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Lowering the Orders of Derivatives of Controls
in Generalized State Space Systems®

E. Delaleau W. Respondek!

Abstract

In this paper we study the problem of lowering the orders of input
derivatives in generalized state variables representations of nonlin-
ear systems by generalized state transformations. We give neces-
sary and sufficient conditions for the local and global existence of
such transformations. Our conditions are expressed as commutativ-
ity of certain vector fields defined in terms of prolonged dynamics.
These conditions are restrictive, thereby implying that removing all
input derivatives is often impossible in contrast with the linear case
where transformations into Kalman dynamics (not involving any in-
put derivatives) always exist. We also consider the problem of low-
ering the orders of input derivatives in the dynamics and output
equations. Our results are illustrated with an engineering example
of a crane.
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1 Introduction

In 1977 Williamson [32] studied the problem of designing observers for
bilinear systems and he considered transformations depending on deriva-
tives of control. Since then derivatives of controls have been considered in
many control problems, like state transformations and nonlinear observers
[34, 19, 1, 27], inversion (both linear and nonlinear) [29, 30, 8, 25], canon-
ical forms [27, 10], identification [2] and, recently, equivalence [18, 26]. A
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systematic study of linear and nonlinear systems whose dynamics (and out-
puts) depend on derivatives of control has been carried out by Fliess in a
series of papers [8]-[11] using differential algebra'. This approach has led to
a new insight into system theory and to a better understanding of control
problems such as invertibility [8] (compare also [25]), canonical forms [10]
and structure of linear systems [11]. The appearance of input derivatives
has been confirmed by some practical studies [32, 15].

According to Fliess [9], a general state variables representation of non-
linear control systems is of the form

F(:b,w,u,it,...,u(o‘)) = 0, (1.1)
H(y,z,u,u,...,u%) = 0, (1.2)
where u = (u1,...,%my) and y = (y1,...,¥p) are respectively the input and
the output, and x = (z1,...,2,) is the state of the system. Moreover,

transformations between two different states z and & may also depend on
the input and a finite number of its derivatives and are given by

®(x, &, 1,...,u)=0.

Although, as we mentioned above, the general description (1.1)—(1.2) has
been confirmed by some theoretical and practical studies, the classical ex-
plicit representation (without derivatives of the input) of the form

= f(z,u), (1.3)
= h(z,u), 1.4

is still very common and has a lot of advantages. Therefore it is very
natural to describe those general nonlinear systems of the form (1.1)—(1.2),
explicit with respect to & and y, which can be transformed via general state
space transformations to (1.3)—(1.4).

This problem was studied by Freedman and Willems [16] in the case
where the first derivatives of controls appear. They gave also a stochastic
interpretation of the problem. Glad [17] observed that a necessary and suf-
ficient condition to remove u(®), where « is the highest order of derivation
of the control variable, is that it appears linearly. Following Glad, the first
author gave necessary and sufficient conditions in the multi-input case to
lower every «; by one [4], where «; is the highest order of derivation of
the input u;. In the present paper we study and solve the problem in its
full generality. Namely, given any m-tuple (f3i,...,3m) we provide nec-
essary and sufficient conditions for the existence of a (local) generalized
state transformation which brings the system into a representation having
Bi, i = 1,...,m, as the highest input derivatives orders. In particular we

1See also [13, 14] for a differential geometric approach.
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describe systems for which we can remove all inputs derivatives and thus
transform the system into the classical form (1.3)—(1.4). We provide also
conditions for global transformations to exist.

Although systems with derivatives of controls, as well as generalized
state space transformations, appear naturally in differential algebraic ap-
proach (see e.g. [7] for rational realization of nonlinear systems), the ques-
tion of lowering orders of inputs derivatives (removing inputs derivatives)
by such transformations is an integrability problem for a system of PDE’s
and therefore differential geometric framework fits naturally. We extend
(prolong) the system and we state the integrability conditions in terms of
commutativity of certain vectors fields defined by the extension.

The paper is organized as follows. In Section 2 we state the problem and
give the main results, local and global, on lowering the inputs derivatives
orders. In Section 3 we consider linear systems and show how our result
rediscover the known possibility of removing all input derivatives in the
linear case [11]. In this section we also relate our results to the state
space linearization problem, where commutativity is crucial as well. In
Section 4 we consider the problem of removing input derivatives in the
output equations and the dynamics. We also describe some connections
of our results with the procedure of realization of input-output differential
equations given by van der Schaft [28]. In Section 5 we provide a physical
example of crane.

Some results of this paper were announced in [4, 5].

2 Lowering the Orders of Derivatives of Inputs in the
Dynamics

Throughout this paper we will use a convenient notation to denote each
control variable u; and its time derivatives up to the order §; € IV. Namely

(6:) (6:)

= (i, Usy...,u; '), i=1,...,m.

Consider an explicit generalized state representation ¥ of a multi-input
nonlinear dynamics in which each input w;, ¢ = 1,...,m, appears with
«; > 0 as derivation order

Seood = flaad™ L ule. (2.1)

The state z of this system evolves on a C*°-smooth n-dimensional manifold
denoted by X and f is C*°-smooth with respect to all its arguments.

Our purpose is to derive conditions which guarantee the existence of
generalized coordinates transformations v, in the state space, of the form

i =z, ud™ e, (2.2)
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which lead to a state representation
S = fa e, ull, (2.3)

where 8; < «; for all i = 1,...,m. We look for ¢y which is C*-smooth
with respect to all its arguments and (locally) invertible with respect to
z. Observe that we keep the controls and their time derivatives invariant.
In this section we consider dynamics only; systems equipped with outputs
will be considered in Section 4.

A natural framework to investigate this problem is differential geometry
and so we will work in an extended state space denoted by S. The extension
of the state is made by association of new coordinates z; ; with inputs and
their derivatives up to the maximal order appearing in the original state
representation,

D i=1,...,m, j=0,...,0 (2.4)
Put K = Y7 (a; + 1), thus S = R x X and the dimension of the
extended state space? is N = K +n.

