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Abstract

The goal of this article is to compute under generic assumptions

the local optimal synthesis, for time optimal control in the plane,

with terminal constraints belonging to a manifold of codimension

one, for systems with a scalar control that enters linearly. This

analysis is applied to the control of a class of chemical systems.
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1 Introduction

Consider a system in R2; of the form

_v = X(v) + uY (v) ; juj � 1; (1:1)

where X and Y are analytic vector �elds and let N be a regular analytic

submanifold of R2 of codimension one. The set of admissible controls U
is the set of measurable mappings with values in [�1;+1] : We shall study

the following local problem. Let v0 2 N: Compute in a su�ciently small

open neighborhood U of v0; the optimal synthesis for the time minimal

control problem with terminal manifold N and system (1:1) restricted to

U: This problem and its generalization to higher dimensional state space is

motivated by the problem of controlling chemical batch reactors [2] and an

example will be given at the end of this article. It is similar to the problem

studied by Sch�attler and Sussmann in a series of articles, see for instance

[8] ; [9] ; when the terminal manifold is reduced to a point (This problem

�Received December 7, 1992; received in �nal form August 20, 1993. Summary

appeared in Volume 5, Number 3, 1995.
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is called the point to point problem). This article outlines an algorithm to

compute all the syntheses in terms of the coe�cients of the analytic ex-

pansions of X; Y and f; where N denotes locally the set of zeros of f: We

shall mainly restrict our analysis to the generic situations and describe the

topological features of the synthesis. In order to simplify the computations

we shall use convenient normalizations and give at most linear estimates

of the switching curves and of the cut locus. A more complete classi�-

cation and more accurate estimates, without any normalizations, will be

published later. Before presenting our analysis we must point out the fol-

lowing fact. Although any information concerning the accessibility set and

the parametrization of its boundary coming from the works of Sch�attler

and Sussmann can be used in our problem, all the classi�cation can be

done using evaluations of the solutions of the equations from Pontryagin

Maximum Principle (PMP).

2 De�nitions and Notations

Consider system (1:1) written as (X;Y ) and let (x; y) be the coordinates

of v 2 R2: A coordinate system (U; v) such that the restriction of Y to U is
@
@y

will be called adapted. The optimal control problem is 
at if Y is every-

where tangent to N: Let N̂ =
�
(w; p) 2 N �R2 ; < p; v >= 0 8v 2 TwN

	
where < ; > denotes the standard inner product. An extremal (v; u) is a
trajectory of (1:1); de�ned on [T; 0] ; T < 0 and solution of PMP for the

point to point time optimal control problem, see [6] ; an associated adjoint

vector being denoted p; and (v; p; u) is called an extremal lift. It will be

called a BC-extremal if it satis�es the boundary conditions (v(0); p(0)) 2 N̂ :
Let (v; u) be an extremal on [T; 0]: A time s 2 [T; 0] is called a switching

time is s belongs to the closure of the set of t0s 2 [T; 0] where v is not C1

and v(s) will be called a switching point. We shall denote by K the set

of switching points for BC-extremals. Let v0 2 N; W shall denote the set

of optimal switching points for the time minimal control problem for (1:1)
restricted to a su�ciently small neighborhood of v0, the terminal mani-

fold being N . By convention, any piecewise analytic control is taken right

continuous. The optimal closed loop function, if it exists, is denoted by

v ! u�(v): For the concepts of synthesis we follow [10] : A stratum of the

switching curve W is of �rst kind if the optimal trajectories are tangent to

the stratum and of second kind if they are transverse. The splitting line L
is the set of points where the optimal feedback is not unique (it will form

the cut locus).

Let v1 2 R2 and let us denote by v(t; v1; u) the trajectory of (1:1);
when de�ned, associated to u 2 U and starting from v1 at time t = 0: Let
t > 0 and A+(v1; t) be the set of points fv(t; v1; u) ; u 2 Ug accessible to

v1 in time t and let A�(v1; t) the set of points v2 such that v1 is accessible
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Figure 1:

to v2; in time t: The accessibility set is A+(v1) = Ut>0 A
+(v1; t) and let

A�(v1) = Ut>0) A
�(v1; t): For v 2 R2; we shall denote by C(v) the convex

set fX(v) + uY (v) ; juj � 1g : Let v0 2 N; in our analysis we shall assume

that Y (v0) is not zero. Moreover it is not restrictive to suppose that C(v0)
lies entirely in one half-space limited by Tv0N: If X(v0)+Y (v0) or X(v0)�
Y (v0) is tangent to N; we are in the exceptional case. Let n(v) be the

normal to N at v: In the nonexceptional case, n(v) will be oriented, near

v0 towards the half-space containing C(v0):

3 Classi�cation

As usual, the classi�cation is realized by increasing the codimension of

the singularities of the problem measured in the jet-space of (X;Y; f) at
v0: Here the generic situations are of codimension zero or one. The 
at

case is of in�nite codimension, but it is analyzed because it is the generic

situation in the control of batch reactors [2] : Also, it is an interesting

situation because the so-called singular trajectories play generically a role

in the synthesis.

