
Journal of Mathematical Systems, Estimation, and Control c
 1995 Birkh�auser-Boston

Vol. 5, No. 3, 1995, pp. 1{13

A Hamiltonian Formalism for Optimization

Problems�

Leonid Faybusovich

Abstract

We consider dynamical systems that solve general convex opti-

mization problems. We describe in detail their Hamiltonian structure

and the phase portrait. In particular, it is proved that these dy-

namical systems are completely integrable. The Marsden-Weinstein

reduction procedure plays a crucial role in our constructions. Dikin-

type algorithms are brie
y discussed.
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1 Introduction

Consider the following optimization problem:

< c; x >! max; (1.1)

< ai; x >= bi; i = 1; : : : ; r; (1.2)

fj(x) � 0; j = 1; 2; : : : ;m; x 2 Rn: (1.3)

Here c; a1; : : : ; ar 2 R
n; b1; : : : ; br are real numbers and fj are smooth con-

cave functions. Suppose that for any � > 0 the problem

� < c; x > +

mX

j=1

ln fj(x)! max; (1.4)

< ai; x >= bi; i = 1; : : : ; r; x 2 Rn; (1.5)

has a unique solution x(�) for any � > 0. It is reasonable to expect that
x(�) tends to a solution of the problem 1.1-1.3 when � ! +1: This ap-
proach to solving 1.1-1.3 (known as a penalty function method) is described
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in detail in [6]. The set of points x(�); � � 0; is usually called the cen-
tral trajectory for the problem 1.1-1.3. For the construction of practical
algorithms it is necessary to choose a sequence of points �1 < �2 < : : :

such that �k ! +1 and �nd the way to calculate x(�k) with a su�-
cient accuracy, knowing x(�1); : : : ; x(�k�1): Tremendous progress in the
construction of e�cient algorithms of this type has been made recently for
the case where f1; : : : ; fm are linear functions [7]. The corresponding al-
gorithms are known as path-following algorithms of linear programming.
Regrettably, in the case of nonlinear functions f1; : : : ; fm progress is much
more modest [8]. The experience of the linear case suggests that in the
nonlinear situation it is necessary to consider large step (i.e. �k � �k�1
are large) procedures. In this situation a trajectory of the corresponding
discrete algorithm does not follow closely the central trajectory. In the
linear case it turns out to be possible to introduce certain dynamical sys-
tems (called a�ne-scaling vector �elds) which are \in�nitesimal" versions
of large-step algorithms. See e.g. [1]. In the present paper we study the
corresponding dynamical systems for the problem 1.1-1.3. Observe that
our construction works only for the case of linear cost function (which can
be assumed without loss of generality). See [4] for the case of nonlinear
cost function and linear constraints. As in the linear case, these dynami-
cal systems admit a Hamiltonian structure and, moreover, turn out to be
completely integrable. We study this structure in some detail. In particu-
lar, we show that the equality constraints can be handled by means of the
Marsden-Weinstein reduction procedure [9]. The Hamiltonian properties
of our dynamical systems are quite similar to ones arising in mechanics
and optimal control. There are further interesting analogies like the re-
lation between Lagrangian and Hamiltonian approaches in mechanics and
between primal and dual problems in optimization (in both cases via the
Legendre transform).

2 Dynamical Systems that Solve Optimization Prob-

lems

Denote by P the set in Rn de�ned by constraints 1.2, 1.3 and by int(P ) the
set fx 2 P : fj(x) > 0; j = 1; : : : ;mg: Throughout this paper we suppose
that int(P ) 6= ; (not empty), P is compact and the vectors a1; : : : ; ar (see
1.2) are linearly independent. Denote by T the smallest vector subspace in
Rn containing all vectors a1; : : : ; ar: Let � : Rn ! T? be the orthogonal
projection of Rn onto the orthogonal complement T? of T in Rn relative
to the standard scalar product. Let, further,

�(x) =

mX

i=1

ln fi(x); (2.1)
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r�(x) =  (x) =

mX

i=1

rfi(x)

fi(x)
; (2.2)

r2�(x) = 
(x) =

mX

i=1

[
r2fi(x)

fi(x)
�
rfi(x)rfi(x)

T

f2i (x)
]: (2.3)

Here � is de�ned on the set

int(Q) = fx 2 Rn : fi(x) > 0; i = 1; : : : ;mg: (2.4)