We rewrite ¥ and ¥ on the extended state space S respectively as

Zig = U

( ZIZ = f(iIZ,ZLo,...,Zm,am)
Zio = Zi
xe : i=1,...,m, (2.5)
Zii-l = Zi
\ 27:’0” — ugaﬁ'l)
and
( r = f(jaZLOa---:Zm,,Bm)
Zio = Zia
xe : i=1,...,m. (2.6)
Ziaic1 = Ziu
\ ii,ai — ugai+1)

On the extended state space S we will consider a finite prolongation of the
vector field f (resp. f), denoted by F (resp. F), given in local coordinates
by

n m a;—1
i=1 =1 j=0 i,j
- n 5 6 m a;—1 6
(resp. 7 = Zf’% +Z Z Zij+1 W])
i=1 v =1 j=0 i,

2In some cases it is more natural to consider the extended state space S = REX x X,
where R¥ is an open subset of IR¥.
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Let z¢ (resp. #°) denote local coordinates of S, i.e.,

e . .
z° = (Zijy T, T, i =1,...,m, 5 =0,...,q;)

(resp. ¢ = (2, %1, &n, 0 =1,...,m,j=0,...,05)).

%¢ (resp. £¢) defines on the extended state space S a control-affine system

controlled by v; = ugai+1), i=1,...,m, in the following way
e 0
¢ = F + Z (% 62— (28)
i=1 bai

e -~ = 0
(resp. z = F+ i;vl . ),
where F (resp. F) is given by (2.7). We keep the same name ¢ (resp. ©°)
for (2.8) because the only difference between (2.5) and (2.8) is to interpret
uga"ﬂ) as the new controls v;, i = 1,...,m.

Observe that (2.2) can be interpreted as a (local) transformation ¥
of § having the special structure ¥(z,z) = (z,v9(z,)), where z denotes
global coordinates z; j, ¢ =1,...,m, j =0,...,qa;, of IRX. Preserving the
z-coordinates simply means that we do not change u and its derivatives.

It should be noticed that the control vector fields %, i=1,...,m,

are invariant under % which does not depend on 2;.4,, ¢ = 1,...,m, and
therefore they are intrinsically defined in our problem. It turns out that all
informations needed to solve the problem are contained in the Lie algebra
generated by F and the 8% - ’s.

Observe that working loéally at zo we consider controls which are close
to the nominal one corresponding to zg via (2.4). A solution for the local
version of our problem can be stated as follows.

Theorem 1 A generalized change of state coordinates 1 of the form (2.2),
transforming the representation X into X, exists, locally around

s0 = (20,%0) € S,
if, and only if,

0 0
q r
ad}— azi,ai ’ad]: az]-,aj

=0 (2.9)
in a neighbourhood of sy for any 1 <i,j <m and

Q; _ﬂia

67 —ﬁj.

0
0

q
r

ININ
ININ

[S2¢
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Remark 1 A generalized change of coordinates solving the problem is con-
structed in the sufficiency part of the proof of this theorem. An example of
this construction is given in Section 5.

Remark 2 An equivalent way to study the problem of lowering the inputs
derivatives orders is to use the infinite prolongation F*° of [ defined by

(see [22])
Fo zszf?Tk+ZZZi7j+l—32ij’ (2.10)
k=1 j=0i=1 >
where z;j = ugj), i=1,...,m, j >0 (compare (2.4)). It is immediate

to see that (2.9) is equivalent to its modification with F being replaced by
F. In such a modification the infinite sum in (2.10) can be treated only
formally, since all vector fields zaud}’_-oo % (and any of their Lie brack-
ets) depend on a finite number of z; ;’s and thus can be easily computed.
In [4] the condition for lowering the inputs derivatives orders by one (see
Corollary 2 below) is given in terms of F>°. We want to add that F™
can be given a precise interpretation of a smooth vector field on the in-
finite-dimensional manifold J§° (IR, R™) x X, where J§° (IR, R™) denotes
the space of infinite jets at zero of IR™-valued smooth functions [20] (see,
also, [13, 14, 18]).

We state as separate corollaries the two extreme cases, i.e., when we
are able to remove all input derivatives and when we are able to lower the
order of derivative of every input by one.

Corollary 1 A generalized change of state coordinates ¢ of the form (2.2),
transforming ¥ into ¥, a system without derivatives of control, of the form

i: i:f(iau)a

exists if, and only if, ¥ satisfies the commutativity condition (2.9) for 0 <
qg<a;,0<r<aj.

Corollary 2 There exists a generalized change of state coordinates i of
the form (2.2), lowering the highest order of every input derivative of ¥ by
one, if, and only if, the condition (2.9) is satisfied with 0 < ¢q,r < 1.

It follows from Corollary 1 that not for all generalized systems ¥ we are
able to remove all input derivatives using transformations of the form (2.2).
Actually, the restrictive commutativity condition (2.9) implies that this is
a very special case. This purely nonlinear phenomenon (compare [11] and
Section 3) was observed for the first time and studied by Freedman and
Willems [16] (see also [17] and, in the context of state space realization,
28)).
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When we compare Corollary 2 with the original statement of Delaleau
[4] (given in terms of infinite prolongation F>°, compare Remark 2 follow-
ing Theorem 1), we see that in [4] necessary and sufficient conditions are
expressed as (2.9) given for ¢ = r = 1 together with the condition that
the original dynamics ¥ are affine with respect to the highest input deriva-
tives. The latter being necessary conditions for lowering the order of input
derivatives [17, 4], can be expressed in an invariant way as

0 0
—,7— | =0,1<4¢,73<m. 2.11
oy g | =01 <ii<m .11)

Observe that in the scalar input case, (2.11) takes the form

0 0

where « is the input derivative order and it is the only necessary and
sufficient condition for lowering the order of the input derivative by one
[17]. Indeed, the condition [ad}— BE)TQ yad r 857&] = 0 (compare Corollary 2)
holds automatically. Thus, if a scalar input dynamics are affine with respect
to the highest derivative of control variable, then it is always possible to
lower its order by one.

Notice that there is no natural order for different collections of 3;’s
giving the input derivatives orders of the transformed system. Clearly, the
best case is 3; =0, ¢ = 1,...,m (corresponding to removing all inputs
derivatives), while the worst one is 8; = «;, ¢ = 1,...,m (meaning that
none of the orders can be lowered). Next to it, however, there are m
incomparable cases, 3; = a; — 1, B; = «;, ¢ # j, i.e., when we are able to
lower the highest order of derivation of the j** input by one. Clearly, this

is possible if, and only if, (compare with (2.12))
0 0

drp— ,— | =0,i=1,...,m.