3.1. Generic case Let us assume that bothX(v0)�Y (v0) are not tangent
to N: Then with our convention, we have < n(v); X(v) � Y (v) > > 0; for
jv � v0j small. Let (v; p; u) be a BC-extremal de�ned on [T; 0] : Since we

are in the non exceptional case, one can set p(0) = n(v(0)): Let us assume

< n(v0); Y (v0) >6= 0: Then from the transversality condition, the optimal

synthesis in a su�ciently small neighborhood of v0 is given by Fig. 1 where

�+ (resp. ��) are arcs corresponding to u = 1 (resp: u = �1):

3.2. Generic 
at case As before, we assume that both X(v0) � Y (v0)
are not tangent to N: If (v; p; u) is a BC-extremal de�ned on [T; 0] ; one
may set p(0) = n(v(0)): Since Y is tangent everywhere to N , we have

< n(v); Y (v) >= 0; 8v 2 N: Hence, the transversality condition tells us

nothing about the optimal synthesis. We have to use the following result.
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Figure 2:

3.2.1. Lemma Let v0 2 N be such that < n(v0); Y (v0) >= 0 and let us

assume that < n(v0); [X;Y ] (v0) >6= 0; the Lie bracket of two vector �elds

Z1; Z2 being computed with the convention [Z1; Z2] (v) =
@Z2

@x
(x) Z1 (v)�

@Z1

@v
(v) Z2(v): Then (v; p; u � 1) (resp:u � �1) is a BC-extremal with

v(0) = v0 if and only if < n(v0); [X;Y ] (v0) >< 0 (resp. > 0):

Proof: We prove for instance the assertion for �+: Assume (v; p; u � 1)

is a BC-extremal de�ned on [T; 0] and with v(0) = v0: The associated

adjoint vector p can be chosen such that p(0) = n(v0): Let
P

be the

switching surface
�
(v; p) 2 R4 ; < p; Y (v) >= 0

	
and let �+ be the switch-

ing function < p; Y (v) > evaluated along (p; v): If we di�erentiate �+

with respect to t; we get _�+ =< p; [X;Y ] (v) > and hence �+(t) =

�+(0) + t < p(0); [X;Y ] (v0) > +o(t): Since �+(0) = 0; p(0) = n(v0) and
u(t) = sign �+(t) = +1 for t < 0; we must have < p(0); [X;Y ] (v0) > < 0:

If we apply the previous lemma, the optimal synthesis in the generic


at case is then given by Fig. 2.

3.3. Generic switching point Let v0 2 N such that < n(v0); Y (v0) >=
0; then N̂ intersects the switching set

P
: In order to analyze this singu-

larity, one need some preliminary lemmas.

3.3.1. Lemma Let us assume < n(v0); [X;Y ] (v0) >6= 0: Then, the arcs

�+ and �� arriving at v0 cannot be sets of input switching points.

Proof: For instance, let us assume that (v; p; u � 1) is a BC-extremal

on [T; 0] with v(0) = v0 and each point of v is a set of input switching

points, then p(0) 2 Rn(v0): From [5] ; (v(0); p(0)) is a normal switching

point and every BC-extremal (�; �; u) which hits N near v0 is such that

� = �+�� or ���+; where �+�� (resp. ���+) designs an arc �+ (resp.

��) follows by an arc �� (resp. �+): Now, by assumption, there exists

BC-extremals such that � = ���+; where �+ is any subarc of v(:): At
v0; the associated adjoint vector belongs to R(n(v0)) = R(p(0)): Then, we
have < p(t); Y (v(t)) >= 0; 8t 2 [T; 0] : Di�erentiating with respect to t
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and evaluating at t = 0; we get < p(0); [X;Y ] (v0) >= 0; which is absurd

since p(0) 2 Rn(v0):

3.3.2. Lemma Let � be an admissible trajectory arriving at v0 and as-

sociated to a constant control u0: Let us set Z = X + u0Z and �(�; P ) =P
k�0

(�1)k�k

k!
adkZ(P )(v0) � Z(v0): Then if � is optimal, for each � � 0;

small, and each vector �eld P of fX + uY ; juj � 1g we must have < n;
�(�; P ) >� 0; where n is the unit normal at N at v0; outwardly oriented

with respect to �:

Proof: We use a technique coming from the proof of PMP and its re�ne-

ments [3] ; [4] ; constructing along a reference trajectory an approximation

of the accessibility set. Since the terminal manifold is of codimension one,

this approximation need no to be convex to decide about optimality.

