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Lowering the Orders of Derivatives of Controls

in Generalized State Space Systems
�
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Abstract

In this paper we study the problem of lowering the orders of input

derivatives in generalized state variables representations of nonlin-

ear systems by generalized state transformations. We give neces-

sary and su�cient conditions for the local and global existence of

such transformations. Our conditions are expressed as commutativ-

ity of certain vector �elds de�ned in terms of prolonged dynamics.

These conditions are restrictive, thereby implying that removing all

input derivatives is often impossible in contrast with the linear case

where transformations into Kalman dynamics (not involving any in-

put derivatives) always exist. We also consider the problem of low-

ering the orders of input derivatives in the dynamics and output

equations. Our results are illustrated with an engineering example

of a crane.

Key words: generalized dynamics, generalized state transformations, in-

put derivatives, Kalman state, prolonged vector �elds
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1 Introduction

In 1977 Williamson [32] studied the problem of designing observers for

bilinear systems and he considered transformations depending on deriva-

tives of control. Since then derivatives of controls have been considered in

many control problems, like state transformations and nonlinear observers

[34, 19, 1, 27], inversion (both linear and nonlinear) [29, 30, 8, 25], canon-

ical forms [27, 10], identi�cation [2] and, recently, equivalence [18, 26]. A
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systematic study of linear and nonlinear systems whose dynamics (and out-

puts) depend on derivatives of control has been carried out by Fliess in a

series of papers [8]{[11] using di�erential algebra1. This approach has led to

a new insight into system theory and to a better understanding of control

problems such as invertibility [8] (compare also [25]), canonical forms [10]

and structure of linear systems [11]. The appearance of input derivatives

has been con�rmed by some practical studies [32, 15].

According to Fliess [9], a general state variables representation of non-

linear control systems is of the form

F ( _x; x; u; _u; : : : ; u(�)) = 0; (1.1)

H(y; x; u; _u; : : : ; u(�)) = 0; (1.2)

where u = (u1; : : : ; um) and y = (y1; : : : ; yp) are respectively the input and

the output, and x = (x1; : : : ; xn) is the state of the system. Moreover,

transformations between two di�erent states x and ~x may also depend on

the input and a �nite number of its derivatives and are given by

�(x; ~x; _u; : : : ; u()) = 0:

Although, as we mentioned above, the general description (1.1){(1.2) has

been con�rmed by some theoretical and practical studies, the classical ex-

plicit representation (without derivatives of the input) of the form

_x = f(x; u); (1.3)

y = h(x; u); (1.4)

is still very common and has a lot of advantages. Therefore it is very

natural to describe those general nonlinear systems of the form (1.1){(1.2),

explicit with respect to _x and y, which can be transformed via general state

space transformations to (1.3){(1.4).

This problem was studied by Freedman and Willems [16] in the case

where the �rst derivatives of controls appear. They gave also a stochastic

interpretation of the problem. Glad [17] observed that a necessary and suf-

�cient condition to remove u(�), where � is the highest order of derivation

of the control variable, is that it appears linearly. Following Glad, the �rst

author gave necessary and su�cient conditions in the multi-input case to

lower every �i by one [4], where �i is the highest order of derivation of

the input ui. In the present paper we study and solve the problem in its

full generality. Namely, given any m-tuple (�1; : : : ; �m) we provide nec-

essary and su�cient conditions for the existence of a (local) generalized

state transformation which brings the system into a representation having

�i, i = 1; : : : ;m, as the highest input derivatives orders. In particular we

1See also [13, 14] for a di�erential geometric approach.
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describe systems for which we can remove all inputs derivatives and thus

transform the system into the classical form (1.3){(1.4). We provide also

conditions for global transformations to exist.

Although systems with derivatives of controls, as well as generalized

state space transformations, appear naturally in di�erential algebraic ap-

proach (see e.g. [7] for rational realization of nonlinear systems), the ques-

tion of lowering orders of inputs derivatives (removing inputs derivatives)

by such transformations is an integrability problem for a system of PDE's

and therefore di�erential geometric framework �ts naturally. We extend

(prolong) the system and we state the integrability conditions in terms of

commutativity of certain vectors �elds de�ned by the extension.

The paper is organized as follows. In Section 2 we state the problem and

give the main results, local and global, on lowering the inputs derivatives

orders. In Section 3 we consider linear systems and show how our result

rediscover the known possibility of removing all input derivatives in the

linear case [11]. In this section we also relate our results to the state

space linearization problem, where commutativity is crucial as well. In

Section 4 we consider the problem of removing input derivatives in the

output equations and the dynamics. We also describe some connections

of our results with the procedure of realization of input-output di�erential

equations given by van der Schaft [28]. In Section 5 we provide a physical

example of crane.

Some results of this paper were announced in [4, 5].

2 Lowering the Orders of Derivatives of Inputs in the

Dynamics

Throughout this paper we will use a convenient notation to denote each

control variable ui and its time derivatives up to the order �i 2 IN . Namely

u
h�ii
i = (ui; _ui; : : : ; u

(�i)
i ); i = 1; : : : ;m:

Consider an explicit generalized state representation � of a multi-input

nonlinear dynamics in which each input ui; i = 1; : : : ;m, appears with

�i � 0 as derivation order

� : _x = f(x; u
h�1i
1 ; : : : ; u

h�mi
m ): (2.1)

The state x of this system evolves on a C1-smooth n-dimensional manifold

denoted by X and f is C1-smooth with respect to all its arguments.

Our purpose is to derive conditions which guarantee the existence of

generalized coordinates transformations  , in the state space, of the form

~x =  (x; u
h�1�1i
1 ; : : : ; u

h�m�1i
m ); (2.2)
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which lead to a state representation

~� : _~x = ~f(~x; u
h�1i
1 ; : : : ; u

h�mi
m ); (2.3)

where �i � �i for all i = 1; : : : ;m. We look for  which is C1-smooth

with respect to all its arguments and (locally) invertible with respect to

x. Observe that we keep the controls and their time derivatives invariant.

In this section we consider dynamics only; systems equipped with outputs

will be considered in Section 4.

A natural framework to investigate this problem is di�erential geometry

and so we will work in an extended state space denoted by S. The extension

of the state is made by association of new coordinates zi;j with inputs and

their derivatives up to the maximal order appearing in the original state

representation,

zi;j = u
(j)
i ; i = 1; : : : ;m; j = 0; : : : ; �i: (2.4)

Put K =
Pm

i=1(�i + 1), thus S = IRK
� X and the dimension of the

extended state space2 is N = K + n.