[a F 02j,a ’32i,ai] T

Observe that it can happen that we are able to lower the orders of derivation
of the j** and k'* inputs but, if [ad}— 821,7% ;ad ¢ ng,ak] # 0, not both
of them simultaneously. In this case there is no collection of 3;’s such that
ﬁjgaj—landﬁkgak—l.

To summarize, given ¥, in general there is no m-tuple (Bi,...,08m)
giving minimal possible orders of derivatives of all inputs simultaneously.
For every choice of 31, ..., Bn we can check, using Theorem 1, whether one
can lower the input derivatives respectively by «; — 8;, i = 1,...,m, but
there is no evident optimal choice. See Section 5 for an illustration of this
phenomenon.
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Proof of Theorem 1: (Necessity) Calculate the prolonged vector field,
given by (2.7), associated with the final representation of the system X.

For any k£ the component fk does not depend on z;;, i =1,...,m, j =
Bi +1,...,q;, and thus ad% agi,ai = (—1)qm, q=0,...,05 — B;.

Therefore the condition (2.9) of Theorem 1 holds. Moreover, this condition
is invariant under generalized change of coordinates of the form (2.2) and
thus it is necessary for the solvability of the problem.

(Sufficiency) For notational convenience we put

— 9 .
Xi = 5 i=1,...,m,
i i—1 o . .
Y;; = (-1) 1ad}_- T i=1,....m, j=1,...,a; — 8; + 1,
_ _9 L .
Ziv]' - ma Z_]-a"'amaj_]-a"'aﬂia

where 8; < a;,i=1,...,m. Set L =" (; —B; +1) and M =31" | §;
(one has K = L+ M). The X;’s are the n unit vector fields corresponding
to the original coordinates of state space X, the Y;;’s are the L vector
fields which are involved in condition (2.9) and the Z; ;’s are the M vector
fields corresponding to the control variables and their time derivatives up
to the order® 3; — 1. They form a set of N = L 4+ M + n vector fields on
the extended state space. We will denote them by Wiy,...,Wx and order
as follows: the first L of them are the Y ;’s (ordered lexicographically),
followed by the Z; ;’s (ordered lexicographically) and finally followed by
the Xi’S.

The extension procedure (2.4) permits to define coordinates z;; on
the extended state space. In most places it is more convenient to work
with double indices (i,j) for the z-coordinates but we have also to use
one index and to establish a correspondence between them. Observe that

— 0 s _ _0
1/;'7]' = m (mOd TX), ] = 1,...,Oéi _ﬂl +1 and Z7,7] = W
Therefore to every Wy, k = 1,..., K we can associate a unique vector
field BBZ—J i=1,...,m,j =0,...,a; such that W} = 8“;—] (mod TX).
This correspondence between the W}’s and the 832—”_’5 allows us to put

Zr = z;;. We will speak about z-coordinates when using the z; ;’s and
about z-coordinates when using the zj’s.

For a vector field V on S we will denote by ¢t (s) its flow, i.e., the
solution of the differential equation % ®i,(s) = V(¢! (s)) passing through
s at t = 0. For each s, t —> ¢!,(s) is a curve defined for ¢ in some open
interval depending on s. For each ¢ the map s — ¢! (s) is a smooth
diffeomorphism.

The generalized change of state coordinates v is defined as the restric-
tion, to the original state space X', of the (translated) inverse of composition

3Notice that there is no vector field Z;,j when §; = 0.
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of flows of vector fields on S. For an initial condition sy = (Z, o), consider
the map ®,, : Vo — S defined in a neighbourhood Vy of 0 € IRY and
given for any (t1,...,tn) € Vo by

sy (t1,- -, tN) = Oii, (17, (- (817, (50)) - ).

As we already mentioned we want to preserve the Z-coordinates (controls
and their derivatives) and thus we put

\1’80(27 1‘) = (I>s_01(2,x) + (2071'0)7

which is simply a translation of <I>s_01, by a constant vector, of the inverse
map of ®,, (the translation in the z-part is added to preserve zq). Observe
that from the way we order the components Z, of Z it is clear that Zj
correspond to tg.

In the sequel, we will omit the explicit reference to sp and denote @4,
simply by ®, keeping in mind that ® is defined as composition of flows at
the point sp. Similarly, we write ¥ instead of ¥,,. We will now prove the
five following claims:

(i) ¥ defines a local coordinate system at sy = (Zp,79) € S = RX x X'.

(ii) @ preserves each z;;, i =1,...,m,and j =0,...,q, i.e., ¥(Z,z)
= (z,2) for a suitable Z(Z, z).
(ili) ¥ maps the vector fields ade,'_- Bgi — into the vector fields azai o

i=1,...,m,and j =0,...,0; — ;.

(iv) All components of ¥, except for those which are identically equal
t0 Zia;, ¢ = 1,...,m (compare step (ii)), do not depend on z; 4,
1=1,...,m.

(v) In new extended state space coordinates given by #¢ = ¥(z°),
Y€ takes the form ¥°, i.e., its dynamics f do not depend on z;;,
i=1,....m,and j=06; +1,...,0;.

It is obvious that statements (i), (iii)—(v) can be proved for ®~!, instead of
¥, since the two maps differ by a translation by a constant vector. Because
of notation convenience we prove them for ®~'. In the sequel of the proof
we set t = (t1,...,tN).

Proof of (i): We will first prove that ® is a local diffeomorphism by
checking its rank at t = 0 € IR™. For a diffeomorphism ¢ : S— S
and a vector field W we denote by p.W the transformed vector field, i.e.,
(0 W)(y) = (D(p)‘¢_1(y)W(go’1(y)), where Dy stands for the jacobian
matrix of . The partial derivative of ® with respect to t;, i =1,..., N, is

BE(t) = D, (- (b)) Do, 2 (000, (- (@1, (0)) )
= (B, (- (D7) - ))e Wil(®(s0)),

9
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where w; = W( ((bWN(sU))...). This gives 2—2(0) = W;(so). On the
other hand it is easy to see that all W, are independent since
. G 0
Y, = (1) tadi! =
7 ( ) F aziﬂi azi,ai—j+1

Thus @ is of full rank N at 0 and & is a local diffeomorphism. Finally !,
which is a local diffeomorphism too, from a neighbourhood of sy € S into
IRN, defines a local coordinates system at sg.