Let � be a reference trajectory de�ned on [0; T ] and with terminal point

v0: It V is a vector �eld, it is convenient to denote fexpt V g the local one
parameter group generated by V: The arc � starting from v1 at t = 0 is

given by exp t Z(v1) and exp TZ (v1) = v0:
Now, take �; " > 0; su�ciently small, and any vector �eld P of

fX + uY ; juj � 1g and consider for � �xed, the curve

�(") = (exp �Z) (exp "P ) (exp (T � � � ")Z) (v1):

By construction �(0) = v0 and �(") lies in the accessibility set A+(v1; T ):
Now, since v0 = exp TZ (v1); we have

�(") = (exp �Z) (exp "P ) (exp (�� � ")Z) (v0)

and from Baker-Campbell-Hausdor� formula we get

�(") =

0
@exp

0
@"

2
4X
k�0

(�1)k�k
k!

adkZ(P )� Z

3
5+ o(")

1
A
1
A (v0):

Hence d�
d" j"=0

= �(�; P ) and clearly, if < n; �(�; P ) > > 0; the reference

trajectory � is not optimal.

3.3.3. AssumptionsFrom now on, we shall assume that< n(v0); Y (v0) >
= 0 and both < n(v0); X(v0) > and < n(v0); [X;Y ] (v0) > non zero.

3.3.4. Method of analysis In order to evaluate the switching curve

near v0 and the splitting line, it is convenient to make the following nor-

malizations.
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Figure 3:

First, one may set v0 = (0; 0) and as in [1] ; sinceX and Y are transverse

at v; one may assume locally Y = @
@y

and that the trajectory corresponding

to u � 0 is t! (t; 0): Hence, system (1.1) is written

_x = 1 +

+1X
i=1

ai(x) y
i;

(3.1)

_y =

+1X
i=1

bi(x)y
i + u:

Moreover changing if necessary y into �y and u into �u;one can assume

a = a1(0) > 0; where a = � < n(0; [X;Y ] (0) >; n(0) = (1; 0) being the

unit normal to N at 0: The terminal manifold is given locally by s !
(c(s); s); where c(s) = ks2 + o(s2) and k parametrized the curvature of

N in the adapted coordinate system, since Y is tangent to N at 0: We

have n(0) = (1; 0) and for v small, using < n(v); X(v) > > 0; one can

set n(v) = (n1; n2); n1 = 1 and n2 = � dc
ds

= �2ks+ o(s): Hence for s
small we have : if k < 0; then n2 > 0 if s > 0; and n2 < 0 if s < 0; and
conversely if k > 0: The hamiltonian is H(v; p; u) =< p; X(v) + uY (v) >
and if v 2 N is small, p = n(v); its maximum over juj � 1 is obtained

as follows : if k < 0; s > 0; then n2 > 0; an u maximizing H is +1; if
s < 0; it is u = �1 and conversely if k > 0: Hence, we get the following

important geometric behaviors : if k < 0; the arcs �+ and �� statisfying

the transversality conditions, the normal to N being oriented as n(v); can
cut themselves, contrarily to the case k > 0, see Fig. 3.

The adjoint system associated to (3:1); with p = (p1; p2) is
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_p1 = �p1
+1X
i=1

a0i(x)y
i � p2

+1X
i=1

b0i(x) y
i

(3.2)

_p2 = �p1
+1X
i=1

ai(x) y
i�1 � p2

+1X
i=1

bi(x) y
i�1;

where a0i and b0i are the derivatives of ai and bi with respect to x: If u
is a piecewise analytic control, every solution (v; p) of (2); (3) such that

(v(0); p(0)) 2 N̂ ; v small, can be evaluated for t su�ciently small, by

analyticity.

3.3.5. Lemma Near 0; every optimal solution is of the form �+��:

Proof: From [5] ; we know that every BC-extremal is of the form �+��
or ���+: In fact, it follows from [9] ; that every optimal solution for the

point to point problem is of this form.

