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Abstract

In this article we address the problem of determining the region

of attraction (RA) of a closed-loop single-input linear system with

a saturated stabilizing linear feedback. It is shown that the shape of

the region of attraction depends strongly on the number nu of eigen-

values with positive real part of the open-loop system. In particular,

under certain conditions on the control function, if the open-loop

system has eigenvalues with strictly non-zero real part, the corre-

sponding RA is homeomorphic to the cylinder Rn�nu �Bnu .
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0 Basic Notation

Bn(r) n-dimensional open ball of radius r.

Sn n-dimensional unitary sphere.

ns; nu number of eigenvalues of the matrix A with negative

and positive real part, respectively.

W s(
);W u(
) stable and unstable manifolds of the invariant set 
.

@S; cl(S) boundary and clousure of the set S.


(0) region of attraction of the origin.

�(A) the set of eigenvalues (spectrum) of the matrix A.

C+ ; C� ; C 0 complex numbers with positive, negative and zero

real part.

�Received February 28, 1994; received in �nal form July 6, 1994. Summary appeared

in Volume 5, Number 4, 1995.
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1 Introduction

Consider the linear controllable system

_x = Ax+ bu (1:1)

where x 2 Rn ; u 2 R. From the controllability property of the pair (A; b),

there exists a linear feedback

u(x) = kTx; k 2 R
n (1:2)

which stabilizes system (1.1) (i.e., �(A+ bkT ) � C� ). Let u0 be a positive

real number. If the input u is restricted to take values in the interval

[�u0; u0], a saturated feedback and a closed-loop non-linear vector �eld

are obtained.

De�nition 1.1 Let u(x) be a state feedback de�ned as in (1.2). The

saturated linear feedback usat(x) is given by

usat(x) =

8<
:
�u0 if u(x) � �u0
u(x) if �u0 < u(x) < u0
u0 if u(x) � u0

(1:3)

The saturated vector �eld, Ax+ busat(x), will be denoted fsat(x).

Earlier studies on the saturated linear feedback problem have focused on

the derivation of su�cient conditions for the global asymptotic stability of

(1.1)-(1.3) when A is a marginally stable matrix (see for instance [9,10]). In

a recent paper [1], for the two-dimensional case, we used qualitative meth-

ods to topologically characterize the region of attraction (RA) of (1.1)-(1.3)

and its bifurcations. Along this methodological line, in this work we study

the characterization of the RA for single-input n-dimensional hyperbolic

(�(A) \ C 0 = ;) controllable linear systems (1.1) with a saturated linear

feedback (1.3).

Speci�cally, we prove that, for a system whose open-loop eigenvalues

have non-positive real part, the RA is unbounded. For completely un-

stable plants (�(A) � C+ ), it is proved that the RA is bounded and

homeomorphic to the n-dimensional ball. For stable open-loop systems, it

is proved that all trajectories eventually tend towards some compact set of

zero volume. For the case of systems whose eigenvalues have positive and

negative real parts, it is found that a feedback which only relocates the

eigenvalues with positive real part, makes the RA homeomorphic to the

product of the RA s associated to the stable and stabilized parts. Conse-

quently, the RA of the closed-loop system is homeomorphic to the cylinder

Rn�nu �Bnu . For nu = 1, and keeping �xed the relocated eigenvalues, the

cylindric structure of the RA is retained under small changes in the loca-

tions of the open-loop stable eigenvalues. To estimate the RA we prove
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that @
(0) = [iW
s(
j) when the critical elements 
j in @
(0) are con-

nected to the origin. Three aplication examples are presented to illustrate

how the theoretical results improve the understanding of the problem and

assist control design procedures.

2 The Saturated Closed-Loop System

The feedback usat(x) induces a partition of Rn into three regions (S+; S�

and S0):

S+(�) = fx 2 R
n : usat(x) = +(�)u0g;

S0 = fx 2 R
n : ju(x)j < u0g:

S0 is an open set, and S+
[ S0

[ S� = Rn . S� = S+
[ S� and S0 are

referred to as saturation and non-saturation regions, respectively. Note

that the boundaries of the saturation regions S+ and S� are the (n� 1)-

dimensional hyperplanes kTx = �u0. On each of the regions S+; S0 and

S�, system (1.1)-(1.3) is linear. On Rn , the system is piecewise linear and

continuous.

Since �(A + bkT ) � C� , the origin is a locally asymptotically stable

(possibly, non-unique) equilibrium point of (1.1)-(1.3), and it is the only

equilibrium point in S0. Our main problem is to estimate the region of

attraction 
(0) of the origin. In the next proposition, it is proved that


(0) contains points in the interior of the saturation regions (S+ and S�).

Proposition 2.1 
(0) \ [Rnncl(S0)] 6= ;.

Proof: Assume that 
(0) � cl(S0). Then, @
(0) � cl(S0) and dist(0;

@
(0)) > 0. The invariance of @
(0) implies the existence of at least one

trajectory 
(t) contained in @
(0). Because in cl(S0) the saturated linear

feedback coincides with the linear closed-loop feedback, 
 satis�es: _
(t) =

(A+ bkT )
(t) for all t 2 R. The stability of A+ bkT implies that 
(t)! 0

when t ! 1. This is a contradiction to the fact that dist(0; @
(0)) > 0.

Therefore, 
(0) is not a subset of cl(S0) and the proposition is proved.