We rewrite � and ~� on the extended state space S respectively as

�e

8>>>>><
>>>>>:

_x = f(x; z1;0; : : : ; zm;�m)

_zi;0 = zi;1
... i = 1; : : : ;m;

_zi;�i�1 = zi;�i
_zi;�i = u

(�i+1)
i

(2.5)

and

e�e

8>>>>><
>>>>>:

_~x = ~f(~x; z1;0; : : : ; zm;�m)

_zi;0 = zi;1
... i = 1; : : : ;m:

_zi;�i�1 = zi;�i
_zi;�i = u

(�i+1)
i

(2.6)

On the extended state space S we will consider a �nite prolongation of the

vector �eld f (resp. ~f), denoted by F (resp. eF), given in local coordinates

by

F =

nX
i=1

fi
@

@xi
+

mX
i=1

�i�1X
j=0

zi;j+1
@

@zi;j
; (2.7)

(resp. eF =

nX
i=1

~fi
@

@~xi
+

mX
i=1

�i�1X
j=0

zi;j+1
@

@zi;j
):

2In some cases it is more natural to consider the extended state space S = RK �X ,

where RK is an open subset of IRK .
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Let xe (resp. ~xe) denote local coordinates of S , i.e.,

xe = (zi;j ; x1; : : : ; xn; i = 1; : : : ;m; j = 0; : : : ; �i)

(resp. ~xe = (zi;j ; ~x1; : : : ; ~xn; i = 1; : : : ;m; j = 0; : : : ; �i)):

�e (resp. e�e) de�nes on the extended state space S a control-af�ne system

controlled by vi = u
(�i+1)
i ; i = 1; : : : ;m; in the following way

_xe = F +

mX
i=1

vi
@

@zi;�i
(2.8)

(resp. _~x
e

= eF +

mX
i=1

vi
@

@zi;�i
);

where F (resp. eF) is given by (2.7). We keep the same name �e (resp. e�e)

for (2.8) because the only di�erence between (2.5) and (2.8) is to interpret

u
(�i+1)
i as the new controls vi; i = 1; : : : ;m.

Observe that (2.2) can be interpreted as a (local) transformation 	

of S having the special structure 	(z; x) = (z;  (z; x)), where z denotes

global coordinates zi;j ; i = 1; : : : ;m; j = 0; : : : ; �j , of IR
K . Preserving the

z-coordinates simply means that we do not change u and its derivatives.

It should be noticed that the control vector �elds @
@zi;�i

, i = 1; : : : ;m,

are invariant under  which does not depend on zi;�i , i = 1; : : : ;m, and

therefore they are intrinsically de�ned in our problem. It turns out that all

informations needed to solve the problem are contained in the Lie algebra

generated by F and the @
@zi;�i

's.

Observe that working locally at z0 we consider controls which are close

to the nominal one corresponding to z0 via (2.4). A solution for the local

version of our problem can be stated as follows.

Theorem 1 A generalized change of state coordinates  of the form (2.2),

transforming the representation � into e�, exists, locally around

s0 = (z0; x0) 2 S ;

if, and only if, �
ad

q

F

@

@zi;�i
; ad r

F

@

@zj;�j

�
= 0 (2.9)

in a neighbourhood of s0 for any 1 � i; j � m and

0 � q � �i � �i;

0 � r � �j � �j :
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Remark 1 A generalized change of coordinates solving the problem is con-

structed in the su�ciency part of the proof of this theorem. An example of

this construction is given in Section 5.

Remark 2 An equivalent way to study the problem of lowering the inputs

derivatives orders is to use the in�nite prolongation F
1 of f de�ned by

(see [22])

F
1 =

nX
k=1

fk
@

@xk
+

1X
j=0

mX
i=1

zi;j+1
@

@zi;j
; (2.10)

where zi;j = u
(j)
i ; i = 1; : : : ;m; j � 0 (compare (2.4)). It is immediate

to see that (2.9) is equivalent to its modi�cation with F being replaced by

F
1. In such a modi�cation the in�nite sum in (2.10) can be treated only

formally, since all vector �elds ad
q

F
1

@
@zi;�i

(and any of their Lie brack-

ets) depend on a �nite number of zi;j's and thus can be easily computed.

In [4] the condition for lowering the inputs derivatives orders by one (see

Corollary 2 below) is given in terms of F1. We want to add that F1

can be given a precise interpretation of a smooth vector �eld on the in-

�nite-dimensional manifold J10 (IR; IRm) � X , where J10 (IR; IRm) denotes

the space of in�nite jets at zero of IRm-valued smooth functions [20] (see,

also, [13, 14, 18]).

We state as separate corollaries the two extreme cases, i.e., when we

are able to remove all input derivatives and when we are able to lower the

order of derivative of every input by one.

Corollary 1 A generalized change of state coordinates  of the form (2.2),

transforming � into e�, a system without derivatives of control, of the form

e� : _~x = f(~x; u);

exists if, and only if, � satis�es the commutativity condition (2.9) for 0 �

q � �i, 0 � r � �j .

Corollary 2 There exists a generalized change of state coordinates  of

the form (2.2), lowering the highest order of every input derivative of � by

one, if, and only if, the condition (2.9) is satis�ed with 0 � q; r � 1.

It follows from Corollary 1 that not for all generalized systems � we are

able to remove all input derivatives using transformations of the form (2.2).

Actually, the restrictive commutativity condition (2.9) implies that this is

a very special case. This purely nonlinear phenomenon (compare [11] and

Section 3) was observed for the �rst time and studied by Freedman and

Willems [16] (see also [17] and, in the context of state space realization,

[28]).
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When we compare Corollary 2 with the original statement of Delaleau

[4] (given in terms of in�nite prolongation F1, compare Remark 2 follow-

ing Theorem 1), we see that in [4] necessary and su�cient conditions are

expressed as (2.9) given for q = r = 1 together with the condition that

the original dynamics � are a�ne with respect to the highest input deriva-

tives. The latter being necessary conditions for lowering the order of input

derivatives [17, 4], can be expressed in an invariant way as�
ad
F

@

@zi;�i
;
@

@zj;�j

�
= 0; 1 � i; j � m: (2.11)

Observe that in the scalar input case, (2.11) takes the form�
ad
F

@

@z�
;
@

@z�

�
= 0; (2.12)

where � is the input derivative order and it is the only necessary and

su�cient condition for lowering the order of the input derivative by one

[17]. Indeed, the condition
h
ad
F

@
@z�

; ad
F

@
@z�

i
= 0 (compare Corollary 2)

holds automatically. Thus, if a scalar input dynamics are a�ne with respect

to the highest derivative of control variable, then it is always possible to

lower its order by one.

Notice that there is no natural order for di�erent collections of �i's

giving the input derivatives orders of the transformed system. Clearly, the

best case is �i = 0; i = 1; : : : ;m (corresponding to removing all inputs

derivatives), while the worst one is �i = �i; i = 1; : : : ;m (meaning that

none of the orders can be lowered). Next to it, however, there are m

incomparable cases, �j = �j � 1; �i = �i; i 6= j, i.e., when we are able to

lower the highest order of derivation of the jth input by one. Clearly, this

is possible if, and only if, (compare with (2.12))�
ad
F

@

@zj;�j
;
@

@zi;�i

�
= 0; i = 1; : : : ;m:

Observe that it can happen that we are able to lower the orders of derivation

of the jth and kth inputs but, if
h
ad
F

@
@zj;�j

; ad
F

@
@zk;�k

i
6= 0, not both

of them simultaneously. In this case there is no collection of �i's such that

�j � �j � 1 and �k � �k � 1.