Since near 0; X and Y are linearly independent, in order to compare

the times along the solutions of the system, we can introduce the one-form

! de�ned by !(Y ) = 0 and !(X) = 1: Let (X1; X2) be the components of

X; then ! = (1=X1)dx and d! = 1
X2

1

@X1

@x
dx � dy: Computing using (3:1);

we remark that the sign of d! near 0 is the sign of a > 0: Take two points

v1; v2 near 0 and let �1 = �+�� and �2 = ���+ be two arcs joining v1 to
v2; with respective time duration being t1 and t2: Using Stoke's theorem

we have Z
�1

! �
Z
�2

! = t1 � t2 =

Z
D

d!

where D is the closed domain limited by �1 _ �2: Since d! > 0 and the

orientation of the boundary of D is clockwise, we have t1 < t2: Hence an

optimal solution for the point to point problem is of the form �+�� and

clearly every solution for the optimal problem with N as terminal manifold

has to be solution for the point to point problem.

3.3.6. Lemma The arc �0
�
arriving at 0 is not optimal.

Proof: Let n(0) = (1; 0); computing we have < n(0); [X;Y ] (0) >= �a 6=
0: Hence, from Lemma 3.2.1, the are �0� is not the projection of a BC-

extremal (we can also apply Lemma 3.2.2., with Z = X�Y and P = X+Y;
proving that it is not optimal).

3.3.7. Lemma Assume k 6= 0; then the switching points of BC-extremals

7
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�+ �� formed an analytic curve K whose tangent space at 0 is

R(�2k=a; 1 + 2k=a):

Proof: We integrate (3.1) and (3.2), backwards in time, with initial con-

ditions given by the boundary conditions v(0) 2 N and p(0) = n(v(0)) =
(1; �2ks) + �(s): We get p1(t) = 1 + o(1); p2(t) = �2ks � at + o(s; t):
The switching times w are the solutions of p2(t) = 0; t � 0: We get

w = �2ks=a+ o(s): If k < 0; we must have s < 0 and if k > 0; s > 0: The
BC-extremal �� is switching at (x(w); y(w)) = s(�2k=a; 1+2k=a)+o(s):
The lemma is then proved.

Cleary the optimal syntheses di�er if a BC-extremal �+�� is crossing

K or is re
ecting on K:

3.3.8. Lemma A BC-extremal �+�� is crossing K if k > 0 or �a
4
< k < 0

and is re
ecting on K if k < �a
4
:

Proof: At 0; the slope of the tangent to K is, from the previous lemma,

�1 � a=2k and the respective slopes of �0+ and �0� are 1 and �1: If k > 0;
the slope of the tangent to K is less than �1: If k < 0; �1 � a=2k > 1

if and only if �a=4 < k: Hence the geometric situations are described by

Fig. 4.

3.3.9. Proposition

The optimal synthesis is given by Fig. 5.

In the �rst two cases, the switching curve W is an analytic curve which

coincides with K; the slope of its tangent at 0 being �1 �a=2k: In the third

case, there exists a splitting line L which is an analytic curve on which the

optimal feedback can be �1; the slope of its tangent at 0 being �a=4k:
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Proof: In the �rst two cases, the situation is clear because from each point

near 0; at the left of the targetN; there exists only one BC-extremal �+��:
In the third case the situation is more complicated because more than one

BC-extremal �+�� is possible to reach the target. More precisely, let �0+
be the are �+ arriving at 0 and let A be the acute sector delimited by K
and �0+: Clearly above K; the optimal feedback is +1 and below �0+; it
has to be �1: Let us de�ne the splitting line L near 0 as follows : L is

fv = (x; y); v small; x < 0; such that both expt (X � Y )(v) intersects N;
see Fig. 6.

This line exists because near 0; the value function is continuous. By

construction, L is an analytic curve located in the sector A: Clearly above

L; the optimal feedback is +1 and below, it is -1.

In fact, everything can be evaluated using (3:1) and (3:2): If k+a=4 < 0;
it can be shown that the arc �0+ isn't optimal. Moreoverer the slope of the

tangent to L at 0 is �a=4k 2 ]0; 1] :

3.3.10. Remarks The generic 
at case described in Section 3.2 is dif-

ferent from the synthesis described above. This means that a complete

9
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classi�cation in terms of the coe�cients of c(s) isn't straightforward. From
our analysis, we deduce that for the situations studied before, the linear

estimates of K and L are given by the system _x = 1 + ay; _y = u; which
serves as a model.

3.4. Generic fold case In this section we analyze the situation encoun-

tered when a singular extremal meets the terminal manifold at a point

where Y is tangent to N. The analysis is technically relevant because we

use evaluations of the accessibility set, combined with direct computations,

as in the previous section.