We think of r2�(x) as n by n symmetric matrix. Observe that due to
the imposed conditions the matrix 
(x) is nonpositive de�nite. We assume
throughout this paper that the matrix 
(x) is negative de�nite for any
x 2 int(Q): Let ~ = � �  : int(P )! T?:

Proposition 2.1 The map ~ is a di�eomorphism of int(P ) on T?:

Proof: Consider the problem

f�(x) = � < c; x > +�(x)! max; (2.5)

x 2 P: (2.6)

Here c 2 Rn: Observe that for any � 2 R the problem 2.5,2.6 has a
unique solution x(�): Moreover, x(�) 2 int(P ): Indeed, let y 2 int(P )
and Py = fx 2 P : f�(x) � f�(y)g: It is clear that maxff�(x) : x 2 Pg =
maxff�(x) : x 2 Pyg: Suppose that ~x belongs to the closure of Py: Let
xi; i = 1; 2; : : : be a sequence of points of Py such that xi ! ~x; i ! +1:

It is clear that ~x 2 P: If ~x 2 Pnint(P ); then �(xi) ! �1; i ! +1:

But then f�(xi) ! �1; i ! +1 contradicts the fact that xi 2 Py for
any i: Hence, ~x 2 int(P ): But f� is continuous on int(P ): Consequently,
f�(~x) � f�(y):We conclude that ~x 2 Py: Hence, Py is a closed subset of P;
i.e. Py is compact.We proved that Py is a compact subset of int(P ): Since
r2� is strictly concave on int(P ), we conclude that the problem 2.5,2.6
has a unique solution x(�) 2 int(P ): It is clear now that

rf�(x(�)) 2 T

or �c+  (x(�)) 2 T: Hence,

�(�c) + ~ (x(�)) = 0: (2.7)

By 2.7 we see that the map ~ is surjective. Let z1; z2 2 int(P ); ~ (z1) =
~ (z2) = v: Consider the problem

f(x) = � < v; x > +�(x)! max; x 2 P: (2.8)
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We have rf(zi) = �v+ (zi) 2 T; i = 1; 2: Hence, both z1; z2 are solutions
to 2.8. This implies z1 = z2; since f is a strictly concave function on int(P ):

Given c 2 Rn; consider a vector �eld Vc on int(P ) :

Vc(x) = �
(x)�1c+ 
(x)�1AT (A
(x)�1AT )�1A
(x)�1c: (2.9)

Here 
(x) was de�ned in 2.3. It is an invertible matrix according to imposed
conditions. Further, A is r by n matrix such that AT = [a1; : : : ; ar]:

Proposition 2.2 Let x(�) be (a unique ) solution to the problem 2.5,2.6,

� 2 R: Then
dx(�)

d�
= Vc(x(�)):

Remark 2.3 The curves x(�) are usually called central trajectories for
the problem 1.1-1.3. The point x(0) is called the analytic center of the set
P:

Proposition 2.2 follows from the more general.

Proposition 2.4 For any x 2 int(P ) the integral curve y(�) of 2.9 such

that y(0) = x has the form:

y(�) = ~ �1( ~ (x)� ��c); � 2 R: (2.10)

In particular, int(P ) is an invariant manifold for Vc:

Proof: It is clear that y(0) = x: Further, if �(�) = ~ (y(�)); we have by
2.10:

d�

d�
(�) = ��c:

On the other hand,
d�

d�
= D ~ (y(�)) _y(�):

Further,

�(�) = D ~ (y(�))Vc(y(�)) = �
(y(�))Vc(y(�)) = �(�c+AT�(�)):

Here �(�) = (A
(y(�))�1AT )�1A
(y(�))�1c: But ImAT � T: Hence,
�(AT�(�)) = 0: We conclude that �(�) = ��c: In other words,

��c = D ~ (y(�))Vc(y(�)) = D ~ (y(�)) _y(�):

Since D ~ (y) is a linear bijection of T? = KerA; it follows that Vc(y(�)) =
_y(�): Indeed, it is clear that Ay(�) = b: Hence, _y(�) 2 KerA

and AVc(y(�)) = 0:
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We now introduce a Riemannian metric g on int(Q) :

g(x; �; �) = ��T 
(x)�: (2.11)

Recall that 
(x)is negative de�nite on int(Q) due to imposed conditions.
It is clear that int(P ) � int(Q) can be thought of as a Riemannian sub-
manifold.

