSTEMS

and parameter spaces respectively. In the spaces X and Y , Borel �-�nite
measures �(dx) and �(dx) are given. The joint distribution of variables x
and y, i.e. Borelian probability measure P�(dx; dy) depending on uncertain
parameter � 2 �, is supposed to be absolutely continuous with respect to
the product measure ���. According to the Radon-Nikodim theorem, one
has the formula

P�(dx; dy) = p(�; x; y)�(dx)�(dy): (2.1)

The non-negative function p(�; x; y) is assumed as satisfying one of the
following assumptions:

(i) p(�; x; y) is continuous in � for every �xed x; y, Borelian in x; y for
every �xed �, and bounded from above, i.e. it is a Caratheodory type
function;

(ii) p(�; x; y) is upper semi-continuous in �; x; y, bounded from above,
and the set � is compact.

Further on the symbol � stands for the set of all Borelian mappings

 : XY ! �, where XY is the Cartesian product of the respective spaces.
The word \estimate" will be used for any Borelian mapping � : Y ! R

d,
where d is a �xed integer. Consider the functional

J(f) = sup

2�

Z
XY

kf(x; yk2p(
; x; y)�(dx)�(dy) (2.2)

for every Borelian function f : XY ! R
d. From now on, symbol k �k is the

Euclidean norm in R
d. The functional (2.2) will take �nite non-negative

values or +1 and is correctly de�ned for every f in view of the measur-
ability of the functional composition [17, Theorem 6.1]. Let us formulate
the following:

Problem A: Find an estimate �0 which minimizes the deviation between
a function h(x) and the estimate according to functional (2.2), i.e.

J(h� �
0) = min

�(�)
J(h� �):

It is rather evident that functional J(h��) is not �nite for all estimates
�. Therefore, we introduce

De�nition 2.1: An estimate � is said to be admissible for Problem A if

J(h� �) <1 .

The set of all admissible estimates will be denoted by �. In order to
ensure the non-emptines of set �, assume

Condition 2.1: J(h) <1 .

Under Condition 2.1 we have 0 2 �. The following assertion gives a
direct characteristic of the set �.
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Lemma 2.1: Under Condition 2.1 the estimate � is admissible if and only

if J(�) <1.

Proof: If � 2 � then J(�) = J(�� h+h) � 2(J(�� h) + J(h)). This fact
follows from the elementary inequality kx + yk2 � 2(kxk2 + kyk2). The
last inequality also implies the inverse statement. Q.E.D.

Furthermore, it follows from Lemma 2.1 that the set � is a linear space.

Lemma 2.2: Let the Borelian mapping f : XY ! R
d satisfy J(f) < 1.

Then we have

J(f) =

Z
kf(x; y)k2p(x; y)�(dx)�(dy); (2.3)

where

p(x; y) = sup
�2�

p(�; x; y): (2.4)

Proof: First note that function (2.4) is Borelian in x; y due to either
the continuity of p(�; x; y) in � and the separability of the space � or the
semi-continuity of that function [18]. If condition (i) holds, consider the
set-valued mapping

T�(x; y) = f� : p(�; x; y) > (1� �)p(x; y)g; � > 0; (2.5)

when p(x; y) > 0. If p(x; y) = 0, we set T�(x; y) = �. According to [17,
Theorem 6.2], the mapping (2.5) is Borelian in x; y and hence T �(x; y) (clo-
sure in �) is weakly measurable. Therefore, there exists a Borelian selector
��(x; y) 2 T �(x; y) [17, Theorem 5.1] for which we have p(��(x; y); x; y) �
(1 � �)p(x; y). As � is arbitrary, it follows from this that inequality (2.3)
is true. If condition (ii) holds then there exists a Borelian function �(x; y)
which delivers the maximum in (2.4) [18, Lemma 7.20]. Q.E.D.

Combining the assertions of lemmas 2.1 and 2.2, one may state that

� = L
d
2(Y;By; Q); (2.6)

where By is Borelian �-algebra in Y . Q is de�ned by

Q(dy) = q(y)�(dy); q(y) =

Z
p(x; y)�(dx): (2.7)

In other words, under Condition 2.1 the set of admissible estimates for
Problem A represents the Hilbert space of square integrable Borelian map-
pings with respect to the measure Q de�ned by (2.7). Admissible estimates
�1; �2 which di�er on the set of Q-measure zero may be considered identical
since J(h� �1) = J(h� �2). Generally, the function q(y) in (2.7) may not
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be �-a.e. �nite, and measure Q is not bound to be �-�nite on Y . However,
the latter is �-�nite on the set ~Y = fy : q(y) <1g, and also any admissible
estimate �(y) = 0 on the set Y n ~Y (�-a.e.) by virtue of equality (2.3). A
solution to Problem A may be formulated in the following way.

