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A Measure Change Derivation of Continuous
State Baum—Welch Estimators*

Lakhdar Aggoun’  Robert J. Elliott John B. Moore!

Abstract

Vector valued signal and observation processes are considered
with additive noise. Using changes of measure they are transformed
into sequences of independent random variables. The situation where
the noise in the signal is singular is discussed. The measure change
enables easy recursions to be obtained for the forward and backward
unnormalized conditional densities. These are analogs of the Baum-—
Welch algorithm.

1 Introduction

The Baum—-Welch algorithm usually discusses a Markov chain observed in
Gaussian noise; see [1]. The forward and backward Baum—Welch estimators
are related to considering the observations under an equivalent probability
measure; they provide unnormalized filtered and smoothed estimates of the
state of the Markov chain, given the observations.

In this paper, like its predecessor [2], nonlinear, vector valued signal and
observation dynamics are considered in discrete time, with additive (not
necessarily Gaussian) noise. The original work of Baum-Welch considers a
Markov chain signal. Novel features of this paper are that possibly singu-
lar measures describe the conditional distribution of the state, and that a
double measure change is introduced under which both signal and observa-
tions become sequences of independent random variables. This facilitates
easy derivations of the forward recursion for the ‘alpha’ unnormalized, con-
ditional density, and the backward recursion for the ‘beta’ variable. The
unnormalized smoothed density is, as in the Baum—Welch situation, the
product of alpha and beta.
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The measure change we use is the discrete time analog of Girsanov’s
theorem and, in fact, it can be interpreted as a form of Bayes’ theorem. We
show how to transform the sequences of signal and observation variables
into i.i.d. random variables. Calculations then take place in a mathemat-
ically nice setting where the variables are i.i.d. The results can then be
interpreted back in the ‘real world” by an inverse change of measure. We
hope this might be considered clearer and more elegant than repeated use
of Bayes’ rule.

2 State and Observations

All processes are defined initially on a probability space (Q, F, P). Suppose
{z}, ¢ € ZT, is a discrete-time stochastic state process taking values in
some Euclidean space IR™. We suppose that o has a known distribution
mo(x). {we}, £ € ZT, will be a sequence of independent, IR™-valued,
random variable with probability distributions di,.
Forn € ZT, F,, : IR™ — IR™ are measurable functions, and we suppose
for n > 0 that
Tnt+1 = Fn+1(l‘n) + Wp41- (21)

The state process x is not observed directly; rather we suppose there is an
observation process {y,}, £ € Z*, related to the state, and taking values
in some Euclidean space IR%. {b,} will be a sequence of independent R%-
valued random variables with strictly positive density function ¢,.
For n € Z*t, the G,, : R™ — IR? are measurable functions and we
suppose for n > 1 that
Yn = Gp(zpn) + bp. (2.2)

Modelling systems by equations of the form (2.1) and (2.2), of course,
raises the problem of identifying the parameters in such models. When
the = process is a Markov chain a solution is given by the EM algorithm
and the Baum—Welch method. (See [1].) A first step in this direction is
given by the discussion in Theorem 6.6 of this paper of the conditional joint
density function of z,, and xy,+1. This might lead to some estimate of the
function F in (2.1).

3 Change of Measure for the y Process

Define A\, = %, ¢ e Z*. Write G, (resp. V,), for the completions of
the o-fields

G?L = U{w07w17-"7mn7 yla"'ayn}a
yg - g{yla- .. 7yn}7
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Then {G,}, (resp. {Vn}), n € Z*, will denote the corresponding filtration
n

(that is, increasing family of o-fields). With A, = [] A¢ a new proba-
(=1

bility measure P can be defined by setting the restriction of the Radon-

Nikodym derivative g to G, equal to A,,. The existence of P follows from
Kolmogorov’s theorem.