3.4.1. Assumptions Let v0 2 N and assume Y and [X;Y ] are collinear
at v; and Y tangent to N at v0. Moreover suppose X transverse to N;
at v0 (these assumptions are generic, for planar systems, only in the 
at

case). Let S be the set of points where Y and [X;Y ] are colinear. We

shall assume that S is a simple curve at v0: We shall denote by U any open

neighborhood of v0 such that S \U is a simple curve and X;Y are linearly

independent on U:

3.4.2. De�nitionConsider a system inRn of the form _v = X+uY; u 2 R:
A singular trajectory (v; u) de�ned on [0; T ] is a solution of the system such

that there exists a non trivial solution p 2 Rn; of the adjoint equation

_p = �p
�
@X

@v
+ u

@Y

@v

�
with < p(t); Y (v(t)) >= 0 8t 2 [0; T ]:

3.4.3. Lemma Consider a planar system _v = X+uY; u 2 R; restricted to
an open neighborhood U of v0 such that Assumptions 3.4.1 are satis�ed.

Then there exists a unique singular arc passing through v0; located in S;
and the singular control is given by the feedback law

û(v) =
< p; ad2X(Y )(v) >

< p; ad2Y (X)(v) >
(3:3)

where p is such that < p; Y (v) >= 0:

Proof: By de�nition < p(t); Y (v(t)) >= 0 on [0; T ] and di�erentiating

twice this equation with respect to t we have < p; [X;Y ] (v) >= 0 <
p; ad2X(Y )(v)� u ad2Y (X)(v) >= 0:

Hence v is located on S: Moreover on U the denominator of û can't

vanish. Hence the assertion is proved.

3.4.4. De�nition Consider a planar system _v = X+uY; u 2 R; restricted
to U: Let (v; u) be a singular trajectory de�ned on [0; T ] and let p an

associated adjoint vector oriented using the convention < p; X(v) > >

10
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0: Assume that t ! v(t) is a simple curve. It is called hyperbolic if <
p(t); ad2Y (X)(v(t)) > < 0 8t and elliptic if < p(t); ad2Y (X)(v(t)) > > 0:

3.4.5. Lemma An hyperbolic (resp. elliptic) trajectory (v; u); de�ned on

[0; T ] is time minimizing (resp. maximizing) with respect to all solutions

of _v = X +uY; u 2 R; joining v(0) to v(T ) and contained in a su�ciently

small neighborhood of v:

Proof: For the proof of this result see [1] :

3.4.6. Proposition Let (v; u) be an hyperbolic trajectory de�ned on

[0; T ] ; the singular control û given by (3:3) belonging to ]�1; +1[ : Then
there exists a neighborhood V of v such that v is the unique optimal tra-

jectory joining v(0) to v(T ); among all solutions of (1.1) contained in V:
Moreover if V is su�ciently small the accessibility set A+

V (v(0); T ) is a

closed convex set near v(T ) with nonempty interior whose boundary is a

curve s ! d(s); with d(0) = v(T ); d0(0) 2 RY (v(T ); C2 but not in gen-

eral C3: Moreover in every adapted coordinate system (i:e: Y =
@

@yjV
) its

curvature is zero.

Proof: From Lemma 3.4.5, there exists a neighborhood V of v such that

v is time optimal if no bound is imposed to u; hence it has to be optimal

if juj � 1: Moreover from [8] and [9], we can choose V such that every

optimal trajectory, for the point to point problem, starting from v(0); is a
singular arc �s followed by an arc �+ or ��: Hence near v(T ) the boundary
of A+

V (v(0); T ) is parametrized by s! d(s); where s � 0 and

d(s) = (exps (X � Y ) (exp (T � s)Xs) (v(0));

where Xs = X + ûY and û is given by (3:3):

Since, v(T ) = exp TXs(v(0)) we get

d(s) = (exps (X � Y ) (exp � s Xs) (v(T ))

and using Baker-Campbell-Hausdor� formula we have

d(s) = exp

�
s(�Y ) + 1

2
s2 [X � Y; Xs] + o(s2)

�
(v(T )):

The curve d(s) can be evaluated using the formula

exps Z(v) =
X
n�0

sn

n!
Zn(id)(v);