Theorem 2.1 Under condition (2.2), there exists an optimal estimate �0

for Problem A. It is (mod-Q)-unique and de�ned by the equality

�
0(y) =

Z
h(x)p(x; y)�(dx)=q(y); (2.8)

where function q(y) is given by (2.7).

The proof of this theorem arises from the convexity of the functional
J(h��) and its Frechet di�erentiability [19]. As a property of the estimate
(2.8), note the inequality

J(�0) < J(h) (2.9)

which holds if h(x) 6= const. That can be directly derived with the help of
the Cauchy-Schwarz inequality.

If parameter � is known precisely and the set � consists of one point,
then the estimate (2.8) is the well-known Bayesian that coincides with
the conditional expectation of the random value h(x) with respect to y.
When using the terminology of game theory, it is possible to say that in
Problem A the �rst player or statistician when choosing his estimate �(y)
is discriminated because the second player chooses his strategy � = 
(x; y)
on the basis of the realizations of both y and x. To equalize the chances
we restrict the possibilities of the second player by strategies � = 
(y).
Namely, consider the set �1 � � of all Borelian mappings 
 : Y ! �.
Instead of (2.2) the functional

J1(f) = sup

2�1

Z
XY

kf(x; y)k2p(
; x; y)�(dx)�(dy) (2.10)

will be used. We have J1(f) � J(f) for all f .
In what follows one has to introduce an additional

Condition 2.2: The function p(x; y) given by (2.4) is integrable with
respect to the measure �� �.

This condition is necessary for the correctness of the passage to the
limit under the integral sign. For functional (2.10) consider the following:

Problem B: One has to �nd an estimate �0 which minimizes the deviation
according to functional (2.10), i.e.

J1(h� �0) = min
�(�)

J1(h� �):
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A wider than � class of admissible estimates is introduced as follows:

De�nition 2.2: An estimate � is said to be admissible for Problem B if

J1(h� �) <1 .

The set of all admissible estimates for Problem B will be denoted by
�1. Under Condition 2.1 this class is non-void by virtue of inclusion 0 2
� � �1. The next lemma is analogous to 2.1.

Lemma 2.3: Under conditions 2.1 and 2.2 the estimate � is admissible

for the Problem B (� 2 �1) if and only if J1(�) <1.

This lemma implies that set �1 in just the same way as � is a linear
space. To clarify its structure we prove

Lemma 2.4: Let conditions 2.1 and 2.2 hold and estimate � be admissible

for Problem B. Then

J1(h� �) =

Z
j(h� �(y); y)�(dy); (2.11)

j(h� �; y) = sup
�

Z
kh(x)� �k2p(�; x; y)�(dx): (2.12)

Proof: The integrand in (2.12) is dominated (�-a.e.) by the function
2(kh(x)k2+ k�k2)� p(x; y) that is integrable with respect to measure �(dx)
by virtue of suppositions. By Lebesgue's convergence theorem the integral
(2.12) represents a continuous in � function if condition (i) holds. Hence
function j(h��(y); y) is Borelian and �-a.e. �nite. Consider the set-valued
mapping

T�(y) = f� :

Z
kh(x)� �(y)k2p(�; x; y)�(dx) > (1� �)j(h� �(y); y)g:

Continuing the arguments as in Lemma 2.2, we complete the proof. If
condition (ii) holds then by [18, Proposition 7.31] one may assert that the
integral in (2.12) represents an upper semi-continuous in t; y and � function.
Further, the same reasoning as in Lemma 2.2 leads us to the aim. Q.E.D.

Corollary 2.1: Under the conditions of Lemma 2.4 we have

J1(�) =

Z
k�(y)k2q1(y)�(dy); (2.13)

q1(y) = sup
�

Z
p(�; x; y)�(dx): (2.14)

In order to prove this it is su�cient to set h(x) = 0 in (2.11), (2.12). It
follows from Lemmas 2.3 and 2.4 and Corollary 2.1 that

�1 = L
d
2(Y;By; Q1); (2.15)
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where the measure
Q1(dy) = q1(y)�(dy) (2.16)

is completely �nite. The admissible estimates �1; �2 which di�er on a set
of Q1-measure zero may be identi�ed since J1(h� �1) = J1(h� �2).

