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Di�erential Equation with Strongly
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Abstract

We consider an approximation scheme for integro-partial dif-

ferential equations which arise in the theory of linear viscoelas-

ticity. This scheme is based on a modi�cation (to account for the

singular kernel) of certain averaging type approximation methods

for delay equations. We use this scheme to investigate the e�ects

of a history parameter (the delay length) on the behavior of the

eigenvalues, and to consider the numerical solution of an optimal

control problem.
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1 Introduction

Among the many problems that arise in the study of control and stabiliza-

tion of large 
exible space structures is the problem of including internal

damping in the mathematical model for the motion of the structure. Many

feasible models of internal damping have been proposed in the literature

(see, for example, [2], [5], [15], [16]). One such model arises in the theory

of linear viscoelasticity, and leads to the following type of integro-partial

di�erential equation: ([2], [4], [8])

@2u

@t2
(t; x) +

@2

@x2
[Euxx(t; x) +

Z 0

�r
a(�)uxxt(t+ �; x) d�] = f(t; x); (1:1)
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R.H. FABIANO

for 0 < x < l, t � 0. Here, E is a sti�ness parameter, f(t; x) is an applied

force, and u(t; x) represents the displacement at time t and position x along

a long thin Euler-Bernoulli beam with time hysteresis damping. We discuss

the function a(�) below. Appropriate boundary conditions and initial data

have been omitted.

Our approach to the study of (1.1) is to observe that it can be refor-

mulated as a special case of the following integro-di�erential equation:

�u(t) +A[Eu(t) +

Z 0

�r
a(�) _u(t+ �) d�] = f(t): (1:2)

This equation evolves in a Hilbert space H (which can be taken to be H =

L2(0; l) when one views (1.2) as a reformulation of (1.1)). We take (1.2) as

the starting point of our analysis. It is assumed that A is a positive de�nite,

self-adjoint unbounded operator on H , and f(t) is a locally integrable H-

valued function. The sti�ness constantE and the delay length r are positive

constants. We assume that a(�) =
R �
�r g(�) d� and refer to g as the history

kernel. The nature of the singularity of g at � = 0 determines whether we

say that (1.2) has a weakly or strongly singular kernel. More speci�cally,

weakly singular kernels satisfy

(a) g(�) > 0 for � 2 (�r; 0);
(b) g(�) 2 L1(�r; 0); (1:3)

(c) g 2 H1(�r;��) for all � > 0; and g0(�) � 0 for � 2 (�r; 0):

This class includes the function g(�) = e
�=j�jp for 0 � p < 1 and 
 > 0.

Strongly singular kernels satisfy

(a) a(�r) = 0; and a(�) 2 L1(�r; 0) \H2(�r;��) for all � > 0;

(b) g(�) = a0(�) > 0 for � 2 (�r; 0) (1:4)

(c) g0(�) � 0 on (�r; 0):

Please see [9] and [10] for further discussion. In this paper, we make the

following assumption on g:

g(�) =
�g(�)

j�jp ; 1 � p < 2; (1:5)

where �g(�) is continuous, strictly positive, and has the property that g(�)

is nondecreasing. Thus g is a strongly singular kernel.

The rest of the paper is organized as follows. In section 2, we intro-

duce the spaces and operators necessary to reformulate (1.2) as an abstract

2



INTEGRO-PARTIAL DIFFERENTIAL EQUATIONS

Cauchy problem, and we describe an approximation scheme for the prob-

lem. Well-posedness and convergence results will be stated. In section 3, we

will discuss two numerical experiments at length. In these experiments, we

describe numerical investigations (with numerical methods based upon the

approximation scheme developed in section 2) of two unresolved theoretical

issues.