(mod TX). (2.13)

Proof of (ii): Let us see how the composition ® of flows transforms a
point (Z,z) € S. It is clear that, for alli =1,...,n,

% (2,2) = (7,9), (2.14)
for a suitable £ € AX. Consider now the remaining vector fields
Wi,...,Wrinm. Wehave Y ; = azﬁaﬁ (mod TX),j=1,...,0;—B; +
1, (compare (2.13)) and Z;; = E,ZBZ,T (mod TX), j = 1,...,0;. There-
fore, as we already mentioned, to every Wi, k = 1,..., K (recall that
K = L + M), there corresponds a unique vector field %ij, i1=1,...,m,
j=0,...,a;, such that 7

Wy, = dTX). 2.15
k 0z, (mo ) ( )

We have Zi, = z; ;. From (2.15), we see that for any k =1,..., K,
W (Z,2) = (2, %), (2.16)

where Z; = Z;, 1 # k, Z;, = Z +t;, and Z is a suitable point of X. Combining
(2.14) and (2.16), we see that D(z, 4,)(t1,-..,tn) = (Z1,..., 2k, &) € R¥ x
X, where Z; = Zg; + t;, i = 1,..., K. Thus ¥, which differs from &' by
the translation by the vector (Zy,xo) preserves z;, i = 1,..., K and hence
preserves all z; ;,i=1,...,m,j=0,...,«

Proof of (iii): Because of the condition (2.9) the first L vector fields among
the W3,’s, which correspond to the Y; ;’s, are commuting in a neighbourhood
of sg, i.e., [W;, W;] =0, 1 <4,j <L, and thus their flows commute too
[31]. Hence for any i =1,...,L,
() = 4, (05, (- (65, (50))--))
i ti— i
= Ol (o (D (o (B (50)) ) ).

Using this fact we obtain, for i = 1,..., L,

oo 9 t ti—1 i1
8_ti(t) = 8_ti¢Wi("' W (W (o (81, (50)) -2 ) )

= Wil (- b (B (o (B (50)) ) )
= Wi(a().
10
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For the remaining N — L vector fields W;, i = L + 1,...,N, there is
no commutativity assumption and we simply get, like in the proof of (i),

g—f:(t) = Wi({)(t)), where W; is the vector field W; transformed by the

action of the jacobian matrix corresponding to composition of flows of
Wi,...,Wi_1. Thus Z2(t) = (Wy,...,Wr, Wry1,...,Wn)(®(t)),. Hence

we obtain

Id = (@71)*(W17'"7WL7WL+17"'7WN)
meaning that ad]_- s , which is one of the first L vector fields among the
Wi’s, is mapped by &~ lnto%,i=l,...,mandj:O,...,ai—,Bi.

00—

Proof of (iv): From (iii), we know that @;1(522, —) = Bg and thus the

components of ®~! do not depend on z;4,,i =1,... (except for those
which are identically equal to z; ;).

Proof of (v): Foranyi=1,...,mand j =3;+1,...,q; compute

F ool = [@.4(F) 2, 1(ad;f T -l
= . N([F adp =D
= Il( dal_ﬁl aazi,ai
= 2,

where the first and the last equalities follow from (iii), whereas the second
one does from a fundamental property of the Lie bracket (see [31]). From
the equality [5 5’-'] T we conclude that f, which is the Z-part of

.7-', does not depend on ziﬁj, i=1,....m, j =B +1,...,a;. We have
U(z,z) = (z,%) where %, being a function of (Z,z), does not depend on
Ziass 8 = 1,...,m (compare (iv)). The identity with respect to Z-compo-
nents follows from (ii).

The generalized change of coordinates % in the original state space X
is now easy to define. Namely, put ¢(Z,z) = #(Z,z). Coming back to the
original notations we get the desired form (2.2) of

Y= ¢(w,u§a171>, ... ,us,f’"*l)).

Moreover, (v) implies that ¢ transforms ¥ into ¥ yielding the dynamics
I= f(j, u§’81), .. (’3’“)) with input derivatives orders lowered respectively

byai—ﬂi,izl,..., m. a

We end this section by studying global aspects of the problem of lower-
ing the orders of input derivatives. To formulate the problem, assume that

11
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we are given a nonlinear control system X, evolving on a smooth manifold
X, whose dynamics depend on input derivatives and is given, in local co-
ordinates x = (z1,...,z,) of X, by (2.1). Together with X, we consider its
prolongation ¥¢, whose state space is S = IR¥ x X and whose dynamics
are given by (2.5). If we consider S as a trivial fibre bundle over IR¥ then
(2.1) describes the dynamics along the fibres.

Now, the problem of global lowering the inputs derivatives orders is to
find a global fibre bundle diffeomorphism ¥ = (id zx ,v) of IRX x X', where
1 does not depend on z;4,,%=1,...,m, and ¥ transforms the form of ¥¢
given by (2.5) into that of £° given by (2.6). As we already mentioned we
do not change the control variables (and their derivatives) and hence we
do not transform the base RX.

Having defined the problem of global lowering the orders of inputs
derivatives we state and prove our global result.

Theorem 2 The problem of global lowering the orders of input derivatives,
by a global transformation ¥ = (idgx,v) of X¢ into X, is solvable if,
and only if, X¢ satisfies the commutativity condition (2.9) of Theorem 1
everywhere, fori,j =1,...,m, 0 < g <a; —f3;, 0 <r < a; —fj, and
moreover the vector fields ad_;_- %, i=1,....m,j=0,...,a; — B;, are

complete.

Proof: (Necessity) By Theorem 1, the condition (2.9) is necessary for
the problem of local lowering the orders of input derivatives orders and

; S i o _ 0 T
so is for the global problem. For 3¢ we have adi_ Pt = P ) T
0,...,3; and since the z; ;’s form global coordinates on the base IR¥, the
completeness of ad}_- %, i=1,...,m,5=0,...,a; — B, follows.