To summarize, given �, in general there is no m-tuple (�1; : : : ; �m)

giving minimal possible orders of derivatives of all inputs simultaneously.

For every choice of �1; : : : ; �m we can check, using Theorem 1, whether one

can lower the input derivatives respectively by �i � �i, i = 1; : : : ;m, but

there is no evident optimal choice. See Section 5 for an illustration of this

phenomenon.
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Proof of Theorem 1: (Necessity) Calculate the prolonged vector �eld,

given by (2.7), associated with the �nal representation of the system e�.
For any k the component ~fk does not depend on zi;j ; i = 1; : : : ;m; j =

�i + 1; : : : ; �i, and thus ad qeF @
@zi;�i

= (�1)q @
@zi;�i�q

, q = 0; : : : ; �i � �i.

Therefore the condition (2.9) of Theorem 1 holds. Moreover, this condition

is invariant under generalized change of coordinates of the form (2.2) and

thus it is necessary for the solvability of the problem.

(Su�ciency) For notational convenience we put

Xi = @
@xi

; i = 1; : : : ; n;

Yi;j = (�1)j�1ad
j�1

F

@
@zi;�i

; i = 1; : : : ;m; j = 1; : : : ; �i � �i + 1;

Zi;j = @
@zi;j�1

; i = 1; : : : ;m; j = 1; : : : ; �i;

where �i � �i, i = 1; : : : ;m. Set L =
Pm

i=1(�i � �i +1) and M =
Pm

i=1 �i
(one has K = L+M). The Xi's are the n unit vector �elds corresponding

to the original coordinates of state space X , the Yi;j 's are the L vector

�elds which are involved in condition (2.9) and the Zi;j 's are the M vector

�elds corresponding to the control variables and their time derivatives up

to the order3 �i � 1. They form a set of N = L +M + n vector �elds on

the extended state space. We will denote them by W1; : : : ;WN and order

as follows: the �rst L of them are the Yi;j 's (ordered lexicographically),

followed by the Zi;j 's (ordered lexicographically) and �nally followed by

the Xi's.

The extension procedure (2.4) permits to de�ne coordinates zi;j on

the extended state space. In most places it is more convenient to work

with double indices (i; j) for the z-coordinates but we have also to use

one index and to establish a correspondence between them. Observe that

Yi;j = @
@zi;�i�j+1

(mod TX ), j = 1; : : : ; �i � �i + 1 and Zi;j = @
@zi;j�1

.

Therefore to every Wk, k = 1; : : : ;K we can associate a unique vector

�eld @
@zi;j

, i = 1; : : : ;m, j = 0; : : : ; �i such that Wk = @
@zi;j

(mod TX ).

This correspondence between the Wk's and the @
@zi;j

's allows us to put

�zk = zi;j . We will speak about z-coordinates when using the zi;j 's and

about �z-coordinates when using the �zk's.

For a vector �eld V on S we will denote by �tV (s) its ow, i.e., the

solution of the di�erential equation d
dt
�tV (s) = V (�tV (s)) passing through

s at t = 0. For each s, t 7�! �tV (s) is a curve de�ned for t in some open

interval depending on s. For each t the map s 7�! �tV (s) is a smooth

di�eomorphism.

The generalized change of state coordinates  is de�ned as the restric-

tion, to the original state space X , of the (translated) inverse of composition

3Notice that there is no vector �eld Zi;j when �i = 0.
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of ows of vector �elds on S . For an initial condition s0 = (�z0; x0), consider

the map �s0 : V0 �! S de�ned in a neighbourhood V0 of 0 2 IRN and

given for any (t1; : : : ; tN ) 2 V0 by

�s0(t1; : : : ; tN ) = �t1W1
(�t2W2

(: : : (�tNWN
(s0)) : : :)):

As we already mentioned we want to preserve the �z-coordinates (controls

and their derivatives) and thus we put

	s0(�z; x) = ��1s0 (�z; x) + (�z0; x0);

which is simply a translation of ��1s0 , by a constant vector, of the inverse

map of �s0 (the translation in the x-part is added to preserve x0). Observe

that from the way we order the components �zk of �z it is clear that �zk
correspond to tk.

In the sequel, we will omit the explicit reference to s0 and denote �s0

simply by �, keeping in mind that � is de�ned as composition of ows at

the point s0. Similarly, we write 	 instead of 	s0 . We will now prove the

�ve following claims:

(i) 	 de�nes a local coordinate system at s0 = (�z0; x0) 2 S = IRK
�X .

(ii) 	 preserves each zi;j ; i = 1; : : : ;m, and j = 0; : : : ; �i, i.e., 	(�z; x)

= (�z; ~x) for a suitable ~x(�z; x).

(iii) 	 maps the vector �elds ad
j

F

@
@zi;�i

into the vector �elds @
@zi;�i�j

,

i = 1; : : : ;m, and j = 0; : : : ; �i � �i.

(iv) All components of 	, except for those which are identically equal

to zi;�i , i = 1; : : : ;m (compare step (ii)), do not depend on zi;�i ,

i = 1; : : : ;m.

(v) In new extended state space coordinates given by ~xe = 	(xe),

�e takes the form e�e, i.e., its dynamics ~f do not depend on zi;j ,

i = 1; : : : ;m, and j = �i + 1; : : : ; �i.

It is obvious that statements (i), (iii){(v) can be proved for ��1, instead of

	, since the two maps di�er by a translation by a constant vector. Because

of notation convenience we prove them for ��1. In the sequel of the proof

we set t = (t1; : : : ; tN).

Proof of (i): We will �rst prove that � is a local di�eomorphism by

checking its rank at t = 0 2 IRN . For a di�eomorphism ' : eS �! S

and a vector �eld W we denote by '�W the transformed vector �eld, i.e.,

('�W )(y) = (D')j'�1(y)W ('�1(y)), where D' stands for the jacobian

matrix of '. The partial derivative of � with respect to ti, i = 1; : : : ; N , is

@�
@ti

(t) = D(�t1W1
(: : : (�

ti�1
Wi�1

) : : :))j!i
@
@ti

(�tiWi
(: : : (�

tN
WN

(s0)) : : :))

= (�t1W1
(: : : (�

ti�1
Wi�1

) : : :))� Wi(�(s0));

9



E. DELALEAU AND W. RESPONDEK

where !i = �tiWi
(: : : (�tNWN

(s0)) : : :). This gives @�
@ti

(0) = Wi(s0). On the

other hand it is easy to see that all Wi are independent since

Yi;j = (�1)j�1ad
j�1

F

@

@zi;�i
=

@

@zi;�i�j+1
(mod TX ): (2.13)

Thus � is of full rank N at 0 and � is a local di�eomorphism. Finally ��1,

which is a local di�eomorphism too, from a neighbourhood of s0 2 S into

IRN , de�nes a local coordinates system at s0.