The �rst issue involves a `gap' between the �nite delay case (r < 1)

and the in�nite delay case (r =1). For example, consider a scalar version

of (1.2) in the sense that A is a positive constant instead of a positive

de�nite operator. This leads to

�u(t) +A[Eu(t) +

Z 0

�r
a(�) _u(t+ �) d�] = f(t) (1:6)

evolving on 1R. We may consider (1.6) for either �nite or in�nite delay

r. Well-posedness for both cases has been shown in [9]. However, the

approximation scheme described in this paper is only valid for �nite r.

One reason for interest in the case r = 1 is the connection between (1.6)

and a class of Volterra integro-di�erential equations frequently seen in the

literature (see [13], [6] for example). The change of variables s = t + � in

(1.6) leads to

�u(t) +A[Eu(t) +

Z t

0

â(t� s) _u(s) ds] = f̂(t) (1:7)

where â(�) = a(��) and f̂(t) = f(t)+
R 0
�1 â(t�s) _u(s) ds. The relationship

between (1.6) for r <1 and (1.6) for r =1 is, to the authors knowledge,

not well understood. This gap in the theory will be investigated numerically

by considering the dependence of the eigenvalues of (1.6) on the delay length

r.

The second unresolved theoretical issue is related to questions of conver-

gence for �nite dimensional approximations of a linear quadratic regulator

(LQR) problem for (1.1). There are several results in the distributed pa-

rameter control literature (see for example [11], [12]) giving su�cient con-

ditions which guarantee that solutions of a �nite dimensional LQR problem

will converge to solutions of an in�nite dimensional LQR problem. These

conditions on the approximation scheme typically require, among other

things, convergence of the approximating open loop semigroups, conver-

gence of the approximating adjoint semigroups, and uniform stabilizability

and detectability of the approximating system operators. The approxima-

tion scheme described in section 2 gives convergence of the approximating

open loop semigroups, but the question of convergence for the adjoint semi-

group and the question of uniform stabilizability and detectability are still
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under investigation. Nonetheless, in the second experiment discussed in

section 3, we have implemented this approximation scheme to investigate

numerically the convergence of approximating functional gains for an LQR

problem for a viscoelastic beam.

2 Abstract Formulation and Approximation Method

In discussing a state space formulation for (1.2), we follow the develop-

ment in [8],[9],[10] which was motivated by ideas found in [7] and [17]. To

proceed, observe that since A is positive de�nite and self-adjoint, it has a

positive de�nite, self-adjoint square root. We can de�ne a Hilbert space V

by V = domA
1

2 , with inner product de�ned by hu; vi
V

= hA 1

2 u;A
1

2 vi
H
.

Since A
1

2 is positive de�nite, V is equivalent to the Hilbert space obtained

by equipping domA
1

2 with the graph norm. It follows that V is densely

and continuously imbedded in H . De�ne a symmetric sesquilinear form �

on V by �(u; v) = hu; vi
V
for all u; v 2 V . Then � satis�es

j�(u; v)j � c1juj
V
jvj

V
for u; v 2 V;

�(u; u) � c2juj2
V

for u 2 V;

where c1; c2 > 0. This leads to a standard Gelfand triple framework. That

is, by identifying H with its dual, we have V � H � V �. An alternative

way to view the relationship between A and � is to observe that � de�nes a

bounded linear operator �A : dom �A = V ! V � by h �Au; viV ��V = �(u; v).

It follows from the Lax-Milgram theorem that range �A = V �. One can

view A as a restriction of �A. That is, dom A = fu 2 V : �Au 2 Hg. Next,
let W = L2

g(�r; 0;V ) be the Hilbert space of all weighted square integrable

functions with values in V , equipped with the norm

jwj2
W

=

Z 0

�r
g(�)jw(�)j2

V
d�:

Let Z denote the Hilbert space Z = V �H �W equipped with the norm

j(u; v; w)j2
Z
= Ejuj2

V
+ jvj2

H
+ jwj2

W
;

and compatible inner product

h(u; v; w); (�;  ; 
)i
Z
= Ehu; �i

V
+ hv;  i

H
+

Z 0

�r
g(�)hw(�); 
(�)i

V
d�:

If we introduce the state function z(t) = (u(t); _u(t); u(t) � u(t + �)), then

observe that (1.2) can be reformulated as (see [9] for more details):

_z(t) = Az(t) + (0; f(t); 0): (2:1)
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Here the operator A is de�ned on the domain

domA =

8>>>>><
>>>>>:

0
@ u

v

w

1
A 2 Z :

w is locally absolutely continuous;

dw

d�
+ v 2 W; v 2 V; w(0) = 0

Eu+

Z 0

�r
g(�)w(�) d� 2 domA

9>>>>>=
>>>>>;
;

by

A (u; v; w) = (v; �A[Eu+
Z 0

�r
g(�)w(�) d�];

dw

d�
+ v):

The following well-posedness result is proved in [9].

Theorem 2.1 The operator A is the in�nitesimal generator of a strongly

continuous semigroup of contractions T (t) on Z.

Next we introduce the operatorA1 which will be shown to be the adjoint

of the operator A. To this end de�ne A1 on the domain

domA1 =

8>>>>><
>>>>>:

0
@ u

v

w

1
A 2 Z :

w is locally absolutely continuous;

1

g

d

d�
(gw) + v 2 W; v 2 V; w(�r) = 0

Eu+

Z 0

�r
g(�)w(�) d� 2 domA

9>>>>>=
>>>>>;
;

by

A1(u; v; w) = (�v; A[Eu+
Z 0

�r
g(�)w(�) d�]; �1

g

d

d�
(gw)� v):

Theorem 2.2 The operator A1 is the in�nitesimal generator of a strongly

continuous semigroup of contractions T1(t) on Z.

Proof: We proceed by �rst showing that A1 is dissipative, and then show-

ing that (�I�A1)domA1 = Z for some � > 0. It then follows from theorems

1.4.5 and 1.4.6 of [14] that A1 has dense domain, and we may conclude from

the Lumer-Phillips theorem that A1 is the in�nitesimal generator of a con-

traction semigroup. Before proceeding, note that if (u; v; w) 2 domA1, then

w is locally absolutely continuous, and hence w(0) = 0 since w 2 W and

g(�) has a nonintegrable singularity at � = 0. Hence the same argument

used in the proof of Theorem 2.1 in [9] shows that if (u; v; w) 2 domA1, then
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R 0
�r g(�)jw(�)jV d� exists. Hence the integrals in the following dissipative-

ness argument exist. To show that A1 is dissipative, let (u; v; w) 2 domA1.

Then

RehA1(u; v; w); (u; v; w)i
Z
= �RefEhv; ui

V
+ hEu+

Z 0

�r
g(�)w(�) d�; vi

V

+

Z 0

�r
g(�)h�1

g

d

d�
(gw)� v; w(�)i

V
d�g

= �Re
Z 0

�r
h d
d�

(gw); w(�)i
V
d�

= �Re
Z 0

�r
g(�)hdw

d�
; wi

V
d� �

Z 0

�r
_g(�)jwj2V d�:

For � > 0, consider

�Re
Z ��

�r
g(�)hdw

d�
; w(�)i

V
d� = �1

2

Z ��

�r
g(�)

d

d�
jw(�)j2V d�

= �1

2
g(��)jw(��)j2V +

1

2

Z ��

�r
_g(�)jwj2V d�

� 1

2

Z ��

�r
_g(�)jw(�)j2V d�:

Letting � ! 0+, we see that RehA1(u; v; w); (u; v; w)i
Z
� 0. It remains

to be shown that (�I � A1)domA1 = Z for some � > 0. To this end,

let (�;  ; h) 2 Z, and consider the equation (�I �A1)(u; v; w) = (�;  ; h).