Proposition 2.5 The vector �eld Vc is a gradient 
ow of the function

f(x) = < c; x > on the manifold int(P ):

Proof: Since the vector �eld Vc is tangent to the manifold int(P ), it is
su�cient to verify that

< c; � >= g(x;Vc(x); �)

for any � 2 Rn such that A� = 0 and x 2 int(P ): But

g(x;Vc(x); �) =< �; 
(x)
(x)�1c� 
(x)
(x)�1AT�(x) >=< �; x >;

since < �;AT�(x) >=< A�;�(x) >= 0: Here

�(x) = (A
(x)�1AT )�1A
(x))�1c:

Theorem 2.6 Let y(�); � 2 R; be an integral curve of the vector �eld Vc
such that y(0) 2 int(P ): Then

lim < c; y(�) >=< c; x� >; � ! +1;

lim < c; y(�) >=< c; x� >; � ! �1:

Here x� (resp. x�) is a solution to the problem < c; x >! max (resp.

min), x 2 P:

Corollary 2.7 If x� (resp. x�) is a unique solution to the problem <

c; x >! max (resp. min), x 2 P; then lim y(�) = x�; � ! +1 (resp.

lim y(�) = x�; � ! �1).

Proof: Observe that y(�) is the solution to the optimization problem:

< �c+ d; x > +�(x)! max; x 2 P; (2.12)

where d = � ~ (y(0)): Indeed, this easily follows by 2.7,2.10. Fix � > 0: Set

ui(�) =
1

�fi(y(�))
; i = 1; : : : ;m; ��(x) =< c+ d=�; x > :
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We have:

��(x
�) � ��(x

�) +

mX

i=1

ui(�)fi(x
�) �

��(y(�)) +

mX

i=1

ui(�)fi(y(�))+ < x� � y(�); c+ d=� +  (y(�))=� > :

Here we used a standard inequality

�(x)� �(y) �< r�(y); x � y >

for the concave function

�(x) = ��(x) +

mX

i=1

ui(�)fi(x)

for x = x�; y = y(�): Observe now that x� � y(�) 2 T? and

�(c+ d=� +
 (y(�))

�
) = 0:

Hence,

< x� � y(�); c+ d=� +
 (y(�))

�
>= 0:

Taking into account
mX

i=1

ui(�)fi(y(�)) =
m

�
;

we arrive at the inequality

< c+ d=�; x� >�< c+ d=�; y(�) > +m=�; � > 0: (2.13)

Similarly,

< c+ d=�; x� >�< c+ d=�; y(�) > +m=�; � < 0: (2.14)

Observe now that y(�) belongs to the compact set P: This implies that

lim <d;y(�)>

�
= 0; j�j ! +1: By Proposition 2.5 the function < c; y(�) >

is monotonically nondecreasing. We conclude from 2.13, 2.14 that

lim
�!�1

< c; y(�) >�< c; x� >�< c; x� >� lim
�!1

< c; y(�) > :

It is obvious , however, that < c; x� >� lim < c; y(�) >; � ! +1; <
c; x� >� lim < c; y(�) >; � ! �1:
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3 A Hamiltonian Structure

Our next goal is to introduce a Hamiltonian structure for the totality of
vector �elds Vc: Namely, we consider the dynamical systems

_x = Vc(x); _c = 0 (3.1)

on the manifold M = int(P )� T?: We introduce a symplectic structure !
on M and prove that 3.1 is a completely integrable Hamiltonian system.
We explicitly construct action-angle variables for 3.1 using the Legendre
transform ~ : Here we follow the pattern of [3], where the linear program-
ming problem in the canonical form was considered.

We begin by de�ning a symplectic structure on int(Q)�Rn: Recall that

int(Q) = fx 2 Rn : fi(x) > 0; i = 1; : : : ;mg

and we de�ned a Riemannian metric g(x; �; �) = � < �; 
(x)� > (see 2.11,
2.3) on int(Q): Given (x; c) 2 int(Q)�Rn; set


(x; c; (�1; �1); (�2; �2)) = g(x; �1; �2)� g(x; �2; �1); (3.2)

(�i; �i) 2 Rn � Rn; i = 1; 2: Recall (see e.g. [9]) that there is a canonical
symplectic structure on Rn �Rn :

!can(x; y; (�1; �1); (�2; �2)) =< �2; �1 > � < �1; �2 >;

x; y; �i; �i 2 R
n; i = 1; 2: By Proposition 2.1 (under the assumption that Q

is compact) the map  �IdRn : int(Q)�Rn ! Rn�Rn is a di�eomorphism
(see 2.2). We claim that 
 is a pullback of !can under this map.