Proof of (ii): Let us see how the composition � of ows transforms a

point (�z; x) 2 S . It is clear that, for all i = 1; : : : ; n,

�tiXi
(�z; x) = (�z; ~x); (2.14)

for a suitable ~x 2 X . Consider now the remaining vector �elds

W1; : : : ;WL+M . We have Yi;j =
@

@zi;�i�j+1
(mod TX ), j = 1; : : : ; �i��i+

1, (compare (2.13)) and Zi;j =
@

@zi;j�1
(mod TX ), j = 1; : : : ; �i. There-

fore, as we already mentioned, to every WK , k = 1; : : : ;K (recall that

K = L +M), there corresponds a unique vector �eld @
@zi;j

, i = 1; : : : ;m,

j = 0; : : : ; �i, such that

Wk =
@

@zi;j
(mod TX ): (2.15)

We have �zk = zi;j . From (2.15), we see that for any k = 1; : : : ;K,

�tkWk
(�z; x) = (~z; ~x); (2.16)

where ~zi = �zi, i 6= k, ~zk = �zk+tk and ~x is a suitable point of X . Combining

(2.14) and (2.16), we see that �(�z0;x0)(t1; : : : ; tN ) = (~z1; : : : ; ~zK ; ~x) 2 IR
K
�

X , where �zi = �z0i + ti, i = 1; : : : ;K. Thus 	, which di�ers from ��1 by

the translation by the vector (�z0; x0) preserves zi, i = 1; : : : ;K and hence

preserves all zi;j , i = 1; : : : ;m, j = 0; : : : ; �i.

Proof of (iii): Because of the condition (2.9) the �rst L vector �elds among

theWk 's, which correspond to the Yi;j 's, are commuting in a neighbourhood

of s0, i.e., [Wi; Wj ] = 0; 1 � i; j � L, and thus their ows commute too

[31]. Hence for any i = 1; : : : ; L,

�(t) = �t1W1
(�t2W2

(: : : (�tNWN
(s0)) : : :))

= �tiWi
(: : : �

ti�1
Wi�1

(�
ti+1

Wi+1
(: : : (�tNWN

(s0)) : : :)) : : :):

Using this fact we obtain, for i = 1; : : : ; L,

@�

@ti
(t) =

@

@ti
�tiWi

(: : : �
ti�1
Wi�1

(�
ti+1

Wi+1
(: : : (�tNWN

(s0)) : : :)) : : :)

= Wi(�
ti
Wi

(: : : �
ti�1
Wi�1

(�
ti+1

Wi+1
(: : : (�tNWN

(s0)) : : :)) : : :))

= Wi(�(t)):

10
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For the remaining N � L vector �elds Wi, i = L + 1; : : : ; N , there is

no commutativity assumption and we simply get, like in the proof of (i),
@�
@ti

(t) = fWi(�(t)), where fWi is the vector �eld Wi transformed by the

action of the jacobian matrix corresponding to composition of ows of

W1; : : : ;Wi�1. Thus
@�
@t
(t) = (W1; : : : ;WL;fWL+1; : : : ;fWN )(�(t));. Hence

we obtain

Id = (��1)�(W1; : : : ;WL;fWL+1; : : : ;fWN )

meaning that ad
j

F

@
@zi;�i

, which is one of the �rst L vector �elds among the

Wi's, is mapped by ��1 into @
@zi;�i�j

, i = 1; : : : ;m and j = 0; : : : ; �i � �i.

Proof of (iv): From (iii), we know that ��1� ( @
@zi;�i

) = @
@zi;�i

and thus the

components of ��1 do not depend on zi;�i , i = 1; : : : ;m (except for those

which are identically equal to zi;�i).

Proof of (v): For any i = 1; : : : ;m and j = �i + 1; : : : ; �i compute

[eF ; @
@zi;j

] = [��1� (F) ;��1� (ad
�i�j

F

@
@zi;�i

)];

= ��1� ([F ; ad
�i�j

F

@
@zi;�i

]);

= ��1� (ad
�i�j+1

F

@
@zi;�i

);

= @
@zi;j�1

;

where the �rst and the last equalities follow from (iii), whereas the second

one does from a fundamental property of the Lie bracket (see [31]). From

the equality [ @
@zi;j

; eF ] = @
@zi;j�1

we conclude that ~f , which is the ~x-part ofeF , does not depend on zi;j ; i = 1; : : : ;m; j = �i + 1; : : : ; �i. We have

	(�z; x) = (�z; ~x) where ~x, being a function of (�z; x), does not depend on

zi;�i , i = 1; : : : ;m (compare (iv)). The identity with respect to �z-compo-

nents follows from (ii).

The generalized change of coordinates  in the original state space X

is now easy to de�ne. Namely, put  (�z; x) = ~x(�z; x). Coming back to the

original notations we get the desired form (2.2) of

 =  (x; u
h�1�1i
1 ; : : : ; u

h�m�1i
m ):

Moreover, (v) implies that  transforms � into e� yielding the dynamics
_~x = ~f(~x; u

h�1i
1 ; : : : ; u

h�mi
m ) with input derivatives orders lowered respectively

by �i � �i, i = 1; : : : ;m. 2

We end this section by studying global aspects of the problem of lower-

ing the orders of input derivatives. To formulate the problem, assume that

11
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we are given a nonlinear control system �, evolving on a smooth manifold

X , whose dynamics depend on input derivatives and is given, in local co-

ordinates x = (x1; : : : ; xn) of X , by (2.1). Together with �, we consider its

prolongation �e, whose state space is S = IRK
� X and whose dynamics

are given by (2.5). If we consider S as a trivial �bre bundle over IRK then

(2.1) describes the dynamics along the �bres.

Now, the problem of global lowering the inputs derivatives orders is to

�nd a global �bre bundle di�eomorphism 	 = (idIRK ;  ) of IR
K
�X , where

 does not depend on zi;�i , i = 1; : : : ;m, and 	 transforms the form of �e

given by (2.5) into that of e�e given by (2.6). As we already mentioned we

do not change the control variables (and their derivatives) and hence we

do not transform the base IRK .

Having de�ned the problem of global lowering the orders of inputs

derivatives we state and prove our global result.

Theorem 2 The problem of global lowering the orders of input derivatives,

by a global transformation 	 = (idIRK ;  ) of �e into e�e, is solvable if,

and only if, �e satis�es the commutativity condition (2.9) of Theorem 1

everywhere, for i; j = 1; : : : ;m, 0 � q � �i � �j , 0 � r � �j � �j , and

moreover the vector �elds ad
j

F

@
@zi;�i

, i = 1; : : : ;m, j = 0; : : : ; �i � �i, are

complete.

Proof: (Necessity) By Theorem 1, the condition (2.9) is necessary for

the problem of local lowering the orders of input derivatives orders and

so is for the global problem. For e�e we have ad
jeF @

@zi;�i
= @

@zi;�i�j
, j =

0; : : : ; �i and since the zi;j 's form global coordinates on the base IRK , the

completeness of ad
j

F

@
@zi;�i

, i = 1; : : : ;m, j = 0; : : : ; �i � �i, follows.