11
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for s su�ciently small, Z be any vector �eld acting by Lie derivative on

the mappings and id is the identity mapping. In particular if Y = @
@y
; we

have Y n(id) = 0; for n > 1: Since along a singular trajectory Y and [X;Y ]
are colinear we get

d(s) = v(T )� (s+ f(s)) Y (v(T )) + o(s2)

where f(s) = o(s):
Hence setting s0 = js+ f(s)j ; the boundary of the accessibility set is

given near v(T ) by d : s0 ! (�(s02); s0 + �(s02)):
Higher order dimensional expansions would tell us the nature of its

singularity. For instance if the system is given by _x = 1� y2; _y = u; and

v(0) = (0; 0) we get d(s) =
�
T � s3

3
; "s

�
with " = �1: Hence the boundary

is given by the graph x = T � jyjy2

3
:

3.4.7. Normalizations Let v0 2 N; one may assume v0 = (0; 0) and

locally Y = @
@y
: The important geometric object is the singular arc and

hence we normalized system (1.1) locally as follows : S is taken as y = 0

and the singular arc as t! (t; 0): Hence (1.1) is given by

_x = 1 + y2X1(x; y)

(3.4)

_y = �û(x) + yX2(x; y) + u; j u j� 1:

Let a = X1(0; 0) and observe that the singular arc is elliptic is a > 0 and

hyperbolic if a < 0: It is admissible if û(0) 2]�1; 1[: The terminal manifold

is parametrized by s! (c(s); s) ; where c(s) = ks2 + o(s2):

3.4.8. Proposition Assume the singular arc �s passing through v0 is

hyperbolic and û(v0) 2 ]�1; +1[ : Let N be parametrized in any adapted

coordinate system by s ! (c(s); s) ; c(s) = ks2 + �(s2): Then the optimal

synthesis is given near v0 by Fig. 7.

Proof: To decide if �s is optimal we use Proposition 3.4.7. One can assume

the system given by (3:4): Let v = (T; 0); with T < 0; su�ciently small.

Since the boundary of the accessibility set A+(v; T ) has zero curvature, we
have two situations if k 6= 0; see Fig. 8.

In the �rst situation, N meets the interior of the accessibility set, hence

�s is not time optimal, contrarily to the second situation (or in the 
at

case).

The switching points can be evaluated using (3:4): Take v 2 N near

v0; v = (�; s) and the normal to N being n(v) = (1;�c0(s)): Let

12
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Γ

k > 0 or flat case

Γ
Γ

N

N
+

−

Γ
+

s

Γ
−

L

k < 0

Figure 7:

N

k > 0

v v

A (v,T)
A (v,T)

+
+

N

Γ
s

k < 0

Figure 8:
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N

N
Γ

Γ

L

k > 0

L

-

+

Γ
-

Γ
+

Γ
-

+
Γ

+W

W-

k < 0  or flat case

Figure 9:

(�; p; u = ") ; " = �1 be a BC-extremal de�ned on [T; 0] ; with �(0) =

v; p(0) = n(v): If p = (p1; p2); a switching time is given by solving

p2(t) = 0; t < 0: Computing we get

p2(t) = �c0(s)� at2 ("� û(0))� t (2as� c0(s)X2(0)) + o(s; t)2: (3:5)

From this expansion and since a < 0; we deduce that any BC arc �+
or �� which starts from v 6= 0 is without switching point if k 6= 0 or in the


at case.

The synthesis follow from this analysis.

3.4.9. Proposition Assume the singular are �s passing through v0 elliptic
and û(v0) 2 ]�1;+1[ : Let N be parametrized in any adapted coordinate

system by s! (c(s); s) ; c(s) = ks2+ o(s2): Then the optimal synthesis is

given by Fig. 9.

Proof: From Lemma 3.4.5, the arc �s is locally time maximizing, for the

point to point problem, and hence it cannot be an optimal arc for our

problem.

Assume now the system given locally by (3:4): Since �s : t ! (t; 0) is
elliptic we have a > 0:

Applying Lemma 3.3.2, with Z = X + "Y; P = X � "Y; " = �1;
n = (1; 0); one can prove that both arcs �+ and �� arriving at 0 are not

optimal. Indeed we have

< n; �(�; P ) >= "�2 < n;
�
" ad2Y (X)� ad2X(Y ))(0) > +o(�2)

�
and writing (3:3) at 0

< n; ad2X(Y )� û ad2Y (X) >= 0

14
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N

NΓ
+

Γ−

k > 0

Γ
+

−

+

Γ

Γ

K K

K

+

+

−

−K

−Γ

k < 0

Figure 10:

we get

< n; �(�; P ) >= �2
�
1� û(0)

"

�
< n; ad2Y (X)(0) > +o(�2)

= 2a �2
�
1� û(0)

"

�
+ o(�2)

which is > 0 for � su�ciently small, since a > 0 and û(0) 2 ]�1; +1[ : This
proves the assertion.