Proposition 3.1 We have:

( � IdRn)
�(!can) = 
: (3.3)

In particular, 
 is a symplectic two-form.

Proof: Let � = ( � IdRn)
�(!can): We have:

�(x; c; (�1; �1); (�2; �2)) = !can( (x); c;D (x)�1 ; �1); (D (x)�2; �2)) =

< 
(x)�2; �1 > � < 
(x)�1; �2 >= 
(x; c; (�1; �1); (�2; �2)):

Hence, � = 
: Here we used D (x) = 
(x):

Let H be a smooth function on the manifold N = int(Q) � Rn: The
corresponding Hamiltonian vector �eld XH is determined by the condition
[9]:


(x; c;XH(x; c); (�; �)) = DxH� +DcH� (3.4)
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for any (�; �) 2 Rn � Rn: From 3.4 we easily obtain for XH :

_x = �
(x)�1DcH; _c = 
(x)�1DxH: (3.5)

In particular, for the case H(x; c) =< c; c > =2; we arrive at the Hamilto-
nian system:

_x = �
(x)�1c; _c = 0; (3.6)

which coincides with 3.1 for the situation considered (no equality con-
straints). Let H1; H2 be two smooth functions on N: To compute their
Poisson bracket observe that [9]:

fH1; H2g(x; c) = 
(XH1
; XH2

):

Using 3.5, we easily obtain:

fH1; H2g(x; c) =

< DxH2(x; c); 
(x)
�1DcH1(x; c) > � < DxH1(x; c); 
(x)

�1DcH2(x; c) > :

(3.7)
Consider now the Hamiltonians hi : N ! R; hi(x; c) =< ai; c >; i =
1; : : : ; r: Here ai; i = 1; : : : ; r are linearly independent vectors in Rn: It
is clear by 3.7 that the corresponding Hamiltonians are in involution (i.e.
fhi; hjg = 0; i; j = 1; : : : ; r). This enable us to de�ne a Hamiltonian ac-
tion [9] of the abelian group Rr on N: More precisely, according to 3.5 the
Hamiltonian vector �elds Xi corresponding to Hamiltonians hi have the
form:

_x = 
(x)�1ai; _c = 0; i = 1; : : : ; r: (3.8)

Denote �
(x)�1ai by Wi(x); i = 1; : : : ; r: Introduce a simultaneous 
ow
G : int(Q)�Rr ! int(Q) in the following way:

G(x; t1; : : : ; tr) =  �1( (x)� a1t1 � : : :� amtm): (3.9)

It is clear that G(x;~0) = x for any x 2 int(Q): By Proposition 2.4:

@G

@ti
(x;~t) =Wi(G(x;~t)); i = 1; : : : r: (3.10)

The above mentioned Hamiltonian action of Rr on N has the form:

~t � (x; c) = (G(x;~t); c);~t 2 Rr; x 2 int(Q); c 2 Rn: (3.11)

The Hamiltonians h1; : : : ; hr de�ne the so-called moment map � : N !

Rr :

�(x; c) = (h1(x; c); : : : ; hr(x; c)) = (< a1; c >; : : : ; < ar; c >): (3.12)
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It is obvious that the set int(Q) � T? = ��1(0) is an invariant manifold
under the action of Rr on N: The Marsden-Weinstein reduction procedure
[9] enables one to de�ne a canonical symplectic structure on the factor-
manifold ��1(0)=Rr: Our immediate goal is to identify this factor-manifold
with int(P )� T?:

Lemma 3.2 Given x 2 int(Q); suppose that G(x;~t) 2 int(P ); G(x; ~u) 2
int(P ) for some ~t; ~u 2 Rr: Then ~t = ~u:

Proof: Recall that � : Rn ! T? is the orthogonal projection and ~ = � 

is a di�eomorphism of int(P ) onto T? (see Proposition 2.1). Let � =
G(x; ~u) 2 int(P ); � = G(x;~t) 2 int(P ): By 3.9  (�) =  (x)� u1a1 � : : :�

urar;  (�) =  (x) � t1a1 � : : : � trar: Hence, � (�) = � (�) = � (x):
This implies by Proposition 2.1 that � = �: Hence,  (�) =  (�) and
consequently, u1a1 + : : : + urar = t1a1 + : : : trar or ti = ui; i = 1; : : : ; r;
since the vectors a1; : : : ar are linearly independent.