(Su�ciency) Recall from the proof of Theorem 1 the notation

Yi;j = (�1)j�1ad
j�1

F

@
@zi;�i

; i = 1; : : : ;m; j = 1; : : : ; �i � �i + 1;

Zi;j = @
@zi;j�1

; i = 1; : : : ;m; j = 1; : : : ; �i

and keep denoting the Yi;j 's byW1; : : : ;WL and the Zi;j 's byWL+1; : : : ;WK ,

where K = L+M . De�ne a map 	 : S �! S by

	(t; x) = �t1W1
(�t2W2

(: : : (�tKWK
(0; x)) : : :));

for any (t1; : : : ; tK ; x) = (t; x) 2 IRK
� X = S . Since the vector �elds Yi;j

are complete, as clearly are the Zi;j , we see that 	 is a globally de�ned

smooth map. Observe that Wk = @
@�zk

(mod TX ), k = 1; : : : ;K and thus

repeating the arguments used in the proof of Theorem 1 (step (ii)) we see

that 	 is an identity on the base IRK (composition of ows of Xi, as used

12
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in the proof of Theorem 1, is irrelevant since they are identity on the base

too). To prove that 	 is bijective assume that 	(t; x) = 	(�t; �x). When

projected on the base IRK , every Yi;j and every Zi;j is of the formWk =
@
@�zk

for a suitable k = 1; : : : ;K and hence t = �t. This means that ti = �ti,

i = 1; : : : ;K and the uniqueness of solutions of nonautonomous di�erential

equations de�ned by each Wi, i = 1; : : : ;K, on X implies that x = �x.

To prove that 	 is surjective choose (�; y) 2 S. To �nd (t; x) such that

	(t; x) = (�; y) we take � = t and (t; x) = ���KWK
(: : : (���1W1

(0; y)) : : :). Thus,

by completeness, the inverse of 	 always exists and is smooth. Repeating

the argument used in the proof of Theorem 1 we see that 	(�z; x) maps

globally �e into e�e. 2

3 Linear and Linearizable Systems

In this section we show how our results, when applied to linear systems,

rediscover the known facts about removing all input derivatives [11]. Con-

sider a generalized linear system of the form

�L : _x = Ax+

mX
i=1

�iX
j=0

Bi;j u
(j)
i ;

where x 2 IRn, u
(j)
i 2 IR. We study the problem of transforming �L, via a

generalized change of coordinates of the form

~x =  (x; u
h�1�1i
1 ; : : : ; u

h�m�1i
m ); (3.17)

into a Kalman representation, i.e., a linear control system of the form

�K : _~x = ~A~x+ ~Bu; (3.18)

where u = (u1; : : : ; um) 2 IRm. Of course, it is natural to look for (3.17)

within the class of linear transformations (depending on the control and

its derivatives). It is known from recent results in the linear theory [11]

obtained using module theory approach that transforming �L into �K is

always possible (compare also [4]). We can deduce this fact from the results

of Section 2.

Proposition 1 There always exists a global linear transformation of the

form

~x = P x+

mX
i=1

�i�1X
j=0

Ri;j u
(j)
i ;

with P invertible, bringing �L into a Kalman state representation �K .

13
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Proof: Consider the extension �e
L of �L. By a direct computation we

get that every (�1)jad
j

F

@
@zi;�i

, i = 1; : : : ;m, j = 0; : : : ; �i is of the form

@
@zi;�i�j

+F
j
i
@
@x

for a suitable constant vector F
j
i . Therefore all ad

j

F

@
@zi;�i

,

i = 1; : : : ;m, j = 0; : : : ; �i, having constant components, commute and

thus satisfy the condition (2.9) of Theorem 1 for �i = 0, i = 1; : : : ;m.

Obviously they are complete and from Theorem 2 we deduce the existence

of a global transformation 	 bringing �L into �K . Moreover 	, as de�ned

in the proof of Theorem 2, is linear with respect to all its arguments.

2

One can observe that the conditions of theorems 1 and 2 for the lo-

cal and global solvability of the problem remind respectively those which

describe local and global state space linearization, i.e., linearization via

a (local) di�eomorphism of the state space. Indeed, if we consider the

control system (2.8) then (2.9) form a part of the commutativity condi-

tions (see [3, 24]) which describe state space linearizable systems, whereas

the completeness of ad
q

F

@
@zi;�i

(recall that @
@zi;�i

are the control vector

�elds of (2.8)) appears in [3, 24] in the solution of the global state space

linearization.

This issue can be clari�ed if we consider the problem of transforming

�, given by (2.1), into a Kalman linear representation �K given by (3.18).

Assume f(s0) = 0, otherwise we have to add a constant vector to the right

side of (3.18).

Proposition 2

(i) � is locally transformable, at s0 = (z0; x0), via a generalized state space

transformation  of the form (2.2), into a Kalman linear system �K

if, and only if, the extension �e, given by (2.8), of � satis�es�
ad

q

F

@

@zi;�i
; ad r

F

@

@zj;�j

�
= 0; (3.19)

in a neighbourhood of s0, for any 1 � i; j � m and

0 � q � �i + n+ 1;

0 � r � �j + n+ 1;

and

dim span fad
�i+q

F

@

@zi;�i
(s0); 1 � i � m; 1 � q � ng = n: (3.20)

(ii) � is globally transformable to �K if, and only if, it satis�es (3.19) and

(3.20) everywhere, the vector �eld F is complete, and moreover X is

simply connected.

14
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Remark 3 Now the role of (3.19) is clear. If it is ful�lled for 0 � q � �i,

0 � r � �j then we are able to remove all input derivatives and we get a

system of the form
_~x = ~f(~x; u): (3.21)

The assumption
h
ad �i+1

F

@
@zi;�i

; ad
�j

F

@
@zj;�j

i
= 0 implies that zi;0, i =

1; : : : ;m appear linearly and thus (3.21) is an a�ne system with respect to

controls ui = zi;0, i.e., of the form

_~x = g0(~x) +

mX
i=1

uigi(~x): (3.22)

Now we observe that ad �i+1

F

@
@zi;�i

=
Pn

k=1gi;k
@
@~xk

, where gi;k(~x) are com-

ponents of gi(~x), and therefore (3.19) for �i + 1 � q � �i + n + 1 and

�j + 1 � r � �j + n+ 1, together with (3.20), represent the standard state

space linearization conditions (see e.g. [21, Theorem 5.3] or [24, Theorem

3.1]).

Notice that if we apply linearization directly to �e, as it satis�es the

commutativity condition (3.19) and

dim span fad
q

F

@

@zi;�i
(s0); 1 � i � m; 0 � q � �i + ng = K + n;

then we end up with a linear system �e
K (extension of �K) but we may

change z-coordinates. We want to preserve them and that is the reason to

transform �e into �e
K in two steps (removing input derivatives and then

applying the linearization to the ~x-part of the system).