From [9] ; we know that every optimal trajectory has at most one switch-

ing. To evaluate the switching points one use (3.5). We must distinguish

between the case k 6= 0 and the 
at case. Consider for instance the case

k 6= 0: A switching time for a BC-extremal �+ or �� is given by :

along �+; w+ = �
s

2 jksj
a(1� û(o))

+ o (
p
s) ;

along ��; w� = �
s

2 jksj
a(1 + û(0))

+ (o
p
s)

and the corresponding switching curves are respectively K+ : y = (1 �
û(0))x + o(x) and K� : y = �(1 + û(0))x + o(x): Hence, if k > 0; the
BC-extremals have the behaviors described by Fig. 10.

To construct the synthesis we proceed as in the proof of Proposition

3.3.9. If k < 0 the optimal switching curve is W = W� [ W+; with
W� = K� and W+ = K+: If k > 0; the splitting line L can be evaluated

using (3:4):
The 
at case can be treated similarly, using (3:5); the switching times

being of order s: More precisely we have

w+ = �2s=(1� û(0)) + o(s); w� = 2s=(1 + û(0)) + o(s);

15
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N

0

W

a < 0

Γ Γ

Γ
+

+

+

−

−L Γ

k < 0 k > 0

Figure 11a:

K+ : y =

�
1� û(0)

2

�
x+ o(x); K� : y = �

�
1 + û(0)

2

�
x+ o(x):

All the optimal switching points are virtually concentrated on N:

3.4.10. De�nitions Consider system (3:4), v0 2 N being identi�ed to

0: We said that we are in the parabolic case if û(0) =2 ]�1; +1[ : (This is
coherent with the terminology of [5] ; because v0 is lifted into a parabolic

point of N̂): Changing if necessary y into �y and u into �u, one can

assume û(0) > 1: The geometric situation is the following : the singular

arc �s passing through v0; which can be fast of slow for the point to point

problem, depending if a < 0 or a > 0; when u 2 R; is not admissible.

3.4.11. Proposition Consider system (3.4) and assume û(0) > 1: Let N
be given in an adapted coordinate system near 0 by s ! (ks2 + o(s2); s)
and let a � n; ad2Y (X)(0) >; where n = (1; 0) is the normal to N at 0:
The optimal synthesis is given by Fig. 11.

Proof: First (0; n(0)); where n(0) = (1; 0); is a parabolic point according to
[5] and hence every BC-extremal is locally of the form �+���+ or ���+��:
Moreover from [9] ; every optimal trajectory for the point to point problem

is of this form.

To decide if the arcs �0+ or �0
�
are not optimal, we use Lemma 3.3.2,

with Z = X + "Y; P = X � "Y; " = �1; n = (1; 0): We have

< n; �(�; P ) >= 2a�2
�
1� û(0)

"

�
+ o(�2):
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N

0

W

a > 0

Γ

+

−

L Γ
−

Γ
−

Γ
+

k > 0k < 0

Figure 11b:

Γ−

Γ
+

W

flat case

Γ
+

Γ

Γ

Γ−
−

+
L

−W

+

û(0) < 3 û(0) > 3

a > 0a < 0

Figure 11c:
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Hence if a < 0 (resp. a > 0) the arcs �0+ (resp. �0
�
) is not optimal (The

curvature of N is not taken into account in this criterion).

Let us evaluate the switching points using (3.5). First, let us assume

k 6= 0: By computing one get that a BC-extremal can have at most one

switching. If a > 0 (resp. a < 0) it is of the form ���+ (resp. �+��);
all switchings being located on a curve K+ (resp. K�) whose slope at 0 is

(1� û(0)) (resp. �(1 + û(0)):
Now observe that these extremals are re
ecting themselves on the

switching curve if k < 0 or are crossing this curve if k > 0: As in Sec-

tion 3.3., we concude that if k < 0; an optimal trajectory is of the form �+
or �� and there exists a splitting line L: If k > 0; an optimal trajectory

is of the form �� �+ (resp. �+ ��) if a < 0 (resp. a > 0); the optimal

switching curves being given by W+ = K+ (resp. W� = K�):
In the 
at case, the evaluations are di�erent. If a < 0; only a BC-

extremal �+ is switching at w+ = �2s=(1 � û(0)) + o(s) the switching

curve K+ being y = 1
2
(1 � û(0))x + o(x): If a > 0; only a BC-extremal

�� is switching at w� = 2s=(1 + û(0)) + o(s) and the switching curve is

K� : y = � 1
2
(1+ û(0))x+ o(x): A BC-extremal �+ �� is re
ecting on K�

if û(0) < 3 and crossing K� if û(0) > 3: Hence we get the corresponding

synthesis.

