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Abstract

A commonly used mathematical model for the dynamic behaviour

of power systems is that of a di�erential/algebraic system. Such a

system consists of a mixture of di�erential equations and algebraic

constraints. In this paper the behaviour of solutions to such systems

which display certain jump discontinuities are investigated. To anal-

yse stability properties of these solutions Lyapunov theory is used,

which has the advantage that solutions of the system need not be

uniquely de�ned to obtain strong results.
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1 Introduction

A number of recent failures of large scale power networks throughout the

world has prompted increased research e�ort to better understand the dy-

namics of stressed power systems. System failures appear to result from

a gradual weakening of the system followed by a rapid collapse of system

integrity. Studying short time system dynamics can provide an understand-

ing of the state of a power system network immediately prior to collapse.

A common mathematical model for power system networks involves the

use of di�erential/algebraic systems, (DA-systems). Structure preserving
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models of power systems are of this form [2, 7, 15, 18]. In such models

the combination of the power 
ow balance equations at nodes without gen-

erators, along with the classical machine model at nodes with generators,

provide a coupled set of nonlinear equations of the form

_x = f(x; y)

0 = g(x; y)

where x 2 Rnx , y 2 Rny and nx + ny = n. The function g is known

as the algebraic constraint or the constraint function, and de�nes the set

of allowable states in Rn. The function f is known as the dynamics of

the DA-system and follows from the machine dynamics. If dynamics for

the load dependence are known these can also be included in structure

preserving models [15, 26]. Additional dynamics such as transformer tap

settings are not explicitly modelled in structure preserving models of power

systems, however, such considerations can be incorporated into practical

power system models once the short-time behaviour is properly understood

[10, 16].

Of particular interest in the analysis of power systems is the transient

stability analysis of equilibrium points [20, 25]. It is also of interest to

identify points at which system collapse is likely and the local transient

domains of attraction for these points. A suitable mathematical tool for

the analysis of such problems is Lyapunov theory [8, 11, 14]. One can also

use singular perturbations models of the power system to obtain similar

results [3, 4]. Singular perturbation techniques yield considerable insight

into the changes (and bifurcations) in DA-system behaviour at singular

points subjected to perturbations of both the dynamics and the algebraic

constraint. Recent work in this area is presented by Venkatasubramanian

et al. [24].

In this paper we consider a structure preserving model of a power sys-

tem given in the form of a di�erential/algebraic system. We discuss the

theoretical questions of existence and uniqueness of solutions to such sys-

tems and identify points at which such questions are di�cult to answer. We

propose a de�nition of \global" solutions to DA-systems which allow for

jump discontinuities occurring at certain speci�c points. Such a de�nition

allows solutions to be de�ned on longer time intervals than was previously

possible, however, it also allows for non-unique solutions to the DA-system.

To deal with the theoretical di�culties of analysing non-unique behaviour

we utilise Lyapunov theory to obtain stability and convergence results.

The paper is divided into seven sections including the introduction. In

Section 2 we brie
y present a structure preserving model of a power sys-

tem in the form of a DA-system. In Section 3 we de�ne local solutions to

DA-systems and review the standard theory available for such solutions.

Section 4 discusses the concept of global solutions to DA-systems and pro-
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poses a de�nition of a solution to a DA-system that may contain jump

discontinuities. Section 5 provides the necessary de�nitions for Section 6

where a number of Lyapunov style theorems are proved for global solutions

of DA-systems. Section 7 provides a conclusion.

2 A Simple Power System Network Model

In this section a simple structure preserving power system model is pre-

sented based on the work of Hill and Hiskens [9, 14]. For simplicity we

use the classical machine model [1] where a synchronous machine is mod-

elled as a constant voltage in series with a transient reactance. Also real

and reactive loads are modelled as functions of voltage only (i.e. no load

damping). It is possible, however, to include load damping in structure

preserving power system models [14], if it is deemed necessary.

Consider a network of n0 buses connected by lossless transmission lines.