Lemma 3.3 For any x 2 int(Q) there exists a unique ~t(x) 2 Rr such that

G(x;~t(x)) 2 int(P ): Moreover, the map x! ~t(x) is smooth.

Proof: Set y(x) = ~ �1(� (x)): It is clear that y(x) is a smooth function
from int(Q) into int(P ): We have: � (x) = ~ (y(x)) = � (y(x)): In other
words,  (x) �  (y(x)) 2 T: Consequently,  (y(x)) =  (x) � t1(x)a1 �
: : :� tr(x)ar for some smooth functions ti(x): We claim that G(x;~t(x)) =
y(x) 2 int(P ): Indeed, G(x;~t(x)) =  �1( (x) � t1(x)a1 � : : : tr(x)ar):
Hence,  G(x;~t(x)) =  (y(x)) or G(x;~t(x)) = y(x): The uniqueness of ~t(x)
follows by Lemma 3.2.

Given x 2 int(Q); denote by '(x) the point G(x;~t(x)): In this way ,
we de�ne a smooth map ' : int(Q) ! int(P ); which enable us to identify
��1(0)=Rr with int(P )� T?: The map

'� IdT? : int(Q)� T? ! int(P )� T? (3.13)

plays the role of the canonical projection under this identi�cation . The
manifold ��1(0)=Rr is endowed with a natural symplectic structure ! [9]
which is under our identi�cations has the form:

!('(x); c; (D'(x)�1 ; �1); (D'(x)�2; �2)) = 
(x; c; (�1; �1); (�2; �2)); (3.14)

x 2 int(Q); �i 2 R
n; �i 2 T

?; c 2 T?: Consider the Hamiltonian H(x; c) =
< c; c > =2 on int(Q) � Rn: It is clear by 3.5 that the corresponding
Hamiltonian vector �eld has the form:

_x =Wc(x); _c = 0:

Since fH;hig = 0; i = 1; : : : r;H can be lifted to the Hamiltonian ~H on

��1(0)=Rr: Under our identi�cations, ~H(x; c) = <c;c>2

2
; x 2 int(P ); c 2

T?:

9
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Theorem 3.4 The Hamiltonian vector �eld corresponding to the Hamil-

tonian ~H relative to the symplectic form ! has the form 3.1 (see 2.9).

Proof: Suppose that �(t) is an integral curve of Wc: Consider the curve
�(t) = '(�(t)): By Proposition 2.4 �(t) =  �1( (�(0))� ct): On the other
hand, by the very de�nition of ' we have:

 '(x) =  (x) + t1(x)a1 + : : : tr(x)ar ; (3.15)

x 2 int(Q) and some t1(x); : : : tr(x): In particular,

 '(�(t)) =  (�(0))� ct+ t1(�(t))a1 + : : : tr(�(t))ar:

Hence, ~ '(�(t)) = ~ (�(0))��ct: On the other hand, ~ (�(0)) = ~ ('(�(0)):
We see by Proposition 2.4 that '(�(t)) is the integral curve of Vc with the
initial condition '(�(0)): The result follows by general considerations [9].

Theorem 3.5 The map ~ � IdT? is a symplectic di�eomorphism of

(int(P ) � T?; !) onto (T? � T?; !can): Under this di�eomorphism the

Hamiltonian system _x = Vc(x); _c = 0 goes to the dynamical system _x =
��c; _c = 0:

Proof: Set � = ( ~ � IdT?)
�!can: We have

�('(x); c; (D'(x)�1 ; �1); (D'(x)�2 ; �2) =

!can( ~ '(x); c; (D( ~ � ')(x)�1; �1); (D( ~ � ')(x)�2; �2):

Here �i 2 R
n; �i 2 T

?: But ~ ('(x)) = � (x) by 3.15. Hence,

�('(x); c; (D'(x)�1 ; �1); (D'(x)�2 ; �2) =

!can((D (x)�1 ; �1); (D (x)�2; �2)):

Here we used the fact that �i 2 T
?: In other words,

( � IdRn)
�!can((x; c); (�1; �1); (�2; �2)) = 
(x; c; (�1; �1); (�2; �2))

by Proposition 3.1. The result follows by 3.14.

