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State Baum{Welch Estimators
�
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Abstract

Vector valued signal and observation processes are considered

with additive noise. Using changes of measure they are transformed

into sequences of independent random variables. The situation where

the noise in the signal is singular is discussed. The measure change

enables easy recursions to be obtained for the forward and backward

unnormalized conditional densities. These are analogs of the Baum{

Welch algorithm.

1 Introduction

The Baum{Welch algorithm usually discusses a Markov chain observed in
Gaussian noise; see [1]. The forward and backward Baum{Welch estimators
are related to considering the observations under an equivalent probability
measure; they provide unnormalized �ltered and smoothed estimates of the
state of the Markov chain, given the observations.

In this paper, like its predecessor [2], nonlinear, vector valued signal and
observation dynamics are considered in discrete time, with additive (not
necessarily Gaussian) noise. The original work of Baum{Welch considers a
Markov chain signal. Novel features of this paper are that possibly singu-
lar measures describe the conditional distribution of the state, and that a
double measure change is introduced under which both signal and observa-
tions become sequences of independent random variables. This facilitates
easy derivations of the forward recursion for the `alpha' unnormalized, con-
ditional density, and the backward recursion for the `beta' variable. The
unnormalized smoothed density is, as in the Baum{Welch situation, the
product of alpha and beta.

�Received October 1, 1992; received in �nal form April 5, 1993. Summary appeared

in Volume 5, Number 3, 1995.
yResearch partially supported by NSERC Grant A7964

1



L. AGGOUN, R.J. ELLIOTT, AND J.B. MOORE

The measure change we use is the discrete time analog of Girsanov's
theorem and, in fact, it can be interpreted as a form of Bayes' theorem. We
show how to transform the sequences of signal and observation variables
into i.i.d. random variables. Calculations then take place in a mathemat-
ically nice setting where the variables are i.i.d. The results can then be
interpreted back in the `real world' by an inverse change of measure. We
hope this might be considered clearer and more elegant than repeated use
of Bayes' rule.

2 State and Observations

All processes are de�ned initially on a probability space (
;F ; P ). Suppose
fx`g, ` 2 Z+, is a discrete-time stochastic state process taking values in
some Euclidean space IRm. We suppose that x0 has a known distribution
�0(x). fw`g, ` 2 Z+, will be a sequence of independent, IRm-valued,
random variable with probability distributions d `.

For n 2 Z+, Fn : IRm ! IRm are measurable functions, and we suppose
for n � 0 that

xn+1 = Fn+1(xn) + wn+1: (2.1)

The state process x is not observed directly; rather we suppose there is an
observation process fy`g, ` 2 Z+, related to the state, and taking values
in some Euclidean space IRd. fbng will be a sequence of independent IRd-
valued random variables with strictly positive density function �n.

For n 2 Z+, the Gn : IRm ! IRd are measurable functions and we
suppose for n � 1 that

yn = Gn(xn) + bn: (2.2)

Modelling systems by equations of the form (2.1) and (2.2), of course,
raises the problem of identifying the parameters in such models. When
the x process is a Markov chain a solution is given by the EM algorithm
and the Baum{Welch method. (See [1].) A �rst step in this direction is
given by the discussion in Theorem 6.6 of this paper of the conditional joint
density function of xm and xm+1. This might lead to some estimate of the
function F in (2.1).

3 Change of Measure for the y Process

De�ne �` =
�`(y`)
�`(b`)

, ` 2 Z+. Write Gn, (resp. Yn), for the completions of

the �-�elds

G0
n = �fx0; x1; : : : ; xn; y1; : : : ; yng;

Y0
n = �fy1; : : : ; yng;
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Then fGng, (resp. fYng), n 2 Z
+, will denote the corresponding �ltration

(that is, increasing family of �-�elds). With �n =
nQ
`=1

�` a new proba-

bility measure P can be de�ned by setting the restriction of the Radon{

Nikodym derivative dP
dP

to Gn equal to �n. The existence of P follows from
Kolmogorov's theorem.

Lemma 3.1 Under P the random variables y`, ` 2 Z+, are independent

and the density function of y` is �`.