Remark 4 If we drop the simple connectedness assumption then the con-

ditions (ii) in Proposition 2 imply the global transformation of � into a

Kalman linear system evolving on IRp
� Tn�p, where Tn�p denotes a

(n� p)-dimensional torus. Observe that if we are interested in global low-

ering the orders of (removing, in particular) input derivatives only we do

not have to put any topological assumption on X . Indeed, X can be any

smooth manifold and the map 	, as de�ned in the proof of Theorem 2,

gives a global di�eomorphism of IRK
�X . In the problem of simultaneous

removing derivatives and linearization we are looking for a global di�eomor-

phism 	 : IRK
� X �! IRK

� IRn and hence we have to put a topological

assumption on X .

Proof of Proposition 2: Necessity of (i) is obvious. To prove su�ciency

we just perform the two-steps procedure as described in Remark 3.

Necessity of (ii) is obvious. To prove su�ciency, observe that the vector

�elds @
@zi;�i

, i = 1; : : : ;m, are complete and that the Lie algebra L gener-

ated by F and @
@zi;�i

, i = 1; : : : ;m, is �nite dimensional (the latter follows,

15



E. DELALEAU AND W. RESPONDEK

for instance, from local linearizability (i)). Hence all vector �elds belong-

ing to L are complete [23], in particular so are ad
q

F

@
@zi;�i

, i = 1; : : : ;m,

q = 0; : : : ; �i + n. Now, by Theorem 2, we apply a global di�eomorphism

to remove all inputs derivatives and we arrive at (3.21). Just as above

we conclude that (3.21) is actually of the form (3.22). By applying global

linearization results [3, 24] (commutativity, completeness and simple con-

nectedness of X ) we get a global di�eomorphism transforming (3.22) into

(3.18). 2

Observe that under (3.19), satis�ed for 0 � q � �i + n + 1, 0 � r �

�j + n+ 1, and (3.20) (i.e., in the case of locally linearizable systems) the

completeness of F and that of ad
q

F

@
@zi;�i

, i = 1; : : : ;m, q = 0; : : : ; �i + n,

are equivalent. Actually, in the statement of Proposition 2 (ii) the former

can be replaced by the latter. If we study the global problem of lowering

the orders of derivatives of inputs, then such equivalence is not present (L

need not be �nite dimensional) and in Theorem 2 we use the completeness

of ad
q

F

@
@zi;�i

.

4 Lowering the Orders of Input Derivatives in the Dy-

namics and Output Equations

In this section we discuss the problem of lowering the input derivatives

orders simultaneously in the dynamics and in the output equations

y = h(x; u
h�1i
1 ; : : : ; u

h�mi
m ); (4.23)

where h is a IRp-valued function, smooth with respect to all its arguments.

It is known that already in the linear case this is, in general, not possible

and requires some additional conditions [11]. Let h be a smooth vector-

valued function and f a smooth vector �eld. Then Lf h stands for the Lie

derivative of h along f .

Theorem 3 There exist a generalized change of state coordinates of the

form (2.2) transforming locally �, with output equations (4.23), into ~�,

with output equations

y = ~h(~x; u
h�1i
1 ; : : : ; u

h�mi
m ); (4.24)

if, and only if, � satis�es the commutativity conditions (2.9) and moreover

Lad
q

F

@

@zi;�i
h � 0; (4.25)

i = 1; : : : ;m and 0 � q � �i � �i � 1.
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Proof: (Necessity) By Theorem 1 the commutativity conditions (2.9) are

necessary in order to lower the orders of input derivatives in the dynamics.

To prove necessity of condition (4.25) consider the �nal representation of

the extension and the output given respectively by (2.6) and (4.24). The

components ~fk of eF do not depend on zi;j , i = 1; : : : ;m, j = �i+1; : : : ; �i,

hence (�1)qad
qeF @

@zi;�i
= @

@zi;�i�q
, i = 1; : : : ;m, q = 0; : : : ; �i��i�1, and

thus Lad
qeF @

@zi;�i
~h = (�1)qL @

@zi;�i�q
~h � 0, i = 1; : : : ;m, q = 0; : : : ; �i �

�i � 1, since ~h does not depend on zi;j , i = 1; : : : ;m, j = �i + 1; : : : ; �i.

The condition (4.25) is invariant under change of coordinates of the form

(2.2) and thus it is necessary for lowering the input derivatives orders in

the output equations.

(Su�ciency) Apply the local change of coordinates 	 de�ned in the

proof of Theorem 1. In new coordinates ~xe = 	(xe) we have

(�1)jad
jeF @

@zi;�i
=

@

@zi;�i�j
;

i = 1; : : : ;m; j = 0; : : : ; �i � �i, and thus (4.25) yields

L @

@zi;�i�j
~h � 0;

i.e., ~h does not depend on u
(j)
i , i = 1; : : : ;m, j = �i + 1; : : : ; �i. A gen-

eralized change of coordinates, transforming (2.1), (4.23) into respectively

(2.3), (4.24), is given as the restriction of 	 to X . 2

We end this section by discussing some relations of our results with a

nice study of realization of nonlinear higher order di�erential equations in

inputs and outputs given by van der Schaft [28].

Consider � given by (2.1) and assume that its dynamics

_x = f(x; u
h�1i
1 ; : : : ; u

h�mi
m )

describes the input-output, i.e., external, behaviour for the inputs ui, i =

1; : : : ;m and outputs yi = xi, i = 1; : : : ; n. Assume that in (2.1) �i = 1,

i = 1; : : : ;m. This case is also considered in [28, Section 4] and in [16]. We

can therefore rewrite (2.1) as

_y � f(y; u; _u) = 0: (4.26)

Now according to [28] compute the maximal invariant manifold N� of

d
dt

�
y

u

�
=

�
_y

_u

�
; d

dt

�
_y

_u

�
=

�
v1
v2

�
;

17
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contained in R = 0, where R(y; _y; u; _u) = _y � f(y; u; _u). The invariant

manifold N� is given by (4.26) and we get the following driven state space

system

d
dt

0
@ y

u

_u

1
A =

0
@ f(y; u; _u)

_u

v

1
A (4.27)

with the output

w = (y; u)t:

Observe that the driven state space system (4.27) coincides exactly with

the extension �e, de�ned by (2.8), of (2.1). The next step of the realization

procedure of [28] is to check whether all distributions Si; i � 1, of the algo-

rithm giving S�, the minimal conditioned invariant distribution containing

all control vector �elds of (4.27) (see e.g. [21]), are involutive. Clearly,

S1 = span f @
@ _ui

; i = 1; : : : ;mg is involutive whereas the form of (4.27)

implies that involutivity of S2 is equivalent to
h
ad
F

@
@ _ui

; ad
q

F

@
@ _uj

i
= 0, for

q = 0; 1, and i; j = 1; : : : ;m. The latter is just the commutativity condition

(2.9) satis�ed for �i = 1, �i = 0, i = 1; : : : ;m. From Theorem 1 we thus

conclude the existence of new coordinates ~x =  (x; y) such that

_~x = ~f(~x; u): (4.28)

By local invertibility of  with respect to x = y we get

y = ~ (~x; u) (4.29)

and (4.28){(4.29) yields a state space realization of (4.26). In the case

�i � 1 we get analogous correspondence between the realization procedure

[28] and our approach with the only modi�cation that in (4.27) we take

the extension d 2

dt 2
ui = vi for such i that �i = 1 only. Also in this case the

involutivity of Si, the distributions of the S
�-algorithm, coincides with the

commutativity (2.9).