Lemma 3.1 Under P the random variables y,, ¢ € Z, are independent
and the density function of y; is ¢y-

Proof: Suppose f: R > R is any integrable function. Then

E[Anf(yn) | anll
E[A, | Gp-i]

An—lE[/\nf(yn) | anll
A1 E[Ay | Gr-1]

E[Anf(yn) | Gn—l]
E | Gna]

E[f(yn) | anl] =

Now

©

n(Un)
+ Galb) P

¢n (Gn(wn—l) + bn)dbn =1.

d

E[An | Gn—l] =

Je
Je

Hence

Elf(yn) | Gn-1]l = E[Xuf(yn) | Gl

= R (bn(bn) f(yn)¢n(bn)dbn

/ &n(Yn) f (yn)dyn = E[f (yn)),
]R,d

and the result follows. O

Remark 3.2 We now suppose we start with a probability measure P on
oo —

(Q, U Gn) such that under P
n=1

1. {z}, £ € Z7, still satisfies the dynamics (2.1), that is z,41 =
Fn+1(xn) + wn+1-

2. {y¢}, £ € Z*, is a sequence of independent random variables having
density function ¢, > 0.
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Note that under P the y, are, in particular, independent of the z,. To rep-
resent the situation where the state influences the observations we wish to
construct a probability measure P such that, under P, b, := y, — Gn(xy)
is a sequence of independent random variables with positive density func-
tions ¢, (b). To construct P starting from P we must proceed in an inverse
n

manner. Write first A, = ZS)ZEZ:; and A, = [1:[1 X¢. Then set % G =A,.
The existence of P follows from Kolmogorov’s extension theorem. It can
be shown that under P the {b;} are independent random variables having
densities ¢, using the same argument as Lemma 3.1.

4 Recursive Estimates

We shall work under measure P, so that the {y/}, £ € ZF, is a sequence of
independent IR%-valued random variables with densities ¢¢ and the {z,},
¢ € Z+, satisfy the dynamics described in Section 2, that is, Z,i1 =
Foi1(xy)+wny1. A version of Bayes’ theorem states that for a G-adapted
sequence {ay} 3

ElXeay | Y]

E[A¢ | Vi

Identity (4.1) enables us to obtain the conditional expectation Efay | V]
if we know the unnormalized conditional expectation E[Aay | Vel.

E[Oég | yg] = (41)

Notation 4.1 Write dAn(z), n € Z*, for the unnormalized conditional
probability measure of x, given ), such that Emnf(xn € dz) | yn] =
dA,(z).

From (4.1), if dA,(x) is the normalized conditional probability measure
(distribution) under P of z,, given ), then

dA,(z) = dAn(z) /( dAn(:n)) = Ell(zy, € dz) | Va].

Rm

Theorem 4.2 Forn € Z*, a recursion for dA,( ) is given by dA,(z) =
mqsn (yn — Gn(z)) me dwn (Z - Fn(f))dAnfl(g)

Proof: Suppose f:IR™ — IR is any integrable Borel test function. Then
E[an(wn) | yn] = f]Rm f(2)dA,(2). However,

[+ (bn (yn - Gn(Fn(xnfl) + wn))
B[5u N (Bu(rn ) 4] | 94
B[f. O

Rm

Yn — Gn(Fn(®n_1) + w))
bn(yn)
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f(F (Tp—1) + w)d¢n(w) | yn]

Write z = Fn(ﬁ) + w. Consequently

f(2)dAn(z)

R™
1
- —¢n(yn / - On(Yn — Gn(2)) F(2)don(z — Fp(€))dAn_1(8).

This identity holds for all Borel test functions f, so

Oy n)¢n( n — Gn(2)) . dpn(z — Fn(§))dAn—1(8).

p— n p—
Notation 4.3 In this sectionm,n € Z+ andm <n. Write Ay, = [ A¢
{=m
and dHp, () for the unnormalized conditional probability measure of .,
given Yy, such that E[AyI(zn, € dz) | Yn] = dHm n(z). Then from (4.1)
the normalized conditional probability measure (distribution) under P of

T given Vy is dHp, n(2)/ [ AdHpn ().