Let us pass to the solution of Problem B.

Theorem 2.2 Let conditions 2.1 and 2.2 be ful�lled. Then the estimate

�0(y) solves Problem B if and only if the equality

j(h� �0(y); y) = min
�2Rd

j(h� �; y) (2.17)

holds �-a.e. This estimate �0(y) exists.

Proof: The equality (2.12) may be written out in more detail as

j(h� �; y) = sup
�

fa(�; y)� 2�0 b(�; y) + k�k2c(�; y)g; (2.18)

where symbol ' means the transposition, and functions

a(�; y) =

Z
kh(x)k2p(�; x; y)�(dx);

b(�; y) =

Z
h(x)p(�; x; y)�(dx); (2.19)

c(�; y) =

Z
p(�; x; y)�(dx);

are �-a.e. �nite and continuous in � by virtue of the assumptions of the
theorem if (i) holds. Under assumption (ii) the functions (2.19) are up-
per semi-continuous in �; y [18, Proposition 7.33]. Furthermore, these are
bounded in � for every y (�-a.e). Therefore, the function j(h��; y) is �-a.e.
continuous in �, and minimum in (2.17) will be a Borelian function in y.
By the implicit function theorem [17, Theorem 7.2] there exists a Borelian
function �0(y) satisfying the equality (2.17) �-a.e. It is clear that this func-
tion solves Problem B. Conversely, if �0(y) is a solution to Problem B, then
in view of (2.11) and the elementary properties of the Lebesgue integral
the equality (2.17) should be ful�lled. Q.E.D.

Using equality (2.17), one may give a more exact characteristic of the
optimal solution to Problem B. We introduce the set (Borelian in y)

A(y) = fa(�; y); b(�; y); c(�; y) : � 2 �g � R
d+2

: (2.20)

The set (2.20) is bounded for y 2 Y (�-a.e.). Therefore, the closure A(y)
will be compact �-a.e. Applying the minimax theorem from [22], the fol-
lowing proposition is derived.

7
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Theorem 2.3 Under the assumptions of Theorem 2.2 the estimate �0(y)
solves Problem B if and only if

�0(y) = (

d+1X
i=1

�
0
i b

0
i )=(

d+1X
i=1

�
0
i c

0
i ); (2.21)

where the coe�cients �0i > 0,
Pd+1

i=1 �
0
i = 1 are de�ned by the probability

measure

�0 =

d+1X
i=1

�
0
i �i (�i �Dirac measure) (2.22)

on the compact set A(y). The pair �0; �0(y) forms a saddle point for the

minimax problem of minimization in � of expression (2.18).

It should be noted that unit Dirac measures �i on A(y) together with
coe�cients �0i are de�ned from the solution to the extremal problem

d+1X
i=1

�iai � k

d+1X
i=1

�ibik
2
=(

d+1X
i=1

�ici)! max
�

: (2.23)

By the implicit function theorem [17, Theorem 7.1] the coe�cients �0i ; a
0
i ;

b
0
i ; c

0
i of the extremal measure (2.22) may be chosen Borelian in y.
In the further sections, we consider some applications of the above re-

sults for the one-stage problems to the �ltering of dynamical processes.

3 Minimax Filtering of Markov Sequences in Metric

Spaces

Let the spaces X;Y and the measures �(dx); �(dy) be the same as in the
previous section. Given in XY is a Markov sequence with transient prob-
abilities

P�k (dxk ; dyk j xk�1; yk�1) = pk(�k; xk; yk j xk�1; yk�1)�(dxk)�(dyk);

k = 1; 2; : : : ; P�0(dx0; dy0) = p0(�0; x0; y0)�(dx0)�(dy0): (3.1)

In equalities (3.1) the functions are supposed to be complying with condi-
tions of type (i) or (ii). The spaces �k are assumed to be Polish, and with
pk semi-continuous these spaces are compact. Further we use the notations

y
k = (y0; : : : ; yk); �

k = (�0; : : : ; �k) (3.2)

for the sequences of measurements and parameters up to the number k.
For every discrete instant k one has to estimate the function h(xk).
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Consider a problem of type A:

sup

k

Z
XkY k

kh(xk)� �(yk)k2pk(�k; xk; yk j xk�1; yk�1)�(dxk)�(dyk)

: : : p0(�0; x0; y0)�(dx0)�(dy0)! min
�(�)

: (3.3)