Proof: Suppose f : IRd ! IR is any integrable function. Then

E
�
f(yn) j Gn�1

�
=

E[�nf(yn) j Gn�1]

E[�n j Gn�1]

=
�n�1E[�nf(yn) j Gn�1]

�n�1E[�n j Gn�1]

=
E[�nf(yn) j Gn�1]

E[�n j Gn�1]
:

Now

E[�n j Gn�1] =

Z
IRd

�n(yn)

�n(bn)
�n(bn)dbn

=

Z
IRd

�n
�
Gn(xn�1) + bn

�
dbn = 1:

Hence

E[f(yn) j Gn�1] = E[�nf(yn) j Gn�1]

=

Z
IRd

�n(yn)

�n(bn)
f(yn)�n(bn)dbn

=

Z
IRd

�n(yn)f(yn)dyn = E[f(yn)];

and the result follows. 2

Remark 3.2 We now suppose we start with a probability measure P on�

;

1S
n=1

Gn

�
such that under P :

1. fx`g, ` 2 Z+, still satis�es the dynamics (2.1), that is xn+1 =
Fn+1(xn) + wn+1.

2. fy`g, ` 2 Z
+, is a sequence of independent random variables having

density function �` > 0.
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Note that under P the y` are, in particular, independent of the x`. To rep-
resent the situation where the state in
uences the observations we wish to
construct a probability measure P such that, under P , bn := yn �Gn(xn)
is a sequence of independent random variables with positive density func-
tions �n(b). To construct P starting from P we must proceed in an inverse

manner. Write �rst �n = �n(bn)
�n(yn)

and �n =
nQ
`=1

�`. Then set dP

dP

���
Gn

= �n.

The existence of P follows from Kolmogorov's extension theorem. It can
be shown that under P the fb`g are independent random variables having
densities �` using the same argument as Lemma 3.1.

4 Recursive Estimates

We shall work under measure P , so that the fy`g, ` 2 Z
+, is a sequence of

independent IRd-valued random variables with densities �` and the fx`g,
` 2 Z+, satisfy the dynamics described in Section 2, that is, xn+1 =
Fn+1(xn)+wn+1. A version of Bayes' theorem states that for a G-adapted
sequence f�`g

E[�` j Y`] =
E[�`�` j Y`]

E[�` j Y`]
: (4.1)

Identity (4.1) enables us to obtain the conditional expectation E[�` j Y`]
if we know the unnormalized conditional expectation E[�`�` j Y`].

Notation 4.1 Write dAn(x), n 2 Z+, for the unnormalized conditional

probability measure of xn given Yn such that E
�
�nI(xn 2 dx) j Yn

�
=

dAn(x).

From (4.1), if dAn(x) is the normalized conditional probability measure
(distribution) under P of xn given Yn, then

dAn(x) = dAn(x)=
�Z

Rm
dAn(x)

�
= E[I(xn 2 dx) j Yn]:

Theorem 4.2 For n 2 Z+, a recursion for dAn( ) is given by dAn(z) =
1

�n(yn)
�n

�
yn �Gn(z)

� R
Rm

d n
�
z � Fn(�)

�
dAn�1(�).

Proof: Suppose f : IRm ! IR is any integrable Borel test function. Then
E
�
�nf(xn) j Yn

�
=
R
IRm

f(z)dAn(z). However,

E[�nf(xn) j Yn]

= E
h
�n�1

�n
�
yn �Gn(Fn(xn�1) + wn)

�
�n(yn)

f
�
Fn(xn�1) + wn

�
j Yn

i

= E
h
�n�1

Z
Rm

�n
�
yn �Gn(Fn(xn�1) + w)

�
�n(yn)
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f
�
Fn(xn�1) + w

�
d n(w) j Yn

i
=

1

�n(yn)

Z
IRm

Z
IRm

�n
�
yn �Gn(Fn(�) + w)

�
f
�
Fn(�) + w

�
d n(w)dAn�1(�):

Write z = Fn(�) + w. ConsequentlyZ
IRm

f(z)dAn(z)

=
1

�n(yn)

Z
IRm

Z
IRm

�n(yn �Gn(z))f(z)d n(z � Fn(�))dAn�1(�):