Theorem 4.4 Form,n € Z*, m <n, dHy n(x) = Bm n(x)dAp (z) where
dAn (z) is given recursively by Theorem 4.2 and Bpmn(x) = Emm+1’n |
Ty = X, yn].

dAn(z) =

Proof: For an arbitrary integrable function f: IR™ — IR,
BlRof(om) | 90) = | f(@)dHn (o).
R™

However, E[A f@m) | Ynl = EA1mf(2m)EAmt1n | an--_-a_ ms Vn) |

Yn]. Now E[AmH n | Tm =2, Y] := Bm.n(z). Consequently, E[A, f(2.,) |
Ynl = [Alﬁmf(xm)ﬂm,n(xm) | Y], and so, from Notation 4.1,

f(m)de,n(w) = f(w)ﬁm,n(w)dAm(m):

R™ R™
f(z) is an arbitrary Borel test function; therefore, we see dH,, (x) =
Brmn(r)dAm ().
Theorem 4.5 (3, () satisfies the backward recursive equation

1
Bman(z) = i) S Gmt1 (Yma1 — Gmgt (Frogr (2) +w))

X/gm-&-lm(Fm-&-l(m) + w)d¢m+1(w)
with Bpn = 1.
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Proof:
ﬂm,n(x) = E[Km+1,n | Tm = l‘,yn]
= F[¢m+1(ym+l — Gm+1(xm+1))Km+2,n | Tm = l‘,yn
¢m+1(ym+1)
=[Pms1(Ymi1 = Gt (Tma1)) =
= FE EAmi2n | Tm ==,
[ ¢m+1(ym+1) [ = |

Tm+1, yn] |xm =, yn

Il
=

—[(Z5m+1 (Ym+1 — Gt (Fog1 (@m) + wing1))
¢m+1(ym+1)
Xﬁm+1,n(Fm+1(wm) + wm+1) | Im = T, yn]
1
= it (Ut /Rm i1 (Ymt1 — Gumir (Frpr (2) + w))
XBmt1,n(Fing1(®) + w)dipm 41 (w).

Remark 4.6 Of interest in applications is the linear model with a singular
matrix coefficient in the noise term of the state dynamics:

rn, = F(zp-1)+ Buw, € R™
Yn = G(zp_1)+ b, € R
Recursive estimators are obtained by the methods of this section if we set

wy, = Bw),. Even if B is singular w, always has probability distribution
diy (). The support of this distribution is the set of values of Bwy,.

5 A Change of Measure for the State Process =

In this section we shall suppose that the noise in the state equation (2.1)

is not singular, that is, each w,, has a positive density function ¢,. The

observation process y is as given by equation (2.2). Suppose P has been
n

constructed as in Section 3. Define v, = % and , , = T[] ve; set
(=1

ab|  _

dPlg, ~ "

Lemma 5.1 Under P the random variables {z¢}, L € ZT, are independent
with density function 1.

Proof: Suppose g : IR™ — IR is any integrable function. Then

E[,_ng(mn) | Gn—1]
E[, n | Gn—l]

Elg(zn) | Guoa] =
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) n—lﬁ[’?/ng(wn) | Gn—l]_

, n—lE['Yn | Gn—l]
As in Lemma 3.1, E[y, | Gn-1] = 1, so
Elg(@a) | Gni] = Elmg(wn) | Gnoi]
= - :f:((f)z)) 9(2n)Yn (wy)dwy,

/ ()9 (@n)dzn = Blg(an)].
-

The result, therefore, follows.

Remark 5.2 What we now can do is to start with a probability measure

N o)

P on (Q, U G’n) under which the process {z,} and {y,} are two sequences
n=1

of independent random variables with respective densities ¥y and ¢,. Note

the z and y are independent of each other as well. To return to the “real

world” model described in Section 2 we must define a probability measure
_ dp dP

dP 4P = Ap, n. Here , , is the inverse of
Gn Gn

Gn

_ n
, n, so that , , = [[ 7,, where 7, = ﬁi((qu)) Again the existence of P is
=1

P by setting %

guaranteed by Kolrﬁogorov’s extension theorem.

6 Recursive Estimates

We shall work under P, so that {ye}, £ € ZT, and {z4}, £ € ZT, are
two sequences of independent random variables with respective densities
¢¢ and ;. Recall that a version of Bayes’ theorem states that for a G-

adapted sequence {g/}, E[ge | Vi] = %. Similarly, E[Ag, | V] =
E[ wRnge|Yi]
E[’_nlyl] ’

Remark 6.1 The z; sequence is independent of the y, sequence under p.
Therefore conditioning on the z’s it is easily seen that E[, ¢ | V¢| = E|, (] =
E[ (] =1

Notation 6.2 Suppose a,(x), n € Z*t, is the unnormalized conditional
density of x, given Y, such that E[A,I(z, € dz) | Vu] = an(x)dz.
From (4.1) the normalized conditional density, under P, of x, given YV,
is ()] [m o (2)dz.