In order to achive the maximal result for the second player it is su�cient
to use strategies �i = 
i(xi; yi; xi�1; yi�1) for all i = 0; 1; : : : ; k. Let us
introduce the functions

qk(xk ; yk; xk�1; yk�1) = sup
�k

pk(�k; xk; yk j xk�1; yk�1);

rk(x
k
; y

k) = qk(xk; yk; xk�1; yk�1) � � � q0(x0; y0); (3.4)

and measures

�
k(dxk) = �(dxk) � � ��(dx0); �

k(dyk) = �(dyk) � � � �(dy0): (3.5)

Then due to the results of the previous section, the function

�
0(yk) =

Z
h(xk)rk(x

k
; y

k)�k(dxk)=

Z
rk(x

k
; y

k)�k(dxk) (3.6)

will serve as an optimal estimate ifZ
kh(xk)k

2
rk(x

k
; y

k)�k(dxk)�k(dyk) <1 (3.7)

for all k � 0.
In formula (3.6) the integration is carried out with respect to some

conditional probability measure posessing a density concerned �(dxk). This
density may be given recursively. In fact, we set

q0(x0 j y
0) = q0(x0; y0)=

Z
q0(x0; y0)�(dx0):

Putting in (3.6) k = 1 and dividing the numerator and the denominator
by the denominator of the last equality, we have

q1(x1 j y
1) =

Z
q1(x1; y1; x0; y0)q0(x0 j y

0)�(dx0)=Z Z
q1(x1; y1; x0; y0)q0(x0 j y

0)�(dx0)�(dx1):

Continuing the process, one can de�ne the densities for all k > 1

qk(xk j y
k) =

Z
qk(xk ; yk; xk�1; yk�1)qk�1(xk�1 j y

k�1)�(dxk�1)=Z Z
qk(xk; yk; xk�1; yk�1)qk�1(xk�1 j y

k�1)�(dxk�1)�(dxk): (3.8)
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By using densities (3.8), the equality (3.6) may be rewritten as

�
0(yk) =

Z
h(xk)qk(xk j y

k)�(dxk): (3.9)

Summarizing the reasonings, we come to the conclusion.

Theorem 3.1 Let condition (3.7) be ful�lled for all k = 0; 1; : : :. Then

the optimal estimate in problem (3.3) is de�ned by formula (3.9) where the

conditional densities are determined according to (3.8).

A problem of type B will be considered below for the linear-Gaussian
case.

4 The Discrete-time Kalman Filter with Uncertain Val-

ues of the Moments of the Disturbances

Consider a multi-stage system

xk = Akxk�1 + vk + �k; x�1 = 0;

yk = Ckxk + wk + �k; (4.1)

where xk 2 R
n
; yk 2 R

m; �k and �k are independent sequences of Gaussian
\white noises" with zero means and covariance matrices

cov(�k; �k) = Qk; cov(�k ; �k) = Rk (4.2)

which, along with vectors vk; wk, are supposed to be uncertain. Assume
that the uncertain values belong to compact sets. Minimax �ltering prob-
lems for system (4.1) have been investigated in many papers [8-11,13].
However in this work, we will apply the approaches stated above.

If a problem of type A is formulated for system (4.1), then our reasoning
corresponds to the previous section. Here the transient densities from (3.1)
with respect to Lebesgue measures have the form

pk(�k; xk; yk j xk�1; yk�1) = Nn(xk �Akxk�1 � vk;Qk)

�Nm(yk � wk � Ckxk ;Rk);

k = 0; 1; : : : ; �k = (vk ; wk; Rk; Qk); (4.3)

where Nn(x;Q) is the density of a Gaussian distribution in R
n with zero

mean and covariance matrix Q. In general, this density is not continuous
in x;Q, but it will be upper semi-continuous. Note that recursive de�ned
densities (3.8) made of (4.3) will not be Gaussian yet.

10
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Now let us consider a problem of type B for system (4.1) in more detail.
Here for stage k the functions (2.19) are taken to be as follows:

a(�k; yk) =

Z
kxkk

2
p(xk j y

k)dxkp(y
k);

b(�k; yk) =

Z
xkp(xk j y

k)dxkp(y
k); (4.4)

c(�k; yk) = p(yk):

It is known from the Kalman theory of �ltering that the conditional density
of the phase state and the unconditional density of the signal are

p(xk j y
k) = Nn(xk � x̂k ;Pk);

p(yk) = Nm(yk � yk; 
k) � � �Nm(y0 � y0; 
0): (4.5)

In formulas (4.5) we have

x̂k = E(xk j y
k); Pk = cov(xk ; xk j y

k);


k = cov(yk; yk j y
k); yk = E(yk j y

k�1); (4.6)

where the matrices are non-random. It is obvious that p(yk) may be given
recursively:

p(yk) = Nm(yk � yk; 
k)p(y
k�1): (4.7)

For given parameters �k the values (4.6) are also determined recursively by
the well-known Kalman �lter equations [1] if Rk > 0.