This equation may be written as

�u+ v = �; (2:2)

�v �A[Eu+

Z 0

�r
g(�)w(�) d�] =  ; (2:3)

�w +
1

g

d

d�
(gw) + v = h: (2:4)

We introduce the following sesquilinear form � on V :

�(u; y) = �2hu; yi
H
+ [E +

Z 0

�r

Z �

�r
g(�)e�(���)� d� d�]�(u; y) for u; y 2 V:

There are positive constants k1; k2 so that

j�(u; y)j � k1juj
V
jyj

V
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INTEGRO-PARTIAL DIFFERENTIAL EQUATIONS

for all u; y 2 V , and
�(u; u) � �2juj2

H
+ k2juj2

V
� k2juj2

V

for all u 2 V . Thus, from the Lax-Milgram Theorem, there is a unique

solution u 2 V to the equation

��(u; y) = h � ��+A

Z 0

�r

Z �

�r
g(�)e�(���)(h(�)� �) d� d�; yi

V ��V
(2:5)

for all y 2 V . For this u, set v = ���u, and clearly (2.2) is satis�ed. Also

set w(�) = 1
g(�)

R �
�r g(�)e

�(���)[h(�)� v] d�. It is easy to check that (2.4) is

satis�ed by these choices of v and w. Finally, (2.3) holds because of (2.5).

Clearly (u; v; w) 2 Z, and it remains to verify that (u; v; w) 2 domA1. We

observe that v 2 V and w is locally absolutely continuous. Also, w(�r) = 0

and 1
g(�)

d
d�
(gw) + v = h(�)� �w(�) 2 W . Finally, note that

�(Eu+

Z 0

�r
g(�)w(�) d�; y)

= �(Eu+

Z 0

�r

Z �

�r
g(�)e�(���)[h(�)� �+ �u]d�d�; y)

= �(u; y)� �2hu; yi
V ��V

+ �(

Z 0

�r

Z �

�r
g(�)e�(���)[h(�)� �]d�d�; y)

= h�� �  � �2u; yi
V ��V

:

Thus it follows that �A(Eu+
R 0
�r g(�)w(�) d�) = �� �  � �2u (recall that

� de�nes �A : V ! V �). Since �� �  � �2u 2 H , we conclude that

Eu+
R 0
�r g(�)w(�) d� 2domA, and the proof is complete.

Theorem 2.3 The operator A1 is the adjoint of A.
Proof: Let (u; v; w) 2 domA and (u1; v1; w1) 2 domA1. Then

hA(u; v; w); (u1; v1; w1)i
Z
= Ehv; u1i

V
+ h�A[Eu+

Z 0

�r
g(�)w(�) d�]; v1i

H

+

Z 0

�r
g(�)h[dw

d�
+ v]; w1(�)i

V
d�

= Ehu;�v1i
V
+ hv; Eu1 +

Z 0

�r
g(�)w1(�) d�i

V

+

Z 0

�r
g(�)hw(�); [�1

g

d

d�
(gw1)� v1]i

V
d�

= h(u; v; w);A1(u1; v1; w1)i
Z
:

7
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Hence, A1 � A�. But A1 is a maximal dissipative operator, so A1 = A�
and the result follows.

Next, we give a brief description of the semidiscrete approximation

scheme developed in [10]. To discretize the spatial variable, let V N be

any sequence of �nite dimensional subspaces of V satisfying the following

approximation condition: for any � 2 V , there exists a sequence �N 2 V N

such that j�N��j
V
! 0 as N !1. Let PN

H and PN
V denote (respectively)

the orthogonal projections of H and V onto V N . The above condition

guarantees that PN
V ! I and PN

H ! I (strong operator convergence). To

�nish the spatial discretization, for each N de�ne the operator AN :V N !
V N by

hANx; yi
H
= �(x; y); for all x; y 2 V N :

The discretization of the delay variable involves a modi�cation of the

averaging scheme for delay equations introduced in [1]. First, de�ne a

partition of [�r; 0] by �Mj = �jr
M
; j = 0; 1; : : : ;M . Then, for i = 2; : : : ;M ,

de�ne basis functions EM
i (�) by

EM
i (�) =

�
1; if �Mi � � � �Mi�1
0; elsewhere.