This identity holds for all Borel test functions f , so

dAn(z) =
1

�n(yn)
�n(yn �Gn(z))

Z
Rm

d n(z � Fn(�))dAn�1(�):

Notation 4.3 In this section m;n 2 Z+ and m < n. Write �m;n =
nQ

`=m

�`

and dHm;n(x) for the unnormalized conditional probability measure of xm
given Yn such that E

�
�nI(xm 2 dx) j Yn

�
= dHm;n(x). Then from (4.1)

the normalized conditional probability measure (distribution) under P of

xm given Yn is dHm;n(x)=
R
Rm

dHm;n(x).

Theorem 4.4 For m;n 2 Z+, m < n, dHm;n(x) = �m;n(x)dAm(x) where
dAm(x) is given recursively by Theorem 4.2 and �m;n(x) = E

�
�m+1;n j

xm = x; Yn
�
.

Proof: For an arbitrary integrable function f : IRm ! IR,

E[�nf(xm) j Yn] =

Z
IRm

f(x)dHm;n(x):

However, E[�nf(xm) j Yn] = E[�1;mf(xm)E[�m+1;n j x0; : : : ; xm;Yn] j
Yn]. NowE[�m+1;n j xm = x; Yn] := �m;n(x). Consequently, E[�nf(xm) j
Yn] = E[�1;mf(xm)�m;n(xm) j Yn], and so, from Notation 4.1,Z

IRm
f(x)dHm;n(x) =

Z
IRm

f(x)�m;n(x)dAm(x);

f(x) is an arbitrary Borel test function; therefore, we see dHm;n(x) =
�m;n(x)dAm(x).

Theorem 4.5 �m;n(x) satis�es the backward recursive equation

�m;n(x) =
1

�m+1(ym+1)

Z
Rm

�m+1

�
ym+1 �Gm+1(Fm+1(x) + w)

�
��m+1;n(Fm+1(x) + w)d m+1(w)

with �n;n = 1.
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Proof:

�m;n(x) = E[�m+1;n j xm = x;Yn]

= E
h�m+1(ym+1 �Gm+1(xm+1))

�m+1(ym+1)
�m+2;n j xm = x;Yn

i

= E
h�m+1(ym+1 �Gm+1(xm+1))

�m+1(ym+1)
E[�m+2;n j xm = x;

xm+1; Yn] j xm = x; Yn

i

= E
h�m+1

�
ym+1 �Gm+1(Fm+1(xm) + wm+1)

�
�m+1(ym+1)

��m+1;n(Fm+1(xm) + wm+1) j xm = x; Yn

i
=

1

�m+1(ym+1)

Z
Rm

�m+1

�
ym+1 �Gm+1(Fm+1(x) + w)

�
��m+1;n(Fm+1(x) + w)d m+1(w):

Remark 4.6 Of interest in applications is the linear model with a singular
matrix coe�cient in the noise term of the state dynamics:

xn = F (xn�1) +Bw0n 2 IRm

yn = G(xn�1) + bn 2 IRd:

Recursive estimators are obtained by the methods of this section if we set
wn = Bw0n. Even if B is singular wn always has probability distribution
d n(�). The support of this distribution is the set of values of Bw0n.

5 A Change of Measure for the State Process x

In this section we shall suppose that the noise in the state equation (2.1)

is not singular, that is, each wn has a positive density function  n. The
observation process y is as given by equation (2.2). Suppose P has been

constructed as in Section 3. De�ne 
` =  `(x`)
 `(w`)

and �n =
nQ
`=1


`; set

dbP
dP

���
Gn

= �n.

Lemma 5.1 Under bP the random variables fx`g, ` 2 Z
+, are independent

with density function  `.

Proof: Suppose g : IRm ! IR is any integrable function. Then

bE[g(xn) j Gn�1] =
E[�ng(xn) j Gn�1]

E[�n j Gn�1]
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=
�n�1E[
ng(xn) j Gn�1]

�n�1E[
n j Gn�1]
:

As in Lemma 3.1, E[
n j Gn�1] = 1, so

bE[g(xn) j Gn�1] = E[
ng(xn) j Gn�1]

=

Z
IRm

 n(xn)

 n(wn)
g(xn) n(wn)dwn

=

Z
Rm

 n(xn)g(xn)dxn = bE[g(xn)]:
The result, therefore, follows.