However, if there exists i such that �i > 1, then the solvability condi-

tions, and consequently solutions, of both problems di�er. Indeed, consider

(2.1), and assume that it describes the input-output behaviour for the in-

puts ui, i = 1; : : : ;m and the outputs yi = xi, i = 1; : : : ; n. We thus

have

_y � f(y; u
h�1i
1 ; : : : ; u

h�mi
m ) = 0: (4.30)

If the commutativity conditions (2.9) are satis�ed for �i = 0, i = 1; : : : ;m,

then by Theorem 1 there exist new coordinates

~x =  (x; u
h�1�1i
1 ; : : : ; u

h�m�1i
m )

such that (2.1) becomes
_~x = ~f(~x; u): (4.31)
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By local invertibility of  with respect to x = y we get

y = ~ (~x; u
h�1�1i
1 ; : : : ; u

h�m�1i
m ); (4.32)

where  depends nontrivially on u
(�i�1)
i since so does f on u

(�i)
i . Therefore

the realization (4.31){(4.32) of (4.30) is more general than that considered

in [28] (see, however, realizations of nonproper linear systems [33], [11]).

On the other hand, apply the realization procedure of [28] to (4.30). A

driven state space realization of (4.30) is given by

d
dt
y = f(y; u

h�1i
1 ; : : : ; u

h�mi
m )

d�i+1

dt�i+1 ui = vn+i; i = 1; : : : ;m;
(4.33)

together with the output w = (y; u)t. Observe once again that (4.33)

coincides with the prolongation, de�ned by (2.8), of (2.1). Compute now

S�, the minimal conditioned invariant distribution of the system (4.33),

equipped with the output w = (y; u)t, containing the control vector �elds.

Recall that we consider the case in which for at least one i we have �i > 1,

and thus there exist r � 1 output components, say yk1 ; : : : ; ykr , such that

P �
\ span f dyk1 ; : : : ; dykrg = 0;

where P � = (S�)?. Now observe that yk1 ; : : : ; ykr will serve, according

to the realization procedure [28], as controls. Recall that in [28] (4.30) is

considered as a di�erential equation in the external variables w = (y; u)t

and that a part of the realization problem is to split w into an input and

an output part. In particular, if all

�i > 1

and

S� = S2 = span f
@

@u
(�i)
i

; ad
F

@

@u
(�i)
i

; i = 1; : : : ;mg

then

P � + span f dyki ; i = 1; : : : ;mg =

P � + span f dui; dyj ; i = 1; : : : ;m; j = 1; : : : ; ng

for a suitable nonunique choice of ki, i = 1; : : : ;m. Hence, in the realiza-

tion of (4.30) constructed according to [28], yki , i = 1; : : : ;m, will serve as

controls whereas the remaining yj and all original controls ui will serve as

outputs. To summarize, if we want to realize (4.30), satisfying �i > 1 for

some i = 1; : : : ;m, via the procedure of [28] then, under the involutivity of
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Si, we get a realization not involving input derivatives but some compo-

nents of y must serve as controls. If we want to keep the original inputs and

outputs of (4.30) then, assuming that the commutativity conditions (2.9)

are satis�ed for �i = 0, we get a realization (4.31){(4.32) whose dynamics

do not depend on input derivatives but the outputs do.

In the above analysis we considered the generalized state x as the output

of (2.1). Now assume that (2.1) describes the dynamics whereas the output

is given by

yi = hi(x; u
h�1i
1 ; : : : ; u

h�mi
m ); i = 1; : : : ; p;

where hi are smooth IR-valued functions. Assume that �i = 1, i =

1; : : : ;m, and consider the problem of realization of�
_x� f(x; u; _u) = 0

y � h(x; u; _u) = 0
(4.34)

According to [28, Section 5], w = (y; u)t forms the vector of external

variables whereas x that of internal ones. A driven state space realization

of (4.34) takes the form (compare [28])�
d
dt
xi = fi(x; u; _u); i = 1; : : : ; n;

d 2

dt 2
ui = vi; i = 1; : : : ;m;

(4.35)

with the outputs�
wi = hi(x; u; _u); i = 1; : : : ; p;

wp+i = ui; i = 1; : : : ;m;
(4.36)

Now, according to [28], we have to compute S�, the minimal conditioned in-

variant distribution for (4.35), equipped with the outputs (4.36), containing

the control vector �elds. We have S1 = span
n

@
@ _ui

; i = 1; : : : ;m
o
. Com-

pute H = hdh; @
@ _u
i and assume that rank H = const. If rank H = k > 0

then dim (S1 \ ker dh) = m � k and k original output components must

serve as inputs of the realization, i.e., if we want to realize the equations

(4.34) as an input-state-output system not involving derivatives of inputs

then, assuming k > 0, we are not able to keep the original speci�cations of

external variables w into inputs and outputs.

The remaining case, i.e., k = 0, gives a nice connection between the

realization procedure [28] and Theorem 3 of this Section. Compute S�, the

minimal conditioned invariant distribution containing S1 = span f @
@ _u
g, for

the system (4.35) with the output (4.36). Recall that k = rank hdh; @
@ _u
i

and thus k = 0 simply means that hdh; @
@ _u
i = L @

@ _u
h � 0 or, equivalently,

S1 \ ker dh = S1: Hence S2 = S1 + span fad
F

@
@ _u
g, where F denotes

the right hand side of (4.35), and S2 = S�. Obviously S1 is involutive,
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whereas the form of (4.35) implies that involutivity of S2 is equivalent toh
ad

q

F

@
@ _ui

; ad
F

@
@ _uj

i
= 0 for q = 0; 1, and i; j = 1; : : : ;m, which is just

commutativity condition (2.9) satis�ed for �i = 1, �i = 0, i = 1; : : : ;m.

This and L @
@ _u
h � 0 yield, according to Theorem 3, new coordinates ~x =

 (x; u) such that the dynamics and the output take respectively the form

_~x = ~f(~x; u) (4.37)

and

y = ~h(~x; u): (4.38)

To summarize, if the distribution S2 is involutive and S1 \ ker dh = S1,

which is equivalent to (2.9), for �i = 1, �i = 0, and L @
@ _u
h � 0, respectively,

then the realization procedure of [28] gives the same coordinates change as

Theorem 3. This results in realizing (4.34) as the system (4.37){(4.38) in

which the original speci�cation of x, u and y as the internal variables, the

inputs, and the outputs, respectively, is kept.