In addition, de�ne

EM
1 (�) =

�
�M

r
�; if �M1 � � � 0

0; elsewhere.

Set WN;M = fw 2 W : w =
PM

i=1 aiE
M
i ; ai 2 V Ng, and set ZN;M =

V N � V N �WN;M . The �nite dimensional approximation of the operator

A is the operator AN;M : ZN;M ! ZN;M de�ned as follows.

For zN;M = (u; v;

MX
i=1

aiE
M
i ),

AN;MzN;M =

0
@ v

�AN [Eu+
R 0
�r g(�)

PM
i=1 aiE

M
i d�]

M
r

PM
i=2(ai�1 � ai)E

M
i � 2Mr a1E

M
1 + fM (�)v

1
A :

Here fM (�) is given by

fM (�) =

MX
i=2

EM
i + �MEM

1 ; �M =
� R 0�r=M �g(�) d�

M
r

R 0
�r=M �2g(�) d�

:
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INTEGRO-PARTIAL DIFFERENTIAL EQUATIONS

The term fM (�)v in the third component of AN;M is an approximation of

the term v in the third component of A. Thus fM (�) is an approximation

of the constant function 1 de�ned on the interval [�r; 0]. The formula

given for fM (�) is derived by `formally' projecting the constant function

1 (`formally' because the constant function 1 is not in W ) onto WN;M

according to the projection equation

Z 0

�r
g(�) � 1 � wN;M d� =

Z 0

�r
g(�) � fM� � wN;M d� 8wN;M 2 W:

The result is the following approximation for equation (2.1):

_zN;M(t) = AN;MzN;M(t) + (0; PN
H f(t); 0): (2:5)

This approximation scheme is used for the numerical experiments discussed

in the next section. We have the following convergence result (see [10]).

Theorem 2.4 For all z 2 Z, TN;M(t)PN;Mz ! T (t)z as N;M ! 1,

uniformly on bounded t-intervals, where TN;M(t) = eA
N;M t.

This semigroup theoretic result provides for convergence of solutions of

(2.5) to the solution of (2.1).

3 Numerical Experiments

As discussed in section 1, in this section we present two examples, each

involving the use of numerical experiments to investigate certain unresolved

theoretical issues.

Example 1 We consider again the following scalar integro-di�erential

equation (1.6) discussed in section 1:

�u(t) +A[Eu(t) +

Z 0

�r
a(�) _u(t+ �) d�] = f(t): (3:1)

This equation evolves on 1R, so the state spaces become W = L2
g(�r; 0; 1R)

and Z = 1R2 �W , with norm on Z given by j(u; v; w)j2
Z
= EAjuj2 + jvj2 +

A
R 0
�r g(�)w

2(�) d�. We will investigate the eigenvalues of this equation

(that is, the eigenvalues of A) for the case r =1. Then we will apply the

approximation scheme outlined in section 2 to compute the eigenvalues of

AN;M for various �nite values of r, and compare the results.

9



R.H. FABIANO

Thus, let us consider (3.1) with r = 1. Well-posedness for this case

has been shown in [9]. For the history kernel we consider

g(�) =
�g(�)

(��)3=2 ; where �g(�) = �e��(
1

2
� ��): (3:2)

The positive constants � and � can be speci�ed later. Such exponentially

decaying kernels are frequently seen in the literature ([6], [7], [13]), and are

thought to be a reasonable model for viscoelastic materials with `fading

memory' behavior. We have chosen �g(�) as indicated in order to facilitate

the computation of the eigenvalues of A. In particular, if � is an eigenvalue

of the operator A, then

�u� v = 0 (3:3)

�v +A[Eu+

Z 0

�1
g(�)w(�) d�] = 0 (3:4)

�w � d

d�
(w + �v) = 0 (3:5)

for some (u; v; w) 2 domA. Solving (3.5) for w yields w(�) = 1
�
(1� e��)v.