In the next sections, it will be shown that the \size" of the intersection


(0) \ [Rnncl(S0)] is, in general, rather large.

2.1 Equilibrium points

As a point of departure to study the topological con�guration of theRA, in

this section we obtain the set of equilibrium points of the saturated system.

Consider system (1.1)-(1-3) with the matrix A invertible. In addition to
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the origin, the equilibrium points

e� = �A�1bu0 (2:1)

of the open-loop systems, and

_x = Ax� bu0 (2:2)

are candidates for equilibrium points of the saturated system (1.1)-(1.3).

Lemma 2.2 Let the pair (A; b) be controllable, A invertible and u(x) a

linear feedback that stabilizes (1.1). Then, e+ and e� are equilibrium points

of the system

_x = Ax+ busat(x) = fsat(x) (2:3)

if and only if nu is odd.

Proof: Consider the continuous function E : Rn � [0; 1]! R
n , given by

E(x; s) = Ax+ (1� s)busat(x):

For any � > kA�1k kbku0 we have that E(x; s) 6= 0 for all (x; s) 2

@Bn(�)� [0; 1]. Consequently, fsat(x) and Ax are homotopically equivalent

vector �elds. This implies (see [5]) that the total degree of both vector �elds

coincide; where the total degree, T deg(f(x)), is de�ned by

Tdeg(f(x)) =
X
�xi2E

index(�xi)

where E = fx 2 Rn : f(x) = 0g. Then, we have

Tdeg(fsat(x)) = Tdeg(Ax) = sgn(det(A)) = (�1)ns : (2:4)

Since the origin is an asymptotically stable equilibrium point of fsat (in

fact, the pair (A; b) is controllable), index(0) = (�1)n. Thus,

Tdeg(fsat(x)) = (�1)n +
X
�xi2E�

index(�xi) (2:5)

where E� = Enf0g. Because the origin is the unique equilibrium point

of f(x) in S0, we have that E� � S+
[ S�. Therefore, E� � fe+; e�g,

with e+ and e� being candidate equilibrium points of (1.1)-(1.3). Since

Dfsat(e
�) = A, if e+ and e� are equilibrium points of (1.1)-(1.3), then

index(e+) = index(e�) = (�1)ns . Finally, from (2.4) and (2.5) we have that

e+ and e� are not equilibrium points of (1.1)-(1.3) only if (�1)n+2(�1)ns =

(�1)ns [(�1)n = (�1)ns ] or equivalently only if nu is odd [even]. In other

words, e+ and e� are equilibrium points of (1.3) if and only if nu is odd.
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The following theorem is an immediate consequence of the last lemma.

Theorem 2.3 Let the pair (A; b) be controllable, A invertible and u(x) a

linear feedback which stablizes (1.1). Then, if nu is odd, (2.3) has three

equilibrium points: one attractor and two saddle points of nu-type when

nu 6= n, or one attractor and two repulsors when nu = n. If n is even,

(2.3) has only one equilibrium point which is an attractor.

The last case to be considered is when the matrix A is not invertible.

That is, A has at least one zero eigenvalue.

Theorem 2.4 Let (A; b) be a controllable pair with det(A) = 0, and u be a

linear feedback which stabilizes (1.1). Then, (2.3) has only one equilibrium

point which is an attractor.

Proof: Suppose x0 is a solution of Ax0 = �bu0. By hypothesis

Rn = spanfb; Ab; : : : ; An�1bg

= spanfAx0; A2x0; : : : ; Anx0g � Im(A):

This implies that the matrix A is invertible, which is a contradiction.

Remark 2.5 The structure of the equilibrium points for the m-input

(m � 2) case is a rather complex problem. In particular, it involves the ex-

istence of non-di�erentiable (or non-standard) bifurcations where one equi-

librium point disappears because it collapses with the saturation boundary

(border collision bifurcation). For instance, if A is stable, while the origin

is the unique equilibrium point of the saturated system (2.3), a two-input

saturated system may have either one, �ve, or nine equilibrium points. The

independence of the total degree of the linear system on the saturation of

the control implies that the sum of the indices of such equilibrium points is

invariant and equal to (�1)ns . This is the result which allows us to count

and clasify the equilibrium points of (2.3) (see [3]).

3 Regions of Attraction

In this paper the main result is the characterization of the topological con-

�guration of the region of attraction of the saturated system (2.3). Because

our approach is based on (smooth) dynamical systems theory, instead of

function fsat(x) we will consider a smooth function f �sat(x) which coincides

with fsat(x) in R
n
nW� where

W� = fx : �� � kTx+ u0 � � or � � � kTx� u0 � �g:

Observe that W� satis�es W�1
� W�2

if �1 < �2 and has the following

property: for any compact set D , lim
�!0

Vol(D \W�) = 0.
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Given � > 0, de�ne the C1 function '�(r) as an approximation of the

saturation function

'(r) =

(
u0 if r � u0
r if �u0 < r < u0
�u0 if r � �u0

(3:1)

such that '�(r) � '(r) for all r 2 (�1;�u0� �)[ (�u0+ �; u0� �)[ (u0+

�;1) and 0 � (d=dr)'� � 1. Then, the function f �sat(x) = Ax + b'�(kTx)

is a C1 function which coincides with fsat(x) in RnnW�.

To prove the next proposition, assume that @
(0) is an embedded sub-

manifold of Rn (smooth manifold). In fact, the smoothness hypothesis

could be weakened.