At m (1 � m � n0) of these buses there are generators. Label the buses

without generators i = 1; : : : ; n0 � m. We augment the network with m

�ctitious buses corresponding to the generator internal buses and label

these i = n0 + 1; : : : ; n0 + m. Thus, the total number of buses in the

system is n1 := n0+m. By assumption the network is lossless and the bus

admittance matrix is jB, (j2 = �1, B 2 Rn1�n1) a n1�n1 pure imaginary

matrix.

Denote the complex voltage at the i'th bus as the (time varying) phasor

Vi = jVij\�i, where �i is the bus phase angle with respect to a synchronously
rotating reference frame. The bus phase angle variables used are

� 2 Rn1�1; �i := �i � �n1 ; i = 1; : : : n1 � 1:

Thus the bus phase angles are measured with respect to the rotation of the

n1'th generator. Since no load damping is assumed one need only consider

frequency deviation for the internal generator buses,

! 2 Rm; !i :=
d

dt
�i; i = n0 + 1; : : : n1:

Observe that the time derivative d
dt
�i = !i � !n1 , i = n0 + 1; : : : ; n1 � 1.

The voltage magnitudes in the system are represented as an n1-vector

jV j 2 Rn1 ; jV ji =

�
jVij i = 1; : : : ; n0
Ei i = n0 + 1; : : : ; n1

where the generator internal voltages Ei > 0, i = n0 + 1; : : : ; n1, are con-

stant by assumption.
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The total real and reactive power leaving the i'th bus via transmission

lines are

Pb(�; jV j)i =

n1X
j=1

jV jijV jjBij sin(�i � �j); i = 1; : : : ; n1; (real power)

Qb(�; jV j)i =

n1X
j=1

jV jijV jjBij cos(�i � �j); i = 1; : : : ; n1;

(reactive power:)

The real and reactive load at buses 1; : : : ; n1 are modelled as di�erentiable

non-linear functions of voltage

(Pd)i = (P 0
d )i i = 1; : : : ; n0; (real load)

(Qd)i = Qd(jV j)i; i = 1; : : : ; n0; (reactive load:)

The assumption that the active power load is voltage independent is some-

what restrictive. Structure preserving DA-system models for voltage de-

pendent loads can easily be constructed, however, suitable energy functions

for such power networks are still under investigation [6, 16]. For networks of

the form considered in the sequel, energy functions (for Lyapunov stability

analysis) are well understood [8, 18].

The power system dynamics are modelled by combining the classic ma-

chine swing dynamics (equations (1) and (2) below) at buses n0+1; : : : ; n1
with the power balance equations (equations (3) and (4) below) at nodes

1; : : : ; n0.

d

dt
�i = !i � !n1 ; i = n0 + 1; : : : ; n1 � 1;(1)

Mi

d

dt
!i +Di!i + Pb(�; jV j)i = (PM )i; i = n0 + 1; : : : ; n1; (2)

Pb(�; jV j)i = �(P 0
d )i; i = 1; : : : ; n0; (3)

Qb(�; jV j)i = �Qd(jV j)i; i = 1; : : : ; n0; (4)

where Mi > 0, i = n0 + 1; : : : ; n1 is the i'th generator inertia constant,

Di � 0, i = n0 + 1; : : : ; n1 is the i'th generator damping constant and

(PM )i > 0 is the mechanical power input into the i'th generator.

In Hill, Hiskens and Mareels [9] it is shown that by employing a simple

change of variables one may assume

n1X
i=n0+1

(PM )i �

n0X
i=1

(P 0
d )i = 0;

without loss of generality. This condition is of use when developing energy

functions for the network.
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The equilibrium points of (1)-(4) are given by the full solutions of the

power balance equations [5]. To see this, sum (2) over i = n0 + 1; : : : ; n1
and add the result to the sum of (3) over i = 1; : : : ; n0 to give

n1X
j=n0+1

Mj

d

dt
!j +

n1X
j=n0+1

Di!i = 0

since
Pn1

i=1 Pb(�; jV j)i = 0. Setting d
dt
�i = 0 in (1) gives !i = !n, i =

n0 + 1; : : : ; n1 � 1 which substituted into the above relation along with
d
dt
!j = 0 gives

!n

n1X
i=n0+1

Di = 0:

Assuming at least one non-zero damping term Di gives !i = 0, i = n0 +

1; : : : ; n1 which substituted into (2) gives

Pb(�; jV j)i = (PM )i; i = n0 + 1; : : : ; n1:

Should all the damping terms Di be zero then this equation is obtained

directly by setting d
dt
!i = 0 in (2). This equation along with (3) and (4)

are the power balance equations for the power system.