Equation (3.3) implies that v = �u so that w(�) = (1 � e��)u. Plugging

in to (3.4) yields �2u + A[Eu+
R 0
�1 g(�)(1� e��)u d�] = 0. Observe that

d
d�

�e��

(��)1=2 = g(�) (in fact, this is the reason for the choice of �g(�) in the

form given above). An integration by parts yields

Z 0

�1
g(�)(1� e��) d� =

Z 0

�1

�e��

(��) 12
�e��d�: (3:6)

Thus if � is an eigenvalue ofA, then � is a root of the characteristic equation

�2 +A[E + ��

Z 0

�1

e(�+�)�

(��) 12
d�] = 0: (3:7)

The integral in (3.7) can be written as

Z 0

�1

e(�+�)�

(��) 12
d� = �

Z 1

0

e��tt�
1

2 e��t dt: (3:8)

Viewing � as a transform variable, this last integral is the Laplace transform

of t�1=2e��t, and it follows that

Z 1

0

e��tt�
1

2 e��t dt =
r

�

�+ �
for Re � > ��: (3:9)

10
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Thus, if � is an eigenvalue of A, then � is a root of the characteristic

equation

�2 +A[E +
�
p
��p

�+ �
] = 0: (3:10)

Further, in order for the integrals in (3.6)-(3.9) to exist it is necessary

that Re� > �� (so that e��g(�) is integrable at �1). There are no

purely imaginary solutions of (3.10). Also, if we consider the real function

f(x) = x2 +AE + A�
p
�xp

x+�
, a straightforward calculus argument shows that

f has exactly one root on the interval (��;1), and it is negative. Thus,

(3.10) has one and only one real root �1, and �� < �1 < 0. Next observe

that any solution of (3.10) is also a solution of

�5 + ��4 + 2AE�3 + (2�AE �A2�2�)�2 +A2E2�+ �A2E2 = 0 (3:11)

There are at most 5 roots of (3.11) and nonreal roots appear as conjugate

pairs. Thus (3.11) can be written as

(� � �1)(� � �2)(� � ��2)(�� �3)(�� ��3) = 0 (3:12)

where �2 = a + bi and �3 = c + di. Expanding (3.12) and comparing the

constant and � coe�cients with (3.11) gives

2�1a(c
2 + d2) + (a2 + b2)(c2 + d2) + 2�1c(a

2 + b2) = A2E2

��1(a2 + b2)(c2 + d2) = �A2E2:

Multiplying the �rst equation by ��1 and simplifying yields

�2�21[a(c2 + d2) + c(a2 + b2)] = �(� + �1)A
2E2:

This implies that Re�2 and Re�3 cannot both be negative. Thus (3.10)

has one negative real root and at most two roots (a conjugate pair) with

negative real part. But, since A is dissipative, its eigenvalues have negative

real part. We conclude that A has at most 3 eigenvalues - one is real and

negative, and two have negative real part (a conjugate pair).

In the numerical experiment which we report on here, we took A =

12:36236, E = 40, � = 0:10, and � = 0:50. (The values for A and

E were chosen to resemble data for the �rst vibration mode of a can-

tilevered viscoelastic beam). For r = 1, we used (3.10) to compute

the three eigenvalues of A: �1 = �0:49999509632, and a conjugate pair

�� = �0:1660964694� 22:39966735i. We then computed the eigenvalues

of AM (since (3.1) is scalar, there is no spatial discretization, so there is

no index N) for several values of M and r. In Figure 1, we show the

eigenvalues of AM for M = 300 and r = 8; 16; 32; 48.

11
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Figure 1: Eigenvalues of AM

For each M , AM has M + 2 eigenvalues. Two of these are a conjugate

pair �M� which are converging to the eigenvalues �� of A. In fact, the

convergence for these two eigenvalues is quite good, but due to scale it is

not possible to distinguish these eigenvalues in Figure 1 (they appear near

�22 on the imaginary axis). The purpose of Figure 1 is to exhibit the

interesting behavior of the remaining M eigenvalues of AM . Of these M

eigenvalues, we observe numerically that two are real andM�2 are complex

conjugate pairs which lie on a circle. As r increases, these circles are

becoming smaller, and thus these eigenvalues are `converging as r !1' to

the remaining real eigenvalue �1 of A. Of course, this is only a numerically

observed convergence behavior.