Proposition 3.1 Let A be a matrix with �(A) � C� [ C 0 . Then, if @
(0)

is a smooth manifold, the region of attraction 
(0) of (2.3) is unbounded.

Proof: Suppose 
(0) is bounded. �(A) � C
�
[C

0 implies that divf �sat(x) �

0 for all x 2 S�nW�, and �(A + bkT ) � C� implies that there exist � > 0

such that divf �sat(x) = �� for all x 2 S0
nW�. On the other hand, it can

be easily proved the existence of a number h such that Re� � h for all

� 2 �(A + rbkT ) where 0 � r � 1. This implies that divf �sat(x) < nh for

all x 2 W�. Then, the boundedness of 
(0), there exist �
� and 
 > 0 such

thatZ

(0)

div f �sat(x)dVn � nhVol(
(0) \W�)� �Vol(S0
\ 
(0)nW�) < �


for all � < ��. From the invariance of @
(0) follows that hfsat(x); �(x)i = 0

for all x 2 @
(0), where �(x) is the outward unit normal vector �eld on the

boundary @
(0). This, together with the condition limVol(D \W�) = 0,

implies the existence of a positive number L such that�����
Z
@
(0)

hf �sat(x); �(x)idVn�1

����� =
�����
Z
@
(0)\W�

hf �sat(x); �(x)idVn�1

����� � �L:

For � small enough this is a contradiction to the divergence theorem (see

[14]). Therefore, 
(0) is not bounded.

Remark 3.2 When n (n 6= 5) is odd, the proof of Proposition 3.1 can be

simpli�ed: if 
(0) is bounded, @
(0) is homeomorphic to the Sn�1 sphere.

Since n�1 is even, due to Theorem A.4 (appendix), @
(0) has at least one

equilibrium point. This is a contradiction to Lemma 2.2.

In what follows, the approximation of fsat(x) by the smooth vector �eld

f �sat(x) will be obviated. Next we prove three fundamental results.
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Theorem 3.3 Let A be a matrix with all its eigenvalues in the open right

half-plane. Then, 
(0) is bounded and homeomorphic to Bn. Moreover,

for n 6= 5, if @
(0) is a smooth manifold, then it is homeomorphic to Sn�1.

Proof: Since �(A) � C+ , there exists a positive-de�nite symmetric matrix

P that satis�es PA + ATP = I . Introduce the Lyapunov function V =

xTPx, and obtain

_V = kxk2 + (bTPx+ xTP b)usat(x)

� kxk2 � 2u0kPk kbk kxk:
(3:2)

Then _V > 0 whenever kxk > 2u0kPk kbk. Consequently, 
(0) is bounded.

The theorem follows from Proposition A.1 and A.2 (appendix).

Theorem 3.4 Let A be a matrix with all its eigenvalues having negative

real part. Then, the solutions of (2.3) are bounded and there is a compact

invariant set of zero volume which contains the !-limit sets !(x) of all

points x 2 Rn . If @
(0) is a smooth manifold, 
(0) is not bounded.

Proof: First, we prove that the solutions of (2.3) are bounded. Let P be

a positive-de�nite symmetric matrix that satis�es PA+ATP = �I . If we

de�ne the Lyapunov function V = xTPx, we obtain

_V = �kxk2 + (bTPx+ xTP b)usat(x)

� �kxk2 + 2u0kPk kbk kxk:
(3:3)

_V < 0 if kxk > 2u0kPk kbk =: r. A Lyapunov argument implies that the

solutions of (2.3) are bounded (ultimately contained in Vr = fx 2 Rn :

V (x) � sup
y2Bn(r)

V (y)g).

Let � > 0 be a constant such that Re(�) < �� for all � 2 �(A)[�(A+

bkT ). From the well known Abel-Jacobi-Liouville formula, we have

det eAt = e(tr A)t � e��t; det eA+bk
T

= etr(A+bk
T )t

� e��t:

Let c be a positive number such that Br � D = fx 2 Rn : V (x) � cg.

Hence, the 
ow maps the compact set D into the compact set �tD with

Vol(�tD) = (det�t) Vol(D) � Vol(D) exp(��t). Because all trajectories

cross inwards the boundary of D, �t1(D) � �t2(D) if t1 > t2. Then, every

trajectory is ultimately contained in D� = \t>0�t(D). This implies the

existence of a zero-volume set D�, contained in Bn(r), towards which all

trajectories tend (see [15]). Finaly, unboundedness of 
(0) follows from

Proposition 3.1.
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In general, global boundedness of trajectories does not imply global

asymptotic stability. The following simulation example shows that typical

non-linear phenomena may appear.

Example 3.5 Consider the one-input three-dimensional system:

_x1 = x2;

_x2 = x3;

_x3 = �6x1 � 11x2 � 6x3 + u; juj � 1:

The open-loop system is stable with eigenvalues f�1;�2;�3g. The linear

feedback:

u(x) = (6 + �3)x1 + (11� 3�2)x2 + (6 + 3�)x3

relocates all the closed-loop eigenvalues at � < 0. According to Theorem

3.4 the saturated vector �eld fsat(x) has all its trajectories bounded, and

the origin as the unique equilibrium point (Lemma 2.2). If the origin is not

a global attractor, there are trajectories that converge to a closed orbit.