We now re-derive the recursive expression for .
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Theorem 6.3 Forn € ZT, a recursion for a,(x) is given by

_ bn(yn — Gu(x))
Pn(yn)

Proof: Suppose f: IR™ — IR is any integrable Borel test function. Then

an(x)

o Yn(z — Fn(§))an-1(§)dg.  (6.1)

Blfwfa | %)= [ f@on(w)s (62)

~

However, E[f(zn)Ayn | Yn] = W From Remark 5.2 the de-

nominator equals 1. Using the independence of the x,,’s and the y,’s under
P we see

Gn(yn — Gu(x))
Gn(yn)

Since f is an arbitrary Borel test function, equations (6.2) and (6.3) yield at
once ay () = %@w Jrm Un(@ — Fr(€))an_1(£)dE which is equation
(6.1).

[ ] aa=Fue) -1 (€AEf (@)de (6.3

— 3 —_ _—
Notation 6.4 For m,n € Zt*, m < n, write Ay, = [[ Mo and , . =

{=m

II 7¢- Write ym.n(x) for the unnormalized conditional density of ., given
{=m
YV, under P, such that E[A,I(xy, € dz) | Vn] = Ym.n(z)dz.

From (4.1) the normalized conditional density of z,, given V,, m < n,
is then v n(z)/ me Ym.n(2)dz. Asin Theorem 4.4, By, n(z) = E[Km+1,n |
Tm = Z,Yn]. It can be shown as in theorems 4.2, 4.4 and 4.5 that
Ymn () = am () Bm,n(z) where ap(z) is given recursively by Theorem 6.3

and B, () satisfies the backward recursive equation

1
¢m+1(ym+1) Rm ¢m+1(z - Fm+1(.’lf))

Gmi1(Ym+1 — Gmy1(2))Bmt1,n(2)dz.

ﬁm,n(w)

Notation 6.5 For m € Zt, m < n, write &m my1n(x',2*) for the joint
unnormalized conditional density of xm and Ty41 given Yy, under P, such
that E[ApI(zy, € d2t)I(Timi1 € dx?) | Vo] = Emmt1.n(zh, 22)dztda?.
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The normalized conditional density E[I(zy, € dz')I(zy41 € d2?) | Vn)

is then
Emomt1, n($ T )dxldx

me me Emomi1,n(2Y, 22)d2td2?

Also, write pp11,n(z) for the unnormalized conditional density, under P, of
Zp+1 given YV, such that E[A,111(xny1 € dz) | Vo] = pntin(z)dz. Then
ElI(znt1 € dz) | Yn] = pntr,n(z)de/ me Prt1,n(2)dz.

Theorem 6.6 For m,n € Z+, m <n,

£m7m+1,n(w17 372) = am(wl)ﬁm+1,n(w2)

2 1 Pt Wmg1 — Gy (22))
Ymt1(2° = Fya(z7)) it (Urmes) . (6.4)

Proof: Suppose f,g: IR™ — IR are arbitrary integrable Borel functions.
Then

B[f (2)9(@m+1)K n,‘n | ]
= / f )6m,m+17n($1:$2)dmldm2 (65)
m R’ITL

= [E[f(wm) (wm+1)X0 m+1Xm+2,n

, 0,m+17 m+2,n | Zo, - - - wm+1ayn] | yn]

[
@ s

[f(xm) (xm+1)A0 m+17 0 m+1E[Am+2 ny_m+2 n | Tm+1, yn] | yn]
[f

(@m)9(@mt+1)Nom+1s 0,m+1Bmt 1,0 (Tmt1) | Vnl

Il
&

I:f(wm)XO,m:_O,m / g(CU )¢m+1 (CU - Fm+1(wm))
Rm
2
msrUmed =Gt 0Ny ()| 3,]

% ¢m+1(ym+1)
/ / F@)g(@)pmi1 (@ = Frpa(a'))
o Pm+1(Ymt1 — Gm+1(x2))5m+1,n(x2)am(x1)dx1dx2- (6.6)
¢m+1(ym+1)

Since f(z) and g(z) are two arbitrary Borel test functions, the comparison
of equation (6.5) with the quantity (6.6) gives equation (6.4). m|

Theorem 6.7

Prt1n(T) = o Uni1(z = Fopa(2))on(2)dz. (6.7)
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Proof: Suppose f is an arbitrary integrable Borel function. Then:

Elf (@ns1)Knt1s ni1 | V] = . F(2)pps1,n(z)de.