(Sufficiency) Recall from the proof of Theorem 1 the notation

Yvi,j = (_l)jila‘d;_:l agia,a i:]-a"'ama j:]-a---aai_ﬂi'i']-a

ZiJ = 8,(297;’]',1’ i=17"'amv.j=15---7ﬁi
and keep denoting the Y; ;’s by Wy,...,Wr and the Z; ;’s by Wry1,..., Wk,
where K = L + M. Define a map ¥: S — S by

U(t, ) = ¢y, (Dii, (- - - (0355, (0,2)) ),

for any (t1,...,tx,z) = (t,z) € R¥ x X = S. Since the vector fields Y; ;
are complete, as clearly are the Z; ;, we see that ¥ is a globally defined
smooth map. Observe that W, = gzk (mod TX), k =1,...,K and thus
repeating the arguments used in the proof of Theorem 1 (step (ii)) we see
that ¥ is an identity on the base IR (composition of flows of X;, as used

12
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in the proof of Theorem 1, is irrelevant since they are identity on the base
too). To prove that ¥ is bijective assume that ¥(¢,2) = ¥(¢,Z). When
projected on the base IRX, every Y; ; and every Z; ; is of the form W, = gzk
for a suitable & = 1,...,K and hence ¢t = . This means that t; = #;,
i =1,...,K and the uniqueness of solutions of nonautonomous differential
equations defined by each W;, ¢ = 1,..., K, on X implies that x = z.
To prove that ¥ is surjective choose (7,y) € S. To find (¢, ) such that
U(t,z) = (1,y) we take 7 =t and (t,z) = ¢y " (... (¢34 (0,9)) - ..). Thus,
by completeness, the inverse of ¥ always exists and is smooth. Repeating
the argument used in the proof of Theorem 1 we see that ¥(z,z) maps

globally ¢ into e, a

3 Linear and Linearizable Systems

In this section we show how our results, when applied to linear systems,
rediscover the known facts about removing all input derivatives [11]. Con-
sider a generalized linear system of the form

m [ 7
ZLl C&=A$+ZZBi7]’u§J),
i=1 j=0
where = € IR™, ugj) € IR. We study the problem of transforming ¥, via a

generalized change of coordinates of the form
i =, ul™ e, (3.17)
into a Kalman representation, i.e., a linear control system of the form
Yk: & =A%+ Bu, (3.18)

where u = (u1,...,u,) € R™. Of course, it is natural to look for (3.17)
within the class of linear transformations (depending on the control and
its derivatives). It is known from recent results in the linear theory [11]
obtained using module theory approach that transforming ¥ into X is
always possible (compare also [4]). We can deduce this fact from the results
of Section 2.

Proposition 1 There always exists a global linear transformation of the

form
o —

m 1
i‘zpl‘-l-z Z Ri,jugj),
i=1

Jj=0

with P invertible, bringing X1, into a Kalman state representation X .

13
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Proof: Consider the extension ¥ of ¥;. By a direct computation we
get that every (—l)jadj_- %, i=1,...,m,j=0,...,q; is of the form

9 jo . j i 8
A +F; 5 for a suitable constant vector Fj. Therefore all ad z- Do
t=1,...,m, j = 0,...,a;, having constant components, commute and

thus satisfy the condition (2.9) of Theorem 1 for 8; = 0, i = 1,...,m.
Obviously they are complete and from Theorem 2 we deduce the existence
of a global transformation ¥ bringing ¥, into X . Moreover ¥, as defined
in the proof of Theorem 2, is linear with respect to all its arguments.
O

One can observe that the conditions of theorems 1 and 2 for the lo-
cal and global solvability of the problem remind respectively those which
describe local and global state space linearization, i.e., linearization via
a (local) diffeomorphism of the state space. Indeed, if we consider the
control system (2.8) then (2.9) form a part of the commutativity condi-
tions (see [3, 24]) which describe state space linearizable systems, whereas

¢ _9 )
the completeness of ad;,_- DZian (recall that 2zia; Are the control vector

fields of (2.8)) appears in [3,’ 24] in the solution of the global state space
linearization.

This issue can be clarified if we consider the problem of transforming
¥, given by (2.1), into a Kalman linear representation ¥k given by (3.18).
Assume f(sg) = 0, otherwise we have to add a constant vector to the right
side of (3.18).

Proposition 2

(i) X is locally transformable, at so = (20, %0), via a generalized state space
transformation v of the form (2.2), into a Kalman linear system Y g
if, and only if, the extension X¢, given by (2.8), of ¥ satisfies

0 0
q r = 1
ad]_- 92 ,&d]: 62]',%. 0, (3 9)

i,04
in a neighbourhood of sg, for any 1 <i,j7 <m and

0
0

a;+n+1,
aj+n+1,

q

<
r <

ININ

and

dim span {ad;f-""'q 6(2 (s0),1<i<m,1<qg<n}=mn. (3.20)

)

(ii) X is globally transformable to Xk if, and only if, it satisfies (3.19) and
(3.20) everywhere, the vector field F is complete, and moreover X is
simply connected.

14
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Remark 3 Now the role of (3.19) is clear. If it is fulfilled for 0 < q < ay,
0 <r < a; then we are able to remove all input derivatives and we get a
system of the form

I = f(&u). (3.21)
- i+1 0 aj 9 — () il . _
The assumption ad;f- Zian ,ad]_- 8Zj,aj] = 0 implies that z;p0, © =

1,...,m appear linearly and thus (3.21) is an affine system with respect to
controls u; = z;, i.e., of the form

m
T =go(Z) + Z u;gi(Z). (3.22)
i=1
Now we observe that ad;_‘-i+1 % = zzzlgi7kg—h, where g; (%) are com-

ponents of ¢;(Z), and therefore (3.19) for a; +1 < ¢ < a; +n+ 1 and
a; +1<r<a;+n+1, together with (3.20), represent the standard state
space linearization conditions (see e.g. [21, Theorem 5.3] or [24, Theorem
3.1]).

Notice that if we apply linearization directly to X¢, as it satisfies the
commutativity condition (3.19) and

0
dimspan{ad]q_-a (80),1<i<m,0<g<a;+n} =K +n,
Zi, 0
then we end up with a linear system X5 (extension of Lx) but we may
change z-coordinates. We want to preserve them and that is the reason to
transform X° into X% in two steps (removing input derivatives and then
applying the linearization to the T-part of the system).