With numerical simulations, the following dynamic structure was found:

a) For �29 < � < 0: the origin is a global attractor; that is 
(0) = R3 .

b) For � �= �29:1: a non-hyperbolic closed orbit appears, and 
(0) is

homeomorphic to R �B2.

c) For � < �29:2: there exist two limit cycles, one stable and one

saddle-type. 
(0) is homeomorphic to R �B2.

Theorem 3.6 Let A be a matrix with nu eigenvalues with positive real

part and ns eigenvalues with negative real part, nu+ns = n. Then, for the

saturated system (2.3), there exist two positive numbers r1; r2; and a linear

coordinate transformation T such that cl(
(0)) is contained in the cylinder

T�1(Rns �Bnu(r1)), and given any initial point x0, there is a time t�(x0)

such that the trajectory x(t) is contained in the cylinder T�1(Bns(r2)�R
nu )

for all t > t�. In particular, !(x0) � T�1(Bns(r2)� Rnu ).

Proof: There is a linear change of coordinates T which transforms system

(1.1) into the following system

_x =

�
A+ 0

0 A�

�
x+

�
�b1
�b2

�
u; (3:4)

where A� is a (ns�ns) stable matrix, A
+ is an (nu�nu) unstable matrix,

and x = (x1; x2). Let P1 and P2 be positive-de�nite symmetric matrices

that satisfy P1A
+ + A+TP1 = I1 and P2A

� + A�TP2 = �I2. If we set

V (x) = xT1 P1x1, (3.2) implies the existence of a positive number r1 such

8
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that, for any x0 = (x01; x
0
2) with kx

0
1k � r1, the solution �t(x

0) diverges. In

other words, any bounded solution must satisfy kx01k < r1. It follows that

T [
(0)] � Rns � Bnu(r1). If V (x) = xT2 P2x2, by (3.3) there exist r2 > 0

and, for any x0 = (x01; x
0
2) with kx01k < r2, a positive time t�(x0) > 0,

such that the trajectory �t(x
0) = (x1(t); x2(t)) satis�es kx2(t)k < r2 for all

t > t�. Then, !(x0) � T�1(Bns(r2)� Rnu ).

Corollary 3.7 Let A be as in Theorem 3.6. Then the !-limit set of

any trajectory on @
(0) is non-empty and contained in the bounded set

T�1(Bns(r2)� Bnu(r1)).

Proof: Let x0 2 @
(0). From Theorem 3.6, @
(0) � T�1(Rns �Bnu(r1))

and !(x0) � T�1(Bns(r2)�R
nu ). Hence !(x0) � T�1(Bns(r2)�B

nu(r1)).

Remark 3.8 Note that theorems 3.3 and 3.6 and the proof of boundedness

of trajectories of open-loop stable systems (Theorem 3.4) are valid for any

bounded multi-input non-linear control law.

3.1 Regions of attraction for unstable saturated sys-

tems

We shall prove that the shape of 
(0) depends strongly on nu and in

particular on the number of eigenvalues that have been \relocated" by

feedback. To �x ideas we present the following de�nition. Let us express

the spectrum of A in (1.1) as the union of two disjoint symmetric sets:

�(A) = �1(A)[�2(A); �1(A)\�2(A) = ;, where �1(A) = f�1; : : : ; �mg and

�2(A) = f�m+1; : : : ; �ng. Consider a change of coordinates T = (T1; T2)

which transforms the controllable system (1.1) into the system

_x1 = A1x1 + b1u

_x2 = A2x2 + b2u
(3:5)

in such a way that

�(A1) = f�1; : : : ; �mg

and

�(A2) = f�m+1; : : : ; �ng:

De�nition 3.9 From the controllability of the pair (A; b), for any sym-

metric set of m complex numbers, �, there exists a vector k1 such that

�(A1 + b1k
T

1 ) = �. If �(A1) \ �(A1 + b1k
T

1 ) = ; we will say that the

feedback function u(x) = kT1 T1x relocates the eigenvalues f�1; : : : ; �mg of

(1.1).
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It is easy to prove that the dynamic behavior of the open-loop system

on the invariant subspace associated to the non-relocated eigenvalues, is

not a�ected by saturation. To see this, observe that the saturated system

(2.3) is transformed, by the change of coordinates T , into the system

_x1 = A1x1 + b1'(k
T

1 x1)

_x2 = A2x2 + b2'(k
T

1 x1)

where ' is the saturation function (3.1). Then, the dynamical behavior on

the invariant subspace asociated to the not relocated eigenvalues, fx1 = 0g,

is given by _x2 = A2x2, which is precisely the open-loop dynamics of the

non-relocated part of the system.

By a \minimum-energy-control" (MEC) feedback, we mean a control

feedback which only relocates the unstable eigenvalues (see [13]). Formally,

aMEC feedback for system (1.1), is a function u(x) = u1(x1) where u1(x1)

is a stabilizing control for the unstable part of (3.4). The MEC feedback

is used when control is expensive (see [8]). Here we prove that, for any

MEC feedback, 
(0) is homeomorphic to Rns � Bnu when 0 < nu < n,

nu + ns = n.

Theorem 3.10 Let A be a matrix with nu eigenvalues with positive real

part and ns eigenvalues with negative real part nu+ns = n. Assuming that

u(x) is a MEC feedback, 
(0) is homeomorphic to Rns �Bnu .