The variables of the system are

x = (�n0+1; : : : ; �n1�1; !n0+1; : : : ; !n1) 2 R2m�1;

y = (�1; : : : ; �n0 ; jV j1; : : : ; jV jn0) 2 R2n0 :

Let nx = 2m � 1, ny = 2n0, n = nx + ny = 2n1 � 1 then (x; y) 2 Rn =

Rnx �Rny is the state vector for the structure preserving power system

model. The partial state x 2 Rnx is known as the dynamic variable while

y = Rny are the dependent or algebraic variables. To simplify notation

in the sequel equations (1), (2), (3) and (4) are combined into a pair of

equations

_x = f(x; y) (5)

0 = g(x; y); (6)

which is the standard form for a di�erential/algebraic system. The vector

�eld f : Rn ! Rnx is a Lipschitz continuous function, i.e. for any (x; y) 2
Rn there exists � > 0 and k(x; y; �) 2 (0;1) such that for any (x0; y0) 2 Rn

with jj(x; y)� (x0; y0)jj < � then

jjf(x; y)� f(x0; y0)jj � k(x; y; �)jj(x; y)� (x0; y0)jj;

where jj � jj is the standard Euclidean 2-norm. The function g : Rn ! Rny

is di�erentiable with Lipschitz continuous derivative.
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Remark 2.1 In the model discussed above there has been no attempt

to model parasitic (or fast) dynamics in the dependent y variables. DA-

systems following from a singular perturbation model, for example

_x = f(x; y)

� _y = g(x; y)

for � arbitrarily small, have slightly di�erent properties from the mod-

els considered in the sequel. In particular, sections of the zero level set

g(x; y) = 0 may be unstable to perturbations in y. For the purposes of this

paper it is assumed that the y dynamics of the zero level set are almost

always stable, the only exception being points at which the geometry of

the zero level set forces instability. We believe that it should be relatively

simple task to combine the theory developed in the sequel with more gen-

eral models where knowledge of the parasitic dynamics is available. 2

For a more complete discussion of structure preserving models, (in-

cluding practical considerations of transformer tap settings, static voltage

compensators, voltage dependent load models, energy function derivations,

etc. ) the reader is referred to references [2, 5, 6, 7, 8, 10, 14, 15, 16, 18,

22, 24, 26].

3 Local Solutions

In this section the classical notions of solutions to DA-systems are reviewed.

The algebraic constraint plays an important role in the study of DA-systems

and a number results are given describing the zero level set of the algebraic

constraint.

De�nition 3.1 Let (x0; y0) 2 Rn satisfy g(x0; y0) = 0. A local solution

of the DA-system (5), (6) with initial condition (x0; y0), de�ned on the

time interval t 2 [0; T (x0; y0)), is a function (x(t); y(t)) : [0; T (x0; y0)) !
Rnx �Rny such that:

i) (x(0); y(0)) = (x0; y0).

ii) g(x(t); y(t)) = 0 for all t 2 [0; T (x0; y0)).

iii) The map t 7! (x(t); y(t)) 2 Rn is continuous.

iv) Equation (5) is satis�ed in the integral sense

x(t) =

Z t

0

f(x(�); y(�))d� + x0; t 2 [0; T (x0; y0)):
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Remark 3.1 Observe that the de�nition requires solutions to exist for-

ward in time only. 2

In the vicinity of a point (x0; y0) 2 Rn, such that g(x0; y0) = 0 and

where the matrix partial derivative

Dyg(x0; y0) =
@g

@y
(x0; y0) 2 Rny�ny

is non-singular a unique local solution to (5), (6) exists, [11]. Indeed, the

implicit function theorem guarantees the existence of a unique di�erentiable

function u : Rnx ! Rny such that g(x; u(x)) = 0 for all x in the vicinity of

x0. Substituting y = u(x) into (5) gives the ordinary di�erential equation

(O.D.E.)