Remark 4 If we drop the simple connectedness assumption then the con-
ditions (ii) in Proposition 2 imply the global transformation of ¥ into a
Kalman linear system evolving on IRP x T"7P where T" P denotes a
(n — p)-dimensional torus. Observe that if we are interested in global low-
ering the orders of (removing, in particular) input derivatives only we do
not have to put any topological assumption on X. Indeed, X can be any
smooth manifold and the map ¥, as defined in the proof of Theorem 2,
gives a global diffeomorphism of IRX x X . In the problem of simultaneous
removing derivatives and linearization we are looking for a global diffeomor-
phism ¥ : RE x X — IRK x IR™ and hence we have to put a topological
assumption on X.

Proof of Proposition 2: Necessity of (i) is obvious. To prove sufficiency

we just perform the two-steps procedure as described in Remark 3.
Necessity of (ii) is obvious. To prove sufficiency, observe that the vector

fields %, i=1,...,m, are complete and that the Lie algebra L gener-

ated by F and %, i=1,...,m, is finite dimensional (the latter follows,

15
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for instance, from local linearizability (i)). Hence all vector fields belong-

ing to £ are complete [23], in particular so are ad;_- Bgi o i =1,...,m,

q=0,...,0; + n. Now, by Theorem 2, we apply a globz;l diffeomorphism
to remove all inputs derivatives and we arrive at (3.21). Just as above
we conclude that (3.21) is actually of the form (3.22). By applying global
linearization results [3, 24] (commutativity, completeness and simple con-
nectedness of X') we get a global diffeomorphism transforming (3.22) into
(3.18). m|

Observe that under (3.19), satisfied for 0 < ¢ < a; +n+ 1,0 <r <
a; +n+1, and (3.20) (i.e., in the case of locally linearizable systems) the
completeness of F and that of ad}_- %, 1=1,...,m,q=0,...,q; +n,
are equivalent. Actually, in the statement of Proposition 2 (ii) the former
can be replaced by the latter. If we study the global problem of lowering
the orders of derivatives of inputs, then such equivalence is not present (£

need not be finite dimensional) and in Theorem 2 we use the completeness

'
of ad;,_- Pz

4 Lowering the Orders of Input Derivatives in the Dy-
namics and Output Equations

In this section we discuss the problem of lowering the input derivatives
orders simultaneously in the dynamics and in the output equations

y = h(z, !, . uldm, (4.23)

where h is a IRP-valued function, smooth with respect to all its arguments.

It is known that already in the linear case this is, in general, not possible
and requires some additional conditions [11]. Let h be a smooth vector-
valued function and f a smooth vector field. Then Ly h stands for the Lie
derivative of h along f.

Theorem 3 There exist a generalized change of state coordinates of the
form (2.2) transforming locally ¥, with output equations (4.23), into X,
with output equations

y = h(@,ul®, . ulfh, (4.24)
if, and only if, ¥ satisfies the commutativity conditions (2.9) and moreover

Luag 4 h=0, (4.25)

i=1,...mand 0 <qg<a; —3; — 1.
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Proof: (Necessity) By Theorem 1 the commutativity conditions (2.9) are
necessary in order to lower the orders of input derivatives in the dynamics.
To prove necessity of condition (4.25) consider the final representation of
the extension and the output given respectively by (2.6) and (4.24). The

components f, of F do not depend on Zig,t=1,....m,i=0:;+1,..., a4
¢ 8 _ _2 C_ — _ 3 _
hence (—1)qad:7t_ 5Ziar = i T 1,....,m,q=0,...,a; —8; —1, and

9%, 0Zi,a;—q

thus L4« o iL:(—l)qL P) h=0,i=1,....,m,q=0,...,0; —
.7:

B; — 1, since h does not depend on Zij,t=1,...,m, 5 =06+1,..., .
The condition (4.25) is invariant under change of coordinates of the form
(2.2) and thus it is necessary for lowering the input derivatives orders in
the output equations.

(Sufficiency) Apply the local change of coordinates ¥ defined in the
proof of Theorem 1. In new coordinates ¢ = ¥(z°) we have

.0 0
_1)iadl _
( 1) ad}— azi,ai azl}az‘—]’,

i=1,...,m,j=0,...,a; — 3, and thus (4.25) yields

L_o» h=0,

0Zi,0i—j
i.e., h does not depend on ugj), i=1,....m,j=08+1,...,0;. A gen-
eralized change of coordinates, transforming (2.1), (4.23) into respectively
(2.3), (4.24), is given as the restriction of ¥ to X. ad

We end this section by discussing some relations of our results with a
nice study of realization of nonlinear higher order differential equations in
inputs and outputs given by van der Schaft [28].

Consider ¥ given by (2.1) and assume that its dynamics

I = f(x,u§m>,...,u$f;m>)

describes the input-output, i.e., external, behaviour for the inputs w;, i =

1,...,m and outputs y; = z;, ¢ = 1,...,n. Assume that in (2.1) a; = 1,
i =1,...,m. This case is also considered in [28, Section 4] and in [16]. We
can therefore rewrite (2.1) as

y— f(y,Uﬂ.Jf) =0. (426)

Now according to [28] compute the maximal invariant manifold N* of

#a)=(0) #(0)-().

17
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contained in R = 0, where R(y,y,u,u) = y — f(y,u,u). The invariant
manifold N* is given by (4.26) and we get the following driven state space
system

y f(y,u,1)
41y | = i (4.27)
i v

with the output
w = (y,u)".

Observe that the driven state space system (4.27) coincides exactly with
the extension X¢, defined by (2.8), of (2.1). The next step of the realization
procedure of [28] is to check whether all distributions S;, ¢ > 1, of the algo-
rithm giving S*, the minimal conditioned invariant distribution containing
all control vector fields of (4.27) (see e.g. [21]), are involutive. Clearly,
St = span{£—, i = 1,...,m} is involutive whereas the form of (4.27)
implies that involutivity of §? is equivalent to [ad]_— %, ad;_. %] =0, for
q=0,1,and ¢,5 = 1,...,m. The latter is just the commutativity condition

(2.9) satisfied for a; = 1, 8; = 0,4 = 1,...,m. From Theorem 1 we thus
conclude the existence of new coordinates & = ¢ (z,y) such that

i = f(&,u). (4.28)

By local invertibility of ¥ with respect to £ = y we get

y = 0(7,u) (4.20)

and (4.28)—(4.29) yields a state space realization of (4.26). In the case
a; <1 we get analogous correspondence between the realization procedure
[28] and our approach with the only modification that in (4.27) we take
the extension ;Tiui = v; for such 7 that «; = 1 only. Also in this case the
involutivity of S;, the distributions of the S*-algorithm, coincides with the
commutativity (2.9).