Proof: Let T be the change of coordinates which transforms systems (1.1)

into (3.4). Let u1(x) = kT1 x1 be a MEC feedback. Then, A+ + �b1k
T

1 is

asymptotically stable. Consider the saturation of u1(x); u1sat(x1), de�ned

by (1.3) and let 
1(0) be the RA of the corresponding closed-loop system.

From Theorem 3.4, it follows that 
1(0) is homeomorphic to B
nu .

After closing the loop, system (3.4) is transformed into the following

triangular non-linear system

_x1 = A+x1 +�b1u
1
sat(x1) = f1(x1)

_x2 = A�x2 +�b2u
1
sat(x1) = f2(x1; x2):

(3:6)

From the stability of matrices A� and A+ + �b1k
T

1 follows that (3.6)

is locally asymptotically stable. Moreover, the following conditions are

ful�lled: i) The set fx : x1 = 0g is an invariant manifold; ii) system

(3.6), restricted to x1 = 0, is globally asymptotically stable (coincides with

_x2 = A�x2); iii) the manifold x1 = 0 attracts the set 
1(0)�Rns , and iv)

for any point in 
1(0)�Rns the corresponding solution of (3.6) is bounded

in the future (consequence of Theorem 3.6). Then, (3.6) satis�es the non-

local stability conditions for triangular non-linear system given in [11]. This

implies 
(0) = 
1(0)� Rns and the theorem is proved (see Figure 1).
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Dependency of the control function on just nu variables,

usat(x) = u1sat(x1);

implies that system (2.3) (with a MEC feedback) has, at its stability

boundary, ns invariant direction which are parallel to the saturation hy-

perplanes S+ and S�. Speci�cally, when nu = 1, the stability boundary

consist of two (n�1)-dimensional hyperplanes parallel to S+ and S� which

do not depend on the gain k1.

Corollary 3.11 Let A be a matrix with nu = 1, ns = n� 1 and u(x) be a

MEC feedback. Then,


MEC(0) = T�1fx 2 R
n : jx1j < jb1ju0=�

+
g

where �+ is the positive eigenvalue of A, and T : Rn ! Rn is the change

of coordinates which transforms (1.1) into (3.4). Furthermore, 
MEC(0) is

independent of the speci�c MEC feedback chosen.

Remark 3.12 For n > 1 the corollary is not valid. In other words,


MEC(0) is independent of the feedback gains, if and only if nu = 1. For

nu = 2, a simple example

_x1 = x2
_x2 = �6x1 + 5x2 + u;

with u = '((�4�+6)x1+(�4�2�5)x2), where ' is the saturation function

(3.1), shows that @
�(0) is a limit cycle that converges to zero when the

gains converges to in�nity (�!1).

At this point, the results obtained topologically characterize the shape

of the RA of (2.3). In what follows we shall address the problem of esti-

mating the RA of (2.3). In principle, the estimation of the RAs is part

of the problem of the characterization of the global behavior of non-linear

systems, and is far from being solved. In [4] the estimation of the RA has

been addresed analizing the behavior of the system at the boundary. The

main result in this direction has been stated in the appendix (Theorem

A.3). Next we prove that the conditions of Theorem A.3 are satis�ed. We

require the following de�nition and observations from dynamical systems.

De�nition 3.13 Two compact invariant sets P1 and P2 are connected

(heteroclinic) if there exists a trajectory whose �� and !-limit sets are

equal to P1 and P2.

It is well known [17] that a connection between saddle points can be

broken by small perturbations, while a connection between an attractor

or a repulsor and any other hyperbolic equilibrium point is structurally

stable. In our case, system (2.3) with a MEC feedback has the following

11
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properties: i) if nu is odd, e+ and e� are connected with the origin; ii)

if nu is even, there exists at least one invariant set (using simulations, a

limit cycle was always found) which is connected with the origin; Assuming

structural stability of our system, a small change in the locations of the

negative eigenvalues of the system (3.6) does not break the connections of

the invariant sets with the origin.

The next lemma is a consequence of the �-lemma [4]. Its proof follows

along similar lines of a part of the proof of theorem 3.7 of [4]. We include

the proof for the sake of completness.

Lemma 3.14 Let 
 be a hyperbolic critical element of system (2.3). If 


is connected with the origin, then W s(
) � @
(0).

Proof: If 
 is connected with the origin, then W u(
) \ 
(0) 6= ;. Let

D � W u(
) \ 
(0) be an m-disk, m = dim(W u(
)). Let y 2 W s(
) be

arbitrary. For any � > 0, let N be an m-disk transversal to W s(
) at 
,

contained in an �-neighborhood of y. By the �-lemma, there exist t > 0

such that �t(N) is so close to D that �t(N) contains a point p 2 
(0).

Thus ��t(p) 2 N . Since 
(0) is invariant, this shows that N \ 
(0) 6= ;.

Letting � ! 0, one proves that y 2 cl(
(0)). Thus W s(
) � cl(
(0)).

Since, W s(
) and 
(0) are disjoint, it follows that W s(
) � @
(0).

Theorem 3.15 If all critical elements of (2.3), 
j (j = 1; 2; : : :) on @
(0)

are hyperbolic and connected with the origin, then

@
(0) =
[
j

W s(
j):

Proof: The result follows from Theorem A.3. Observe that condition iii)

follows from Corollary 3.7, and that, due to Lemma 3.14, condition ii) can

be replaced by the connectivity condition.