Next, for eachM; r we let �
M;r
1 denote the real eigenvalue of AM nearest

to the origin. In Table 1 we list �
M;r
1 for several values of M and r. Again

we observe a convergence behavior, as M; r !1, to the value �1.

We experimented with various values ofM , r, �, and �, and this exam-

ple is indicative of the general behavior which we observed. This appears

to be a positive indication for the possible application of our approximation

12
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scheme to in�nite delay and Volterra equations as mentioned above.

r M �
M;r
1

4

8

16

32

48

64

128

200

400

800

1600

3200

6400

16000

-2.362

-1.407

-0.930

-0.705

-0.632

-0.597

-0.545

Table 1 - Eigenvalues of AM

Example 2 In the next example, we consider an optimal control prob-

lem for a viscoelastic beam. As discussed in section 1, we present only

numerical results and do not address issues of uniform stabilizability and

detectability or convergence of the approximating adjoint semigroups. The

optimal control problem which we consider is to choose a control function

��(t) 2 L2(0;1) which minimizes

J(�) =

Z 1

0

n
jz(t)j2

Z
+ j�(t)j2

o
dt (3:13)

subject to dynamics governed by

_z(t) = Az(t) + B�(t): (3:14)

In this example, A is the same as in (2.1) with r = 1, E = 40, and

g(�) = 0:1e5�

(��)3=2 . The spaces V and H are given by V = fu 2 H2(0; 1) :

u(0) = u0(0) = 0g and H = L2(0; 1) . The operator A is de�ned from

the bilinear form � : V � V ! Cj given by �(u; v) = hu00; v00i
H
. The

operator B : 1R ! Z is de�ned by B� = (0; b(x)�; 0) and b(x) = x. For

this choice of data, equation (3.14) is an abstract formulation of (1.1) with

f(t; x) = b(x)�(t), and models the motion of a cantilevered viscoelastic

beam of length 1. Although the issue of exponential stabilizability of (3.14)

is unresolved, it can be said (see [12]) that if an optimal control �� exists

then it will be given in feedback form by �(t) = �Kz(t), where K : Z ! 1R

is de�ned in the usual way in terms of a solution to an algebraic operator

13
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Riccati equation on Z. Since K is a bounded linear functional on Z it may

be represented by

Kz = hk1; �i
V
+ hk2;  i

H
+ hk3; wi

W
(3:15)

for z = (�;  ; w) 2 Z. Here k1, k2, and k3 are the optimal functional gains,

and in our numerical experiments we use our approximation scheme to com-

pute approximate (sub-optimal) gains k
N;M
1 , k

N;M
2 , and k

N;M
3 . Again, the

issue of convergence is at present unresolved for this approximation scheme,

but our preliminary numerical results indicate \experimental" convergence.

In Figure 2 we plot the approximating functional gains k
N;M
2 for N = 5

and M = 8; 16; 32; 64.

0.2 0.4 0.6 0.8 1

2.5

5

7.5

10

12.5

15

17.5

Figure 2: Gain k5;M2 for M = 8; 16; 32; 64

Even better convergence was observed for k
N;M
1 . In Figures 3-6 we plot

the gains k
N;M
3 (s; x) for N = 5 and M = 16; 32; 64; 100. These results are

representative of several numerical experiments with various values of N

and M .

We may conclude that these numerical results, although preliminary,

indicate the usefulness of our approximation scheme for applications involv-

ing strongly singular kernels. We are still investigating several unresolved
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theoretical issues. In addition, we are investigating the implementation of

a nonuniform mesh for the case of a strongly singular kernel.
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Figure 5: Gain k
5;64
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Figure 6: Gain k5;1003
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