Due to (4.4)-(4.6), the extremal problem (2.23) will have to be solved
with

a(�k; yk) = tr(Pk + x̂kx̂
0
k); b(�k; yk) = x̂k; (4.8)

and the estimate (2.21) will be equal to

�0(y
k) = (

n+1X
i=1

�
0
i x̂kp(y

k))=(

n+1X
i=1

�
0
i p(y

k)): (4.9)

The problem (2.23) with (4.8) appears to be considerably more easy than
in the case when the parameters �k do not use the knowledge of yk [8].

5 The Continuous-time Kalman-Bucy Filter With Un-

certain Moments of the Disturbances

Let the linear stochastic di�erential equations

dx = (A(t)x + v(t))dt + �1(t)d�;

dy = (C(t)x + w(t))dt + �(t)d�; (5.1)

x(t0) = �0x0 +K0x0; y(t0) = 0

11



B.I. ANAN'EV

be given. Here the unobservable vector x 2 R
n, the observable one y 2 R

m;
A;C are continuous matrices; the uncertain vector and matrix functions
v; w; �1; � are measurable in t; �(t) 2 R

k
; �(t) 2 R

m are standard Wiener
processes with zero means and

cov(d�; d�) = Ikdt; cov(d�; d�) = Imdt;

x0 is Gaussian vector with zero mean and unit covariance matrix. It is
supposed that the vector x0 and the processes �; � are mutually indepen-
dent. Functional parameters v; w; �1; � in each moment of time belong to
compact sets:

v 2 V; w 2W; �1 2 �1; � 2 �: (5.2)

Besides, we assume that
�(t)�0(t) � �Im: (5.3)

According to the Kalman-Bucy theory, the parameters of the conditional
Gaussian distribution of x(t) with measurements yt0 = fy(�); 0 � � � tg
may be found from equation

dx̂ = (A(t)x̂ + v(t))dt + PC
0
�
0�1

d�; x̂(0) = K0x0;

where d� = �
�1(dy�(Cx̂+w)dt) is the standardWiener innovation process

in Rm
; P (t) is a solution of the Riccati type di�erential equation [2,5]. The

process �(t) generates a Wiener probability measure ��(d�) in the space
(Cm

t ;Bmt ) of continuous m-dimensional functions �(�); �(0) = 0, given
on [0; t], where the Borelian �-algebra Bmt is produced by cylindrical sets
[5]. In view of the fact that the observable process y(t) has a stochastic
di�erential dy = (Cx̂+w)dt+�d�, the Wiener probability measure �y(dy)
generated by the observable process is absolutely continuous with respect
to standard measure ��(d�), and the equalities

�y(d�) = �(t; �)�� (d�); (5.4)

�(t; �) = exp[

Z t

0

(Cx̂ + w)0�d� � (1=2)

Z t

0

(Cx̂+ w)0��0(Cx̂+ w)dt]

will be true [5].
A problem of type B may be formulated as follows. It is necessary to

�nd an estimate �(yt0) for vector x(t) so that

max
�2�

Z
kx� �(yt0)k

2
Nn(x � x̂;P (t))�(t; yt0)��(dy

t
0)dx! min

�(�)
: (5.5)

Here the integration is carried out with respect to the joint distribution of
y
t
0 and x(t). Let the parameter set � be the Cartesian product of functional
sets of v(�),w(�),�1(�),�(�) from L2 complying with constraints (5.2),(5.3).

12
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Then � is a metric compactum and the densities Nn(x� x̂;P (t)), �(t; yt0)
are upper semi-continuous in �. In accordance with the conclusions of
Section 2 we have an optimal estimate for Problem B

�0(y
t
0) = (

n+1X
i=1

�
0
i x̂(t)�(t; y

t
0))=(

n+1X
i=1

�
0
i�(t; y

t
0)): (5.6)

where numbers �0i and the parameters for the measure can be found as in
(2.23).