For the general case, we already know that the boundary of the RA is

contained in a cylinder. On the other hand, we know that for the MEC

case, the RA is a cylinder. An interesting problem arises: what happens

when the MEC case is perturbed by gain deviations. Speci�cally, for

nu = 1, we will prove that 
(0) � 
MEC(0) and 
(0) retains the cylindric

structure. For three dimensional systems with small gain deviations, nu-

merical simulations exhibited boundaries as cylinders with radius tending

to zero [16] (see �gure 2). We conjecture that both results are valid for the

n-dimensional case.

The next result shows that for nu = 1 the largest RA is obtained when

u(x) is a MEC feedback.

12
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Theorem 3.16 Let A be a matrix with nu = 1, ns = n�1, and let u(x) be

any linear (or non-linear) feedback with ju(x)j � u0. Then the RA, 
(0),

related to the feedback u(x), satis�es the relation


(0) � 
MEC(0):

Proof: The unstable part of (3.4) can be written as follows

_x = �+x1 + b1u: (3:7)

Integration of (3.7), for u = u(x), yields

e��
+
tx1(t) = x01 +

Z
t

0

e��
+
sb1u(x(s))ds:

Since ju(x)j � u0,

jx1(t)j � e�
+
t(jx01j � jb1ju0=�

+) + jb1ju0=�
+:

When jx01j � jb1ju0=�
+, the trajectory satis�es jx1(t)j � jb1ju0=�

+.

Then 
(0) � fx 2 R
n : jx1j < jb1ju0=�

+
g = 
MEC(0).

Theorem 3.17 Let A be a matrix with nu = 1, and ns = n � 1. If there

is a connection between e+; e� and the origin, then, 
(0) is homeomorphic

to Rn�1 �B1. In particular, @
(0) =W s(e+) [W s(e�).

Proof: From Theorem 3.15 follows that

e+; e� 2 @
(0)

and

W s(e+); W s(e�) � @
(0):

Observe that Dfsat(e
�) = A implies thatW s(e�) locally coincides with the

(n�1) dimensional stable linear manifolds Es(e�) of the open-loop system

(2.1). Then Es(e+) and Es(e�) can be divided in two parts: one (Es

w
(e+)

and Es

w
(e�)) which does not intersect the saturation hyperplanes, S+ and

S�; and a second part (Es

i
(e+) and Es

i
(e�)) which intersects the hyper-

planes. In particular, Es

w
(e+)(Es

w
(e�)) is contained in W s(e+)(W s(e�)).

Let y be a point in Es

i
(e+). Hence, there exists t� > 0 such that

�t�(y) 2 S+. Because �t(y) cannot stay in S for all t < t�, there is a

t�� < t� for which �t��(y) 2 S�(if �t��(y) 2 S+ the e�-origin connection is

broken because dim(Es

i
(e+)) = n� 1). The saddle properties of e� imply

that �t(y) 2 S� for all t < t��. In S�, Es(e�) is a negative attractor,

which means that �t(y)! Es(e�) when t! �1. It follows that W s(e�)

is unbounded in any direction with dim(W s(e�)) = n � 1. This implies

13
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that the only critical elements of (2.3) in @
(0) are e+; e�. From Theorem

3.15 follows that @
(0) =W s(e+) [W u(e�) and the theorem is proved.

Remark 3.18 An interesting question is to analize what happens when

the connection between the invariant elements in @
(0) and the origin are

broken. In this case, a topological bifurcation occurs. For two-dimensional

systems and nu = 1 (see [1]), as the gains are increased (moving the nega-

tive eigenvalues to the left), there is a critical value where the connection

with the origin is broken and a connection between e+ and e� is created

(see [1]). After that value, the e��e+ connection with the origin is broken

and 
(0) remains bounded. The parts W u(e+) and W u(e�) which, for

a MEC feedback converge to the origin, now diverge (see [1]). It must

be pointed out that the last two of the above cases were not detected by

simulations in [13].

4 Examples

In control design for linear systems with saturated input, a fundamental

problem is to �nd a feedback such that the origin becomes an attractor for a

suitable set D of initial conditions [7]. The assumption that the set D must

be contained in a non-saturation region S0 is a major disadvantage of most

existing design techniques. Such limitation is aggravated as the gain of the

controller increases or when the system is open-loop unstable. In principle,

a control design technique should bene�t from a priori information on the

geometric structure of the region of attraction 
(0). In particular, it can

be proved (using Theorem 2.2 of [12]) that, given any compact subset D of


MEC(0), there is an �-neighborhood of uMEC for which D is also contained

in the corresponding RA, 
(0). Therefore, one can design �rst a MEC

feedback in such a way that D � 
(0). After that, the stable eigenvalues

can be relocated if care is taken to keep D � 
(0). In this section, the

mentioned points are illustrated by three application examples whose study

is based on the theoretical results obtained in the preceding sections.

Example 4.1 The following single-input two-dimensional system is the

linearization around an unstable equilibrium point of a chemical reactor

[2]:

_x1 = �2x1 � 0:03125x2
_x2 = 200x1 + 4:25x2 + u juj � 10:0

(4:1)

where x1 and x2 are reactor concentration and temperature, and u is the

coolant temperature. The open-loop eigenvalues are (0.75, -3.0), so nu = 1

and det(A) 6= 0. The linear feedback

u(x) = [(�2:25� 2k1 + k2)x1 � (0:0703 + 0:03125k1)x2] =0:03125 (4:2)

14
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stabilizes (4.1) at the origin. Suppose the assigned closed-loop eigenvalues

are real and equal to � < 0. Then we have k1 = �2� and k2 = �2.