However,

E[f(zns1)Knt1, na1 | Vul
= B[E[f(zn+1)Ant1, ns1 [T, 20, Val | Vn)
~T — [Pt Wnt1 = Gug1(Tng1)) Ynp1 (Tngr — Faga(xn))
= E|Ap, oF
|: [ ¢n+1(yn+1) wn+1(1‘n+1)

% f(zns1) | xg,...,xn,yn] |yn]

~

~ B[R / ] i = Gan@)

Ynia (& = Fuga (o)) (@)dyde | Y]

L] ] ent=Gun)

Ynt1(z — Fpg1(2)) f(x)an(2)dzdydz.

Consequently,

[ t@psa@te= [ ] 6= )
Vi1 (T — Fop1(2)) f(2)an(2)dzdydz

and this identity holds for all Borel test functions. Hence

prst (@) = /R = Gt (@i (o = P (e (2)dzdy.

However, [pq ¢ni1(y — Gny1(z))dy =1, so the result follows.

Remark 6.8 The unnormalized conditional density given by (6.7) can be
easily generalized to the k-th step prediction and is given by ppyrn(z) =
[pme H(zt, o 2b Y 2)ay (2)dat .. dab~tdz where H(z!,... 2%t 2) =

Uni1(z! = Fpy1(2)) Ynp2(2® = Foga(2")) - onik(z — Fopp(271)).
7 A Linear Case with Gaussian Noise
Assume here that state and observation processes are given by the dynamics

Tpy1 = Apt1%Tn +wpp € R (7.1)
Ynt1 = Chp1Tpg1 +bpgr € R (7.2)
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A,, C, are matrices of appropriate dimensions, wy and by are normally
distributed with means 0 and respective covariance matrices ¥y and , 4.
The conditional density of x,, given the observations up to time n is given
by Pn(z) = an(z)/ [pm an(z)dz, where ap(z) is the unnormalized density
given by equation (6.1). The linearity of (7.1) and (7.2) implies that P, (z)
is also normally distributed with mean p, = E[z, | V] and covariance
matrix R,. Our purpose in this section is to give recursive estimates of i,
and R,, using the recursion for a,(z):

an(z) = K(z) / _exp ( - %) {(:U — A8, Nz — AnE)
& = pnmt) By (€ = pinm)
in view of (6.1) and the densities ¢, and vy;

_ On(yn = Cuz)
K@) = =

Leaving only terms containing the variable £ under the integration symbol
in (7.3), this is

(27) ™80 |7 | Ry |72 (7.3)

= Kila) [ exp (= 5) €ané - i) (74)
where
Kiw) = K@exp () {a'S, s+ oy Bty 1} (75)
an = A ST'A,+ R,
Br = 20T Ap Ry (7.6)

Completing the ‘square’ in (7.4) this is equal to

K1(w)exp(_1){_W}

2 4
[eo{ =5 (5o (e 2252) b
= Ki(@)es (- % [- W}mnﬁm)—% (7.7)
In view of (7.3), (7.5), (7.6) and (7.7) we have

o) = Ky { - H o= ) o -2}

11
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where K> is a constant independent of z and

Yo = S +Ch C, =S Apa ALY
o = 2(2/;, _1On +R;i1,u'n—1a7_1114;‘2_1)-

n n

From (7.8) and (7.6) we see

R,o=~7" = [S7'—S;'Apa'ALST 4O, 00
= [(AnBo AL +3)7 40, ]
Yo On ;-1 1 —1 41 w1
Py = T = R, (yn, n On + Rnfl,um_lan AnZn )

In summary we have

Theorem 7.1 For the linear model described by equations (7.1) and (7.2),
the conditional mean and covariance matrix of the state process x, are given

by
Hn = RnR;iﬂJJnfla;lA;z,E;l-l'Rny;n r:lCn
Ry = [(AnRn 14, +3,)7 +Cp 700

where a, = ALY A, + R
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