However, if there exists 7 such that a; > 1, then the solvability condi-
tions, and consequently solutions, of both problems differ. Indeed, consider
(2.1), and assume that it describes the input-output behaviour for the in-
puts u;, ¢+ = 1,...,m and the outputs y; = x;, ¢ = 1,...,n. We thus
have

y_f(y,u§al>’-“’u$:m))=0. (430)
If the commutativity conditions (2.9) are satisfied for 3; =0,i=1,...,m,

then by Theorem 1 there exist new coordinates
i= ¢(w,u§arl>, e ,uﬁf;’“fl))

such that (2.1) becomes o
&= f(z,u). (4.31)

18



LOWERING THE ORDERS OF DERIVATIVES OF CONTROLS

By local invertibility of ¢ with respect to = = y we get

y=d(Eu™ T, (4.32)
where ¥ depends nontrivially on ugai_l) since so does f on uga"). Therefore
the realization (4.31)—(4.32) of (4.30) is more general than that considered
in [28] (see, however, realizations of nonproper linear systems [33], [11]).

On the other hand, apply the realization procedure of [28] to (4.30). A
driven state space realization of (4.30) is given by

4. _ (ar) (am)
dai+1dt y f(y? ul' yeres Um ) (433)
G Wi = Upgg, 0=1,...,m,

together with the output w = (y,u)T. Observe once again that (4.33)
coincides with the prolongation, defined by (2.8), of (2.1). Compute now
S*, the minimal conditioned invariant distribution of the system (4.33),
equipped with the output w = (y,u)T, containing the control vector fields.
Recall that we consider the case in which for at least one 7 we have a; > 1,

and thus there exist » > 1 output components, say yi,, ..., Yk, , such that
P*nspan{ dyg,,..., dyr.} =0,
where P* = (§*)-. Now observe that yg,,...,yr, will serve, according

to the realization procedure [28], as controls. Recall that in [28] (4.30) is
considered as a differential equation in the external variables w = (y,u)T
and that a part of the realization problem is to split w into an input and
an output part. In particular, if all

a; >1
and 5 5
*x __ Q2 __ s

S* =5 = span{au(ai) ,ad £ pwen) yvi=1,...,m}
then

P*+span{ dy,,i=1,...,m} =

P* +span{ du;, dy;,i=1,...,m,j=1,...,n}

for a suitable nonunique choice of k;, i = 1,...,m. Hence, in the realiza-
tion of (4.30) constructed according to [28], yi,, i = 1,...,m, will serve as

controls whereas the remaining y; and all original controls u; will serve as
outputs. To summarize, if we want to realize (4.30), satisfying «; > 1 for
some ¢ = 1,...,m, via the procedure of [28] then, under the involutivity of
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S, we get a realization not involving input derivatives but some compo-
nents of y must serve as controls. If we want to keep the original inputs and
outputs of (4.30) then, assuming that the commutativity conditions (2.9)
are satisfied for 8; = 0, we get a realization (4.31)—(4.32) whose dynamics
do not depend on input derivatives but the outputs do.

In the above analysis we considered the generalized state x as the output
of (2.1). Now assume that (2.1) describes the dynamics whereas the output
is given by

Yi = hi(wﬂu§a1>’ s 7u$sm))7 ’L = 17 -y Dy
where h; are smooth IR-valued functions. Assume that o; = 1, i =
1,...,m, and consider the problem of realization of
z— f(z,u,i) = 0
At (439
According to [28, Section 5], w = (y,u)T forms the vector of external

variables whereas = that of internal ones. A driven state space realization
of (4.34) takes the form (compare [28])

d — ] ) =
{ fimo= filw, i), i=1,..,m, (4.35)
Lsu; = v, i=1,...,m,
with the outputs
{ wi = hi(w,ua), i=1...p, (4.36)
Wp+i = Ui, i=1...,m,

Now, according to [28], we have to compute S*, the minimal conditioned in-
variant distribution for (4.35), equipped with the outputs (4.36), containing

the control vector fields. We have S' = span %, i=1,...,mp. Com-

pute H = (dh, &) and assume that rank H = const. If rank H =k >0
then dim (S! Nker dh) = m — k and k original output components must
serve as inputs of the realization, i.e., if we want to realize the equations
(4.34) as an input-state-output system not involving derivatives of inputs
then, assuming k& > 0, we are not able to keep the original specifications of
external variables w into inputs and outputs.

The remaining case, i.e., k = 0, gives a nice connection between the
realization procedure [28] and Theorem 3 of this Section. Compute S*, the
minimal conditioned invariant distribution containing S! = span {%}, for
the system (4.35) with the output (4.36). Recall that k£ = rank (dh, %)
and thus k£ = 0 simply means that (dh, %) = L% h = 0 or, equivalently,
S' Nker dh = S'. Hence 5% = S* + span{adr 57}, where F denotes
the right hand side of (4.35), and S?> = S*. Obviously S! is involutive,
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whereas the form of (4.35) implies that involutivity of S? is equivalent to
[ad % iz ady 2] = 0 for ¢ = 0,1, and i,j = 1,...,m, which is just
commutativity condition (2.9) satisfied for a; = 1, 8; = 0,1 =1,...,m.
This and L 2 h = 0 yield, according to Theorem 3 new coordmates z=
Y(x,u) such that the dynamics and the output take respectively the form

i= f(&,u) (4.37)

and ~
y = h(Z,u). (4.38)

To summarize, if the distribution S2 is involutive and S' N ker dh = S?,
which is equivalent to (2.9), fora; =1, 8; =0, and L 2 h = 0, respectively,
then the realization procedure of [28] gives the same coordlnates change as
Theorem 3. This results in realizing (4.34) as the system (4.37)—(4.38) in
which the original specification of z, u and y as the internal variables, the
inputs, and the outputs, respectively, is kept.