If � = �3:0, (4.2) is a MEC feedback. From Theorem 3.10, the RA of

the saturated vector �eld Ax + busat(x) is homeomorphic to the cylinder

R �B1. 
MEC(0) can be obtained using Corollary 3.11.

For non-MEC saturated feedbacks, the RA was investigated with nu-

merical simulations guided by Theorem 3.17. As a �rst step, we looked

for possible connections between the origin and the saddle-type equilib-

rium points e+ = (�0:1388; 8:889) and e� = (0:1388;�8:889). (From

Lemma 2.2, e+ and e� are equilibrium points of the saturated vector �eld

Ax + busat(x)). Since @
(0) is one-dimensional, e� are the only critical

elements on @
(0).

The stable and unstable invariant directions of these equilibrium points

are vs = (0:03125; 1:0), and vu = (�0:01136; 1:0).

To test connection between e+ and the origin, initial conditions in the

direction fe+ + �vug were considered. If at least one trajectory converges

to the origin, then it is connected with e+. From a symmetry argument,

the same is true for e�. It is easy to see that e� are hyperbolic. Then,

according to Theorem 3.15 if both e+ and e� are connected with the origin,

then e+; e� 2 @
(0) and W s(e+)[W s(e�) = @
(0). For the saturation of

(4.2), both connections were found for �4:1399 < � < 0. For � �= �4:1399,

the system presents a topological bifurcation: the connection between the

equilibrum points e+; e� and the origin breaks and a heteroclinic connec-

tion 
 apears. In this case @
(0) = 
, so that 
(0) is bounded. For

� < �4:1399 there are no connections; e+; e� 62 
(0), and @
(0) is an

unstable limit cycle.

Example 4.2 Consider the one-input bounded control for a linearized

model of an inverted pendulum on a cart [8]. Speci�cally, we are interested

in describing the geometry of the RA. The process dynamics is given by

the following four-dimensional linear model:

_x =

0
BB@

0 1 0 0

0 �F=M 0 0

0 0 0 1

�g=L 0 g=L 0

1
CCAx+

0
BB@

0

1=M

0

0

1
CCAu (4:3)

where M , F , g, L are (positive) physical constants. The input u(t) is the

force on the cart. The state variables are d; _d; d+ L�, and _d + L _�, where

d is the cart displacement referred to the origin, and � is the pendulum

angle with respect to the vertical.

15
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The spectrum of matrix A, and its corresponding eigenvectors are:

�1 = 0 v1 = (1; 0; 1; 0)

�2 = �F=M v2 = (�M=F; 1;�MFg=(M2g

�F 2L);M2g=

(M2g � F 2L))

�3;4 = �g=L v3;4 = (0; 0; 1;�g=L)

The coordinate transformation z = Tx = (v1; v2; v3; v4)x, carries system

(4.3) into a system of the form (3.5) where A1 is a 2 � 2 stable diagonal

matrix with eigenvalues f�g=L;�F=Mg, and A2 is a 2� 2 unstable diago-

nal matrix with eigenvalues f0; g=Lg. Suppose aMEC feedback u = u(x2)

is applied. By Theorem 2.4, system (4.3)-(1.3) has only the origin as equi-

librium point . If 
2(0) is the asymptotic region of attraction for the un-

stable part of (3.5), then, the asymptotic region of attraction of (4.3)-(1.3)

is 
(0) = R2 �
2(0).

Although in this work we have not addressed the problem of linear

systems with positive and zero real part eigenvalues, for two dimensional

systems, it is possible to see that the zero eigenvalue behaves as an unstable

one [1]. In this case, @
2(0) is an unstable limit cycle (see �gure 3). In

original coordinates, the cart-pendulum region of attraction turns out to

be the product of the plane generated by two eigenvectors associated to

the stable eigenvalues and the interior of the limit cycle contained in the

plane generated by the other eigenvectors.

Example 4.3 Consider the linearized model for the depth control of a

submarine [7]:

_x1 = x2
_x2 = x3
_x3 = �0:005x3 + 0:005u juj � 0:005

(4:4)

where x1 designates depth. The open-loop eigenvalues are (0, 0, -0.005),

and therefore the system is not hyperbolic. The linear feedback:

u(x) =
�
1:117� 10�5�x1 � (1:117� 10�5 � 5:2� 10�3�)x2+

(�� 5:2� 10�3)x3
�
=0:005

(4:5)

relocates the closed-loop eigenvalues at (�;�2:6�10�3�2:1�10�3i). The

last two eigenvalues have the same assignation as in [7]. For � = �0:005,

(4.5) is a MEC feedback. Then, 
(0) is homeomorphic to R � 
2(0),

where 
2(0) is the RA for a two-dimensional pure integrator. It is well

known (see[1]) that 
2(0) = R2 , thus 
(0) = R3 . That is, under the ac-

tion of a saturatedMEC feedback, system (4.4) is globally asymptotically

stable. For \small" deviations of the MEC design, the saturated system
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remains globally asymptotically stable (GAS). For \large" deviations, this

a�rmation is not true anymore.