3.5. Generic exceptional case

3.5.1. Assumptions and normalizations Let v0 2 N , one may assume

v0 = 0: Suppose X +Y tangent to N at 0. Moreover assume Y and X �Y
not tangent to N at 0. We can choose a coordinate system such that

Y = @
@x

and N is identi�ed to the curve s ! (0; s): Hence (1.1) can be

written : _x = X1 + u; _y = X2; with X1(0) = �1 and X2(0) 6= 0: We can

suppose X2(0) > 0: Moreover we assume @X1

@y
(0) = a 6= 0; which means

that the contact of �+ with N at 0 is one.

3.5.2. Proposition Under the previous normalizations, the optimal syn-

thesis is given by Fig. 12.

Proof: First assume a > 0: The arc �0+ is a BC-extremal, n = (1; 0) being
the associated adjoint variable at 0. In order to prove it is not optimal,

we apply Lemma 3.3.2, the outward normal to N with respect to �0+ being

�n; z = X + Y and P = X � Y: We get �(�; p) = �2Y (0) + o(1): Hence,
for small �;< �n; �(�; p) >> 0: This proves the assertion. Indeed, a simple

computation shows the following. Assume we are at distance " from N , in

the domain x > 0: The time to reach the target N is of order
p
" along �0+

and of order " along �� because the contact of �0+ with N is one and ��
is transverse to N . In the domain x < 0; the optimal control is u = +1;
the value function being not continuous.

18
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a < 0

Γ
−

Γ
−

Γ
+

N

Γ
+

a > 0

Figure 12:

When a < 0; the analysis is similar, but the target N is not accessible

from the points in the sector x < 0; above �0+:

3.6. Generic 
at exceptional case

3.6.1. Assumptions and normalizations The point v0 2 N is identi�ed

to 0; N to s! (0; s); Y is assumed tangent to N and X tangent to N at 0.

Moreover we suppose Y;X � Y not vanishing at 0 and [X;Y ] not tangent
to N at 0. System (1.1) can be written : _x = ax+ by+ �(x; y); _y = X2+u;
where b = � < n; [X;Y ](0) >6= 0; n = (1; 0) normal to N . Clearly, one

may assume a = 0; b = 1 and 1 +X2(0) > 0:

3.6.2. Proposition Under the previous normalizations, the optimal syn-

thesis is given by Fig. 13.

Proof: According to [4], z0 = (0; n) 2 N̂ is a normal switching point and

hence every BC-extremal near z0 is of the form �+�� or ���+. Since N̂
is contains in < p; Y >= 0; all the switching points are concentrated on

N . Hence, near 0, every optimal trajectory is an arc �+ or ��: Then, the
synthesis follows from Lemmas 3.2.1, 3.3.2.

4 Example

Consider the problem of obtaining in minimum time a given ratio of con-

centrations of species X and Y for a chemical reaction scheme of the form

X ! Y ! Z; each reaction being of �rst order, the control being the

derivative of the temperature of the reactions. This problem is completely

solved in [2]. Let us use our classi�cation to study the optimal synthesis

19
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Γ

2

− Γ
+

Γ
−

Γ
+

X (0) > 1 X (0) < 12

Figure 13:

near the terminal manifold. The system can be written:

_z = v � �v� z + vz; _v = h(v)u (4:1)

where z = [Y ] = [X ] ; [X ] and [Y ] being the respective concentrations of

X; Y; u =
dT

dT
; where T is the temperature and v (and hence h) is given

by Arrhenius law v = A1 e�E1=RT ; where A1; E1 are physical positive

parameters, R is the gaz constant and �; � parameters, with � > 1 and

� > 0: The terminal manifold is N =
�
(z; v) 2 R2 ; z = d

	
where d is a

given positive constant. We are in the 
at case. The singular trajectories

are located in S =
n
(z; v) 2 R2 ; z

�
��v��1 � 1

�
= 0

o
and the singular

control is given by û = � v2

h(v)�z
: The control u is assumed in [u�; u+]

with u� < 0 < u+: Moreover we shall suppose the following : A1 >
�1=1��; G = f(z; v) ; _z = 0g intersects N; and û at S \ N is in ]u�; u+[
(the other cases can be analyzed similarly). Then the optimal synthesis is

described near N by Fig. 14.

The two singularities of the problem have been analyzed in this article. At

P1 an hyperbolic arc �s meets N and at P2 we are in the exceptional case.
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