5 Example: Simpli�ed Model of a Crane

We now consider an example borrowed from [15] the interest of which is

manifold. This is a physical system |a crane| in which input derivatives

appear. It illustrates the impossibility for some nonlinear systems to admit

a Kalman state representation and the impossibility of �nding the best

value for the m-tuple (�1; : : : ; �m). The state equations are�
_x1 = x2
_x2 = �

g sinx1
R

�
2x2
R

_R� cosx1
R

�D
; (5.39)

where the inputs are R, the length of the rope and D, the trolley position,

and the state variables (x1; x2) are the angle x1 = �, between the rope and

vertical axis, and its time derivative x2 = _� (see [15] for a precise discussion

of the choice of variables). We see that _R and �D appear linearly in those

equations. Setting u1 = R, u2 = D and keeping the same notations as in

the whole paper (and especially in the proof of Theorem 1), we have �1 = 1

and �2 = 2.

The state space of this system is two-dimensional, X =] � �
2
;+�

2
[�IR

and we extend it to S of dimension seven (K = �1 + 1 + �2 + 1 = 5),

by setting z1;0 = u
(0)
1 ; z1;1 = u

(1)
1 ; z2;0 = u

(0)
2 ; z2;1 = u

(1)
2 ; z2;2 = u

(2)
2 :

The extended state space is S = IR�]0;+1[�IR3
� X . The Lie bracketh

ad
F

@
@z1;1

; @
@z2;2

i
(resp.

h
@
@z1;1

; ad
F

@
@z2;2

i
) vanishes everywhere on S ,

and then there exists a generalized change of coordinates leading to a rep-

resentation with (�1; �2) = (0; 2) (resp.(�1; �2) = (1; 1)) at any point of

21



E. DELALEAU AND W. RESPONDEK

S . However,
h
ad
F

@
@z1;1

; ad
F

@
@z2;2

i
= �

cosx1
(z1;0)2

@
@x2

does not vanish in any

open subset of S and no generalized change of state coordinate exists with

(�1; �2) = (0; 1). As we already discussed in Section 2, we have two in-

comparable solutions to the problem of lowering the orders of the input

derivatives.

In both cases we will compute the vector �elds W1; : : : ;W7, the ows

of which permit to construct change of coordinates 	s0 whose restriction

to X gives a generalized change of coordinates  leading to the desired

representation. We keep the same notations as used in the proof of Theorem

1. Let s0 = (z0; x0) 2 S be the initial condition. In both cases all involved

vector �elds are complete and therefore we will construct global coordinates

(compare also Theorem 2) which can be centered at any s0. For convenience

we choose z01;1 = z02;0 = z02;1 = z02;2 = x01 = x02 = 0 and a �xed z01;0 > 0

because R > 0. Let s = (�z; x) be a point of S in a neighbourhood of s0.

1st case: Removing _R from the representation: In this case we will

lower by one the order of derivation of the �rst control variable R. Using

the notations introduced in the proof of Theorem 1, we have

W1 = Y1;1 = @
@z1;1

; �z1 = z1;1

W2 = Y1;2 = �
2x2
z1;0

@
@x2

+ @
@z1;0

; �z2 = z1;0

W3 = Y2;1 = @
@z2;2

; �z3 = z2;2

W4 = Z2;1 = @
@z2;0

; �z4 = z2;0

W5 = Z2;2 = @
@z2;1

; �z5 = z2;1

W6 = @
@x1

W7 = @
@x2

Thus

�s0(t1; : : : ; t7) =

�
t1; �z

0
2 + t2; t3; t4; t5; t6;

(�z02)
2t7

(�z02 + t2)2

�
;

(recall that �z02 6= 0),

��1s0 (s) =

�
�z1; �z2 � �z02 ; �z3; �z4; �z5; x1;

x2(�z2)
2

(�z02)
2

�
;

and

	s0(�z; x) =

�
�z1; �z2; �z3; �z4; �z5; x1;

x2(�z2)
2

(�z02)
2

�
:

This leads to the new state coordinates (on the original state space)(
~x1 = x1

~x2 =
x2�z

2
2

(�z0
2
)2

: (5.40)
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The �nal representation of the system is (compare [4, 15])(
_~x1 =

R(0)2~x2
R2

_~x2 = �
gR sin ~x1+R �D cos ~x1

(R(0))2

; (5.41)

where R(0) can be chosen arbitrarily. With an appropriate rescaling of R

we can always take R(0) = 1.

2nd case: Removing �D from the representation: In this case we

will lower by one the order of derivation of the second control variable D.

Calculate

W1 = Y1;1 = @
@z1;1

; �z1 = z1;1

W2 = Y2;1 = @
@z2;2

; �z2 = z2;2

W3 = Y2;2 = �
cosx1
z1;0

@
@x2

+ @
@z2;1

; �z3 = z2;1

W4 = Z1;1 = @
@z1;0

; �z4 = z1;0

W5 = Z2;1 = @
@z2;0

; �z5 = z2;0

W6 = @
@x1

W7 = @
@x2

Thus

�s0(t1; : : : ; t7) =

�
t1; t2; t3; �z

0
4 + t4;+t5; t6;�

cos t6

�z04 + t4
t3 + t7

�
;

(recall that �z04 6= 0),

��1s0 (s) =

�
�z1; �z2; �z3; �z4 � �z04 ; �z5; x1; x2 +

�z3 cosx1

�z4

�
;

and

	s0(�z; x) =

�
�z1; �z2; �z3; �z4; �z5; x1; x2 +

�z3 cosx1

�z4

�
:

This leads to the new state coordinates (on the original state space)�
~x1 = x1
~x2 = x2 +

�z3 cosx1
�z4

:

The �nal representation of the system is (compare [15, 4])8>>>>><
>>>>>:

_~x1 = ~x2 �
_D cos ~x1
R

_~x2 = �
g sin ~x1+2 _R~x2+ _D~x2 sin ~x1

R

+
_R _D cos ~x1+( _D)2 cos ~x1 sin ~x1

(R)2

:
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The two representations of the dynamics are not equivalent from the

practical point of view.

As we have just seen it is impossible to remove _R and �D simultaneously

by a generalized change of coordinates but after removing _R we arrive

at (5.41) and we can get rid of �D by simply introducing the new control

variable d = �D. This yields the system (see (5.41), where for simplicity we

put R(0) = 1) �
_~x1 = ~x2=R

2

_~x2 = �dR cos ~x1 � gR sin ~x1
; (5.42)

controlled by R and d and thus no derivatives of controls are involved any

more. The reason for which this procedure works is that the dynamics

(5.41) do not depend on D and _D. The engineering interpretation of the

substitution d = �D is clear: instead of controlling the position D we control

the acceleration d. A geometric interpretation of this procedure replacing

some controls derivatives u
(�i)
i by new controls ûi (which, although lowers

inputs derivatives, is of a di�erent nature than generalized state transfor-

mations) will be discussed in [6].

6 Conclusion

Generalized state representations of nonlinear systems are studied and the

problem of lowering the inputs derivatives orders by generalized coordinate

changes is considered. The obtained restrictive commutativity conditions

imply that generalized systems for which we can remove input derivatives

(or even lower their orders) exhibit a very special structure (compare also

[16], [17], [28]). The discrete-time version of the problem, i.e., that of

removing delays in discrete-time systems [12], is still open.
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