Remark 5.2 What we now can do is to start with a probability measurebP on
�

;

1S
n=1

Gn

�
under which the process fx`g and fy`g are two sequences

of independent random variables with respective densities  ` and �`. Note
the x and y are independent of each other as well. To return to the \real
world" model described in Section 2 we must de�ne a probability measure

P by setting dP

dbP
���
Gn

= dP

dP

���
Gn

dP

dbP
���
Gn

= �n�n. Here �n is the inverse of

�n, so that �n =
nQ
`=1


`, where 
` =
 `(w`)
 `(x`)

. Again the existence of P is

guaranteed by Kolmogorov's extension theorem.

6 Recursive Estimates

We shall work under bP , so that fy`g, ` 2 Z+, and fx`g, ` 2 Z+, are
two sequences of independent random variables with respective densities
�` and  `. Recall that a version of Bayes' theorem states that for a G-

adapted sequence fg`g, E[g` j Y`] =
E[�`g`jY`]

E[�`jY`]
. Similarly, E[�g` j Y`] =bE[�n�ng`jY`]bE[�njY`] .

Remark 6.1 The x` sequence is independent of the y` sequence under bP .
Therefore conditioning on the x's it is easily seen that eE[�` j Y`] = bE[�`] =bE[�`�1] = 1.

Notation 6.2 Suppose �n(x), n 2 Z+, is the unnormalized conditional

density of xn given Yn such that E[�nI(xn 2 dx) j Yn] = �n(x)dx.
From (4.1) the normalized conditional density, under P , of xn given Yn
is �n(x)=

R
Rm

�n(z)dz.

We now re-derive the recursive expression for �n.
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Theorem 6.3 For n 2 Z+, a recursion for �n(x) is given by

�n(x) =
�n(yn �Gn(x))

�n(yn)

Z
Rm

 n(x� Fn(�))�n�1(�)d�: (6.1)

Proof: Suppose f : IRm ! IR is any integrable Borel test function. Then

E[f(xn)�n j Yn] =

Z
Rm

f(x)�n(x)dx: (6.2)

However, E[f(xn)�n j Yn] =
bE[f(xn)�n�njYn]bE[�njYn] . From Remark 5.2 the de-

nominator equals 1. Using the independence of the xn's and the yn's underbP we see

E[f(xn)�n j Yn]

= bE[f(xn)�n�n j Yn]
=

Z
Rm

Z
Rm

 n(x� Fn(�))
�n(yn �Gn(x))

�n(yn)
�n�1(�)d�f(x)dx: (6.3)

Since f is an arbitrary Borel test function, equations (6.2) and (6.3) yield at

once �n(x) =
�n(yn�Gn(x))

�n(yn)

R
Rm

 n(x� Fn(�))�n�1(�)d� which is equation

(6.1).

Notation 6.4 For m;n 2 Z+, m < n, write �m;n =
nQ

`=m

�` and �m;n =

nQ
`=m


`. Write 
m;n(x) for the unnormalized conditional density of xm given

Yn, under P , such that E[�nI(xm 2 dx) j Yn] = 
m;n(x)dx.

From (4.1) the normalized conditional density of xm given Yn, m < n,
is then 
m;n(x)=

R
Rm


m;n(z)dz. As in Theorem 4.4, �m;n(x) = E[�m+1;n j

xm = x;Yn]. It can be shown as in theorems 4.2, 4.4 and 4.5 that

m;n(x) = �m(x)�m;n(x) where �m(x) is given recursively by Theorem 6.3
and �m;n(x) satis�es the backward recursive equation

�m;n(x) =
1

�m+1(ym+1)

Z
Rm

 m+1(z � Fm+1(x))

�m+1(ym+1 �Gm+1(z))�m+1;n(z)dz:

Notation 6.5 For m 2 Z+, m < n, write �m;m+1;n(x
1; x2) for the joint

unnormalized conditional density of xm and xm+1 given Yn, under P , such

that E[�nI(xm 2 dx1)I(xm+1 2 dx
2) j Yn] = �m;m+1;n(x

1; x2)dx1dx2.
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The normalized conditional density E[I(xm 2 dx1)I(xm+1 2 dx
2) j Yn]

is then
�m;m+1;n(x

1; x2)dx1dx2R
Rm

R
Rm

�m;m+1;n(z1; z2)dz1dz2
:

Also, write �n+1;n(x) for the unnormalized conditional density, under P , of
xn+1 given Yn, such that E[�n+1I(xn+1 2 dx) j Yn] = �n+1;n(x)dx. Then
E[I(xn+1 2 dx) j Yn] = �n+1;n(x)dx=

R
Rm

�n+1;n(z)dz.

Theorem 6.6 For m;n 2 Z+, m < n,

�m;m+1;n(x
1; x2) = �m(x

1)�m+1;n(x
2)

 m+1(x
2 � Fm+1(x

1))
�m+1(ym+1 �Gm+1(x

2))

�m+1(ym+1)
: (6.4)

Proof: Suppose f; g : IRm ! IR are arbitrary integrable Borel functions.
Then

bE[f(xm)g(xm+1)�n�n j Yn]

=

Z
Rm

Z
Rm

f(x1)g(x2)�m;m+1;n(x
1; x2)dx1dx2 (6.5)

= bE� bE[f(xm)g(xm+1)�0;m+1�m+2;n

�0;m+1�m+2;n j x0; : : : ; xm+1;Yn] j Yn
�

= bE�f(xm)g(xm+1)�0;m+1�0;m+1
bE[�m+2;n�m+2;n j xm+1;Yn] j Yn

�
= bE[f(xm)g(xm+1)�0;m+1�0;m+1�m+1;n(xm+1) j Yn]

= bEhf(xm)�0;m�0;m

Z
IRm

g(x2) m+1

�
x2 � Fm+1(xm)

�
�
�m+1(ym+1 �Gm+1(x

2))

�m+1(ym+1)
�m+1;n(x

2)dx2 j Yn

i

=

Z
Rm

Z
Rm

f(x1)g(x2) m+1(x
2 � Fm+1(x

1))

�
�m+1(ym+1 �Gm+1(x

2))

�m+1(ym+1)
�m+1;n(x

2)�m(x
1)dx1dx2: (6.6)

Since f(x) and g(x) are two arbitrary Borel test functions, the comparison
of equation (6.5) with the quantity (6.6) gives equation (6.4). 2

Theorem 6.7

�n+1;n(x) =

Z
Rm

 n+1(x� Fn+1(z))�n(z)dz: (6.7)

9
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Proof: Suppose f is an arbitrary integrable Borel function. Then:

bE[f(xn+1)�n+1�n+1 j Yn] =
Z
IRm

f(x)�n+1;n(x)dx:

However,

bE[f(xn+1)�n+1�n+1 j Yn]
= bE� bE[f(xn+1)�n+1�n+1 j x0; : : : ; xn;Yn] j Yn�
= bEh�n�n bEh�n+1(yn+1 �Gn+1(xn+1))

�n+1(yn+1)

 n+1(xn+1 � Fn+1(xn))

 n+1(xn+1)

�f(xn+1) j x0; : : : ; xn;Yn

i
j Yn

i
= bEh�n�n

Z
Rm

Z
Rd
�n+1(y �Gn+1(x))

 n+1(x� Fn+1(xn))f(x)dydx j Yn

i
=

Z
Rm

Z
Rm

Z
Rd
�n+1(y �Gn+1(x))

 n+1(x� Fn+1(z))f(x)�n(z)dzdydx:

Consequently,Z
Rm

f(x)�n+1;n(x)dx =

Z
Rm

Z
Rd

Z
Rm

�n+1(y �Gn+1(x))

 n+1(x� Fn+1(z))f(x)�n(z)dzdydx

and this identity holds for all Borel test functions. Hence

�n+1;n(x) =

Z
Rd

Z
Rm

�n+1(y �Gn+1(x)) n+1(x� Fn+1(z))�n(z)dzdy:

However,
R
Rd
�n+1(y �Gn+1(x))dy = 1, so the result follows.