6 Examples

1. Let the one-dimensional equations

x = v + �; y = x+ � (6.1)

be given where v is an uncertain value satisfying the inequality j v j� 1.
The disturbances � and � are assumed to be uniformly distributed and
independent with the same density function

p1(x) =

�
1=2; j x j� 1;
0; j x j> 1:

Then the joint distribution density for x and y equals

p(v; x; y) = p(y j x)p(x) = p1(y � x)p1(x� v): (6.2)

For the problem of type A, calculating the maximum of p1(x � v) over v,
we have

max
v

p1(x� v) = p1(x) =

�
1=2; j x j� 2;
0; j x j> 2:

(6.3)

Therefore, p(x; y) = p1(y � x)p1(x). It follows from formula (2.8) that

�
0(y) =

Z
xp(x; y)dx=

Z
p(x; y)dx

= (2 ^ (1 + y) + (�2) _ (y � 1))=2; (6.4)

where x^y =min(x; y), x_y =max(x; y). It is interesting to note that the
estimate (6.4) coincides with the minimax estimate from the deterministic
theory [4]. But, this fact is not valid if the dimension of x > 1. For a
solution to the problem of type B we write the functions (2.19):

c(v; y) = (2� j v � y j)=4;

b(v; y) = c(v; y)(y + v)=2; (6.5)

a(v; y) = c(v; y)(y2 + v
2 + 1 + yv� j y � v j)=3:

13
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Further one needs to compose expression (2.23) and to �nd a maximum.
According to formula (2.21), we have

�0(y) = y=2 + (�01c(v1; y)v1 + �
0
2c(v2; y)v2)

=(�01c(v1; y) + �
0
2c(v2; y))=2: (6.6)

In general, the estimates (6.4) and (6.6) are non-linear in y and do not
coincide with each other.

2. Consider a one-dimensional multi-stage system

xk = akxk�1; yk = xk + �k; k � 1; (6.7)

where ak 2 [1; a], a > 1; j x0 j� �; the disturbances �k have a uniform
distribution p1(x) (6.1) and are independent. As xk has no probability dis-
tribution we can act in two ways. First, it is possible to add a \small" noise
�k in (6.7) for constructing approximations. Secondly, one may consider ak
and x0 as parameters for distribution of yk. Let's choose the �rst option.
We take random values �k with the distribution

p�(x) =

�
(2�)�1; j x j� �;

0; j x j> �:

as the \small" noise. Using considerations of section 3 and according to
(3.4), we obtain

q�(xk ; xk�1) = max
a

p�(xk � axk�1);

q�(x0) = max
j�j��

p�(x0 � �): (6.8)

Thereupon by formulas (3.8) one can determine the estimates (3.9).
Examining ak and x0 as parameters, we need to solve a problem

max
a1;:::;ak;x0

j xk � � j2 p1(y0 � x0) � � � p1(yk � xk)! min
�

: (6.9)

Therefore, for the �rst stage we have

�0(y0) = ((��) _ (y0 � 1) + (y0 + 1) ^ �)=2;

and for the second one the estimate is equal to

�0(y
1) = ((�a�) _ a(y0 � 1) _ (y1 � 1) + a� ^ a(y0 + 1) ^ (y1 + 1))=2

and so on.
3. Given are continuous-time one-dimensional equations

_x = vi; dy = xdt + d� (6.10)

14



STATISTICALLY UNCERTAIN SYSTEMS

where vi, i = 1; 2 represents the uncertain deterministic functional param-
eter, � is a standard Wiener process, x0 is the Gaussian standard value
independent of �. From formulas of section 5 we have

dx̂ = vidt+ d�=(t+ 1); x̂(0) = 0;

d� = dy � x̂dt; �(t; �) = exp(

Z t

0

x̂d� � (1=2)

Z t

0

x̂
2
ds):

It is well-known [5] that values like �(t; �) are square-integrable martingales
satisfying the equation d� = 1 + �x̂d�; �(0) = 1. Therefore, the minimax
problem (5.5) has the form

max
i=1;2

[(1=(t+ 1) + x̂
2
i )�i � 2x̂i��i + �

2
�i]! min

�
:

7 Conclusions

In this paper we have given two new approaches to minimax estimating
problems for statistically uncertain systems. These approaches use the
supposition that uncertain parameters may \choose" their values on the
basis of the knowledge of measurements and the phase vector. It has been
demonstrated that the arising minimax problems are �nite dimensional as
opposed to those that come from statistical Wald theory [6-9]. Moreover,
for dynamic systems, the dimension of the problems under consideration
does not grow with time t or with index k tending to in�nity.
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