Remark 3.6 Theorem 3.5 shows that our Hamiltonian system _x = Vc(x);
_c = 0 is completely integrable and provides a construction of action-angle
variables.

Theorem 3.7 The pair (int(P ) � T?; !) is a symplectic submanifold of

(int(Q)�Rn;
): In particular,

! = 
jint(P )�T? :

10
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Proof: By 3.14 it is su�cient to prove that

�1 = 
(x; c; (�1:�1); (�2; �2)) = �2 =


('(x); c; (D'(x)�1 ; �1); D'(x)�2; �2)) (3.16)

for any x 2 int(Q); c 2 T?; �i 2 Rn; �i 2 T?: By Proposition 3.1 
 =
( � IdRn)

�: Hence,

�2 = !can((D( � ')(x)�1; �1); D( � ')(x)�2 ; �2)) =

!can((D (x)�1; �1); (D (x)�2; �2)) =

( � IdRn)
�!can(x; c; (�1; �1); (�2; �2)) = �1:

Here we used 3.14 and the condition �i 2 T
?; i = 1; 2:

Remark 3.8 Thus in the situation considered the reduced manifold can
be realized as a symplectic submanifold of the initial manifold.

4 Concluding Remarks

In the present paper we have considered dynamical systems that solve gen-
eral (smooth) convex programming problems. We have analyzed in detail
their Hamiltonian structure. The crucial part of our analysis is based on the
notion of the Legendre transform. In particular, the underlying symplectic
form is obtained as a pullback of the canonical symplectic structure via the
Legendre transform. Dynamical systems corresponding to the problems
with equality constraints are obtained by applying the Marsden-Weinstein
reduction procedure. In particular, their solutions are projections of so-
lutions of dynamical systems corresponding to the problems without in-
equality constraints. The reduced manifold turned out to be the symplectic
submanifold of the initial manifold. The Legendre transform also provides
a linearization of our dynamical systems and the explicit construction of
action-angle variables. At present time it is not quite clear how to gen-
eralize the interior-point methodology for the case of nonlinear equality
constraints. Our Hamiltonian framework may be helpful in this situation.
It seems that it is natural to use the universal Hamiltonian < c; c > =2 and
the introduced symplectic structure to construct constrained Hamiltonian
systems in this more general situation.

The essential part of the classical book [6] is devoted to the analysis of
one particular type of trajectories of our dynamical systems-central trajec-
tories. While this is a very important class of trajectories, the consideration
of large-step algorithms requires the analysis of all trajectories.

Observe that we considered here only logarithmic barrier functions.
More general classes of barrier functions can be analyzed using the same
technique (see [5] for the case of entropy barrier functions).
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We now brie
y outline the idea behind one particular class of large-step
algorithms. Given � 2 Rn; denote [g(x; �; �)]1=2 by k � kx : Suppose that
there exists � > 0 such that for any x 2 int(Q)

x+ � 2 int(Q); k � kx< �: (4.1)

If 4.1 holds and x 2 int(P ); then

�(x) = x+ �
Vc(x)

k Vc(x) kx
2 int(P ); j�j < �:

Given x 2 int(P ); consider iterations x; �(x); �2(x); : : : ; : This procedure
is known as Dikin's algorithm [2] for the case where all constraints are
linear. It is known to be an e�cient tool for solving linear programming
problems. To the best of our knowledge, no convergence results have been
reported for the case of nonlinear constraints. It is clear, however, that
convergence to the optimal solution should take place (at least for small
�) due to the global convergence of all trajectories of the vector �eld Vc
to the optimal solution. Observe that conditions 4.1 are satis�ed provided
the functions ln fi; i = 1; : : :m are self-concordant functions (this is always
the case when fi are linear or quadratic [10] ). The properties of this type
provide a special status for logarithmic barrier functions at least for now.

Our analysis can be generalized to certain in�nite-dimensional situa-
tions with interesting applications to control problems like linear-quadratic
regulators with quadratic constraints [11]. We plan to consider these ap-
plications separately.
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