With numerical simulations, the following dynamical structure was

found:

a) For �0:076 < � < 0: the saturated system is GAS.

b) For � � �0:076: the closed-loop saturated system is unstable in-the-

large. There are trajectories that escape to in�nity. Here 
(0) is

homeomorphic to R �B2.

Statement a) is consistent with the value � = �0:0039 that Gutman

and Hagander [7] derived by solving an optimization problem, and which

is near the � value of the MEC case.

5 Conclusions

The problem of determining the region of attraction (RA) for linear sys-

tems subjected to saturated linear feedbacks has been studied. It was found

that the number of eigenvalues with positive real part of the open-loop sys-

tem, nu, determines the shape of the RA. Speci�cally, the following results

were obtained: (i) If �(A) � C+ , the RA, 
(0), is bounded and homeo-

morphic to Bn; (ii) If �(A) � C� , the system trajectories are bounded and

converge to a compact invariant set of zero volume; (iii) If �(A)\C 0 = ;, for

a MEC feedback, the RA is homeomorphic to the cylinder Rn�nu �Bnu ;

(iv) If �(A) \ C 0 = ; and nu = 1, when the MEC case is perturbed by

gain deviations the result in (iii) is still valid. In all cases, the nature of the

equilibrium points was established. To estimate the RA it was proved that

@
(0) =
S
i
W s(
j) when the critical elements 
j in @
(0) are connected

to the origin. Various aplication examples were presented to illustrate how

the proposed a priori geometric characterization of the RA is used.

Appendix

Recall the following concepts and results from dynamical system theory

(see for instance [17, 4]). Consider a di�erential equation

_x = f(x); x 2 R
n ; (A:1)

that satis�es a su�cient condition which implies uniqueness and global

existence of solutions (there are no �nite escape times). Denote by �t the

trajectory of (A.1) with �0(x) = x. (A.1) generates a 
ow (dynamical

system �t(x)). A critical element of the vector �eld f(x) is either a closed

orbit or an equilibrium point. A set S � Rn is an invariant set of (A.1) if

17
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every trajectory of (A.1), with initial point in S, remains in S of all t 2 R.

The boundary @S and the clousure �S of an invariant set S are also invariant

sets. A closed invariant set S is an attractor if there exists some invariant

neighborhood V of S such that for all x 2 V , �t(x) ! S as t ! 1. An

attractor contains the !-limit sets of the neighborhood V . Suppose xe is

an asymptotically stable (AS) equilibrium point of system (A.1). In the

global analysis of dynamical systems, one is interested in estimating the

extent of the region of attraction (RA), 
(xe), of xe.


(xe) = fx 2 R
n : !(x) = fxegg: (A:2)

where !(x) is the !-limit set of x. The RA is also referred to as basin or

stability region.

Proposition A.1 If xe is an asymptotically stable equilibrium point, then


(xe) is an open, invariant set which is homeomorphic to Rn .

Proposition A.2 If 
(xe) is not dense in Rn , then the boundary of 
(xe),

@
(xe), is a closed invariant set of dimension n�1. If 
(xe) is bounded and

@
(xe) is a smooth manifold, then , for n 6= 5, @
(xe) is homeomorphic

to the (n� 1) dimensional sphere.

Suppose that xe is a hyperbolic equilibrium point of f (i.e.; the eigen-

values of the Jacobian matrix Jxf at xe, have non-zero real parts). The

set of points in Rn that have xe as !-limit is called the stable manifold

of xe : W
s(xe), and the set of points that have xe as �-limit is called the

unstable manifold of xe : W
u(xe). W

s(xe) and W u(xe) are invariant sets

under �t(x).

If A;B are injectively immersed manifolds inM , we say that they satisfy

the transversality condition if either: i) at every point of the intersection

x 2 A \B, the tangent spaces of A and B span the tangent space of M at

x,

Tx(A) + Tx(B) = Tx(M) for x 2 A \ B

or, ii) they not intersect at all.

To estimate the RA of a particular system, the following general result

is important for our analysis.

Theorem A.3 [4] Consider a dynamical system (A.1) that satis�es the

following conditions.

i) All critical elements on the stability boundary are hyperbolic.

ii) The stable and unstable manifolds of the critical elements on the sta-

bility boundary satisfy the transversality condition.

iii) Every trajectory on the stability boundary approaches one of the crit-

ical elements as t!1.
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Let xi, i = 1; 2; : : : ; be the equilibrium points and 
j, j = 1; 2; : : : ; be the

closed orbits on the stability boundary @
(0) of an asymptotically stable

equilibrium point. Then

@
(0) =
[
i

W s(xi)
[
j

W s(
j):

Finally, we have the following fundamental theorem.

Theorem A.4 Let f(x) be a vector �eld de�ned on a compact manifold

M , which is di�eomorphic to a sphere S2k. Then, there exists at least one

point xe 2M such that f(xe) = 0.

Figure 1: Asymptotic region of attraction 
(0), for a 3-dimensional system

with nu = 2, when a MEC feedback is applied to the system. Here, @
(0)

is di�eomorphic to R � S1.

19



R. SU�AREZ, J. ALVAREZ, AND J. ALVAREZ

Figure 2: Asymptotic region of attraction 
(0), for a 3-dimensional system

with nu = 2, when a small gain perturbation of the MEC feedback is

applied to the system.

Figure 3: Geometry of the limit cycle appearing in the dynamics of the

inverted pendulum on a cart.
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