Remark 6.8 The unnormalized conditional density given by (6.7) can be
easily generalized to the k-th step prediction and is given by �n+k;n(x) =R
Rmk

H(x1; : : : ; xk�1; x)�n(z)dx
1 : : : dxk�1dz where H(x1; : : : ; xk�1; x) =

 n+1(x
1 � Fn+1(z))  n+2(x

2 � Fn+2(x
1)) : : :  n+k(x � Fn+k(x

k�1)).

7 A Linear Case with Gaussian Noise

Assume here that state and observation processes are given by the dynamics

xn+1 = An+1xn + wn+1 2 IRm (7.1)

yn+1 = Cn+1xn+1 + bn+1 2 IRd: (7.2)
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An, Cn are matrices of appropriate dimensions, w` and b` are normally
distributed with means 0 and respective covariance matrices �` and �`.
The conditional density of xn given the observations up to time n is given
by Pn(x) = �n(x)=

R
Rm

�n(x)dx, where �n(x) is the unnormalized density
given by equation (6.1). The linearity of (7.1) and (7.2) implies that Pn(x)
is also normally distributed with mean �n = E[xn j Yn] and covariance
matrix Rn. Our purpose in this section is to give recursive estimates of �n
and Rn using the recursion for �n(x):

�n(x) = K(x)

Z
Rm

exp
�
�

1

2

�n
(x�An�)

0��1n (x�An�)

+(� � �n�1)
0R�1
n�1(� � �n�1)

o
d�

in view of (6.1) and the densities �n and  n;

K(x) =
�n(yn � Cnx)

�n(yn)
(2�)�mj�nj

� 1

2 jRn�1j
� 1

2 : (7.3)

Leaving only terms containing the variable � under the integration symbol
in (7.3), this is

= K1(x)

Z
Rm

exp
�
�

1

2

�
f�0an� � �0n�gd� (7.4)

where

K1(x) = K(x) exp
�
�

1

2

�
fx0��1n x+ �0n�1R

�1
n�1�n�1g (7.5)

an = A0n�
�1
n An +R�1

n�1;

�0n = 2(x0��1n An + �0n�1R
�1
n�1): (7.6)

Completing the `square' in (7.4) this is equal to

K1(x) exp
�
�

1

2

�n
�
�0(a�1n )�

4

o
Z
Rm

exp
n
�

1

2

�� � a�1n �n

2

�
an

�
� �

a�1n �n

2

�o
d�

= K1(x) exp
�
�

1

2

�n
�
�0(��1n )�

4

o
janj

1

2 (2�)�
m

2 : (7.7)

In view of (7.3), (7.5), (7.6) and (7.7) we have

�n(x) = K2 exp
n
�

1

2

�
x�


�1n �n

2

�0

n

�
x�


�1n �n

2

�o
(7.8)
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where K2 is a constant independent of x and


n = ��1n + C 0
n�

�1
n Cn ���1n Ana

�1
n A0n�

�1
n

�n = 2(y0n�
�1
n Cn +R�1

n�1�n�1a
�1
n A0n�

�1
n ):

From (7.8) and (7.6) we see

Rn = 
�1n =
�
��1n ���1n Ana

�1
n A0n�

�1
n + C 0

n�
�1
n Cn

��1
=

�
(AnRn�1A

0
n +�n)

�1 + C 0
n�

�1
n Cn

��1
�n =


�1n �n

2
= Rn

�
y0n�

�1
n Cn + R�1

n�1�n�1a
�1
n A0n�

�1
n

�
:

In summary we have

Theorem 7.1 For the linear model described by equations (7.1) and (7.2),

the conditional mean and covariance matrix of the state process xn are given

by

�n = RnR
�1
n�1�n�1a

�1
n A0n�

�1
n +Rny

0
n�

�1
n Cn

Rn =
�
(AnRn�1A

0
n +�n)

�1 + C 0
n�

�1
n Cn

��1
where an = A0n�

�1
n An +R�1

n�1.
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