5 Example: Simplified Model of a Crane

We now consider an example borrowed from [15] the interest of which is
manifold. This is a physical system —a crane— in which input derivatives
appear. It illustrates the impossibility for some nonlinear systems to admit
a Kalman state representation and the impossibility of finding the best

value for the m-tuple (81, .., 3m). The state equations are
jf'l = T2
{ Ty = _%_%R_co;zlb , (5.39)

where the inputs are R, the length of the rope and D, the trolley position,
and the state variables (z1,z2) are the angle z; = 8, between the rope and
vertical axis, and its time derivative 25 = 6 (see [15] for a precise discussion
of the choice of variables). We see that R and D appear linearly in those
equations. Setting u; = R, us = D and keeping the same notations as in
the whole paper (and especially in the proof of Theorem 1), we have oy = 1
and ap = 2.

The state space of this system is two-dimensional, X' =] — 7, +7[x R

and we extend it to S of dimension seven (K = a; + 1+ as +1 = 5),
by setting z1, = ug ),zll = ug ),220 = ug),zgl = ugl),zgg = ug2).
The extended state space is S = IRx]0, +oo[xR*> x X. The Lie bracket
[ad]_— %1,1’ %2’2] (resp. [B‘?Z—Ll,ad}— 5‘?2—2,2 ) vanishes everywhere on S,
and then there exists a generalized change of coordinates leading to a rep-
resentation with (31,82) = (0,2) (resp.(81,02) = (1,1)) at any point of
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o 5 _ CcoS T
S. However, ad_7_— ETT ,ad_7_— 973 = " (z10)? Bm does not vanish in any

open subset of S and no generalized change of state coordinate exists with
(B1,B2) = (0,1). As we already discussed in Section 2, we have two in-
comparable solutions to the problem of lowering the orders of the input
derivatives.

In both cases we will compute the vector fields Wy,..., Wy, the flows
of which permit to construct change of coordinates ¥, whose restriction
to X gives a generalized change of coordinates 1 leading to the desired
representation. We keep the same notations as used in the proof of Theorem
1. Let s = (2°,2°) € S be the initial condition. In both cases all involved
vector fields are complete and therefore we will construct global coordinates
(compare also Theorem 2) which can be centered at any sg. For convenience
we choose 29 = 205 = 28, = 20, = 2} = 25 = 0 and a fixed 20, > 0
because R > 0. Let s = (Z, x) be a point of S in a neighbourhood of 5.

15t case: Removing R from the representation: In this case we will
lower by one the order of derivation of the first control variable R. Using
the notations introduced in the proof of Theorem 1, we have

o —
Wi = Ya1 = 2711 Zn =z
W - Y _ sz o Il = _
2 = Yip = 09z Tz 2 = %10
— — o ' 5. —
Wy = Y2,1 = 3532 23 = 222
— - 0’ 5 =
Wo = Zon = 555 Zy = Za2
8" -
Ws = Zr2 = 55775 Zs = 221
22,
We G
Wy oy

Thus

50 (53)2t7
(I)SO(tl,...,t7): t1,22 +t2,t3,t4,t5,t6,m y

(recall that z9 # 0),

B o o 72(22)2
@s()l(s) — <217Z2 — 23,23,24725,1'17 (2Z(0)22) ) )
2

and

952(52)2) _

Vs (2,2) = (51,52,53,54,55,$1, (20)2
2

This leads to the new state coordinates (on the original state space)

551 = I
T2 = 012
(23)
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The final representation of the system is (compare [4, 15])

B = RO‘E
. (5.41)

5 _ _gRsina”cl—&-Rﬁcosi'l )
2 = (R(0))*

where R(0) can be chosen arbitrarily. With an appropriate rescaling of R
we can always take R(0) = 1.

27? case: Removing D from the representation: In this case we
will lower by one the order of derivation of the second control variable D.
Calculate

_ _ 8 5
W, = Y1,1 = Pz 21 = 211
o’ -
Wy = Yau = 5575, Zy = 292
_ _ _cc;szl o 0 = —
W3 - Y‘272 - 21,0 Oz2 8Z271’ z3 = 22,1
_ _ 3 s
Wo = Zi0 = 375 Zy = 21
_ _ 5
Ws = Z20 = 354 Zs = 220
22,
W _%xl
Wy = Ty
Thus
0 cos tg
DBy (t1,...,t7) = | ti,to,t3, 24 + ta, +ls, tg, ————1t3 + t7 |,
Zg + 4
(recall that zJ # 0),
Z3COST
-1 - - = 0 - 3 1
¢80 (8) = <Z17Z27Z37Z4 - 24,25,(1}'1,(1}'2 + 3 > 9
4
and
_ - 23 COS T
U, (z,z) = <21,22,23,24,Z5,£L'1,£U2 + 5 ) )
4

This leads to the new state coordinates (on the original state space)

{ 551 = I ~
i‘2 = 2o+ Z3 (;:045 1
The final representation of the system is (compare [15, 4])
= ~ _ Dcos#
R

I = X2

F, = _ gsin &1 +2RE2+ Do sin iy

RD cos #1+(D)? cos &1 sin &1

+ (R)z
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The two representations of the dynamics are not equivalent from the
practical point of view.

As we have just seen it is impossible to remove R and D simultaneously
by a generalized change of coordinates but after removing R we arrive
at (5.41) and we can get rid of D by simply introducing the new control
variable d = D. This yields the system (see (5.41), where for simplicity we
put R(0) =1)

o= B/R o (5.42)
o = —dRcosZ; — gRsin,
controlled by R and d and thus no derivatives of controls are involved any
more. The reason for which this procedure works is that the dynamics
(5.41) do not depend on D and D. The engineering interpretation of the
substitution d = D is clear: instead of controlling the position D we control
the acceleration d. A geometric interpretation of this procedure replacing
some controls derivatives ugéi) by new controls #; (which, although lowers
inputs derivatives, is of a different nature than generalized state transfor-
mations) will be discussed in [6].

6 Conclusion

Generalized state representations of nonlinear systems are studied and the
problem of lowering the inputs derivatives orders by generalized coordinate
changes is considered. The obtained restrictive commutativity conditions
imply that generalized systems for which we can remove input derivatives
(or even lower their orders) exhibit a very special structure (compare also
[16], [17], [28]). The discrete-time version of the problem, i.e., that of
removing delays in discrete-time systems [12], is still open.
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