_x = f(x; u(x)) (7)

whose solutions are local solutions of the DA-system. We will term this dif-

ferential equation the induced O.D.E. lift of the DA-system. From the im-

plicit function theorem it is easily veri�ed that solving the induced O.D.E.

lift is equivalent to solving the ordinary di�erential equation�
_x

_y

�
=

�
f(x; y)

�(Dyg(x; y))
�1 �Dxg(x; y) � f(x; y)

�
; (8)

in regions where det(Dyg) 6= 0. In particular, it is not necessary to deter-

mine the implicit relation y = u(x) to compute solutions of the DA-system

using the O.D.E. lift. Solutions of (8), however, provide no insight into the

behaviour of the DA-system at points where det(Dyg(x; y)) = 0.

An understanding of the geometric and topological structure of the zero

level set g(x; y) = 0, of the algebraic constraint, provides important insight

into the behaviour of the di�erential/algebraic system (5), (6).

De�nition 3.2 Let M be the zero level set of the function g given by (6)

M = f(x; y) 2 Rn j g(x; y) = 0g: (9)

In particular, M is the preimage of a closed set f0g via a continuous

function g and hence is closed in the standard Euclidean topology on Rn.

De�nition 3.3 A point (x; y) 2 M is termed regular if rank1 Dg(x; y) is

ny. The point (x; y) is termed singular if rank Dg(x; y) is strictly less than

ny.

1
The full derivative of g with respect to (x; y) is denoted

Dg(x; y) =

�
@g

@x
(x; y)

.

.

.
@g

@y
(x; y)

�
2 Rny�n:
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x

y

M

a b

Figure 1: The constraint set M = f(x; y) 2 R2 j 4x2(1� x2)� y2 = 0 g

Lemma 3.1 The set of singular points in M

S = f(x; y) 2M j rankDg(x; y) < nyg

is closed as a subset of Rn and closed as a subset of M in the subspace

topology.

Proof: A useful characterisation of rank degeneracy for Dg(x; y) is that

det(C(x; y)) = 0 where C(x; y) 2 Rny�ny is any combination of ny columns

of Dg(x; y). However, for a �xed choice of columns det(C(x; y)) is a con-

tinuous function Rn ! R. Thus the set S can also be characterised as the

intersection of M with the zero sets of det(C(x; y)), for each choice of ny
columns. But each of these sets is the preimage of the closed set f0g via

a continuous function and hence is closed. The �nite intersection of these

sets is also closed.

The rank condition for a regular point can also be thought of as requir-

ing that the tangent map Dg(x; y) : T(x;y)R
n ! T(x;y)R

ny is a surjection.

Thus, at a regular point (x; y) 2 M , g is locally a submersion, and con-

sequently in the vicinity of (x; y), M is a submanifold of Rn [12, pg. 22].

Observe that Rn � S is an open subset of Rn and consequently is a sub-

manifold.

De�nition 3.4 Denote the set of all regular points in M by

Mr = f(x; y) 2M j rankDg(x; y) = nyg:

The set Mr � M � S is a submanifold of Rn � S [12, pg. 22] and by

composition of the submanifold charts is a submanifold of Rn.

There is no submanifold structure ofM at singular points. For example,

the zero level set of the function g(x; y) = 4x2(1�x2)�y2. The point (0,0)

is a singular point of this function, see Figure 1.

As was seen in (8) the inverse of the matrix Dyg(x; y) plays a crucial

role in de�ning the induced O.D.E. lift of a DA-system. If Dg(x; y) is rank
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de�cient then Dyg(x; y) is singular. The geometry of the constraint set M

at a regular point for which detDyg(x; y) = 0 is not generically that of a

singular point, take for example points a and b in Figure 1. The following

de�nition di�erentiates between such points.

De�nition 3.5 A point (x; y) 2M is termed degenerate if det(Dyg(x; y))

= 0 and is termed non-degenerate if det(Dyg(x; y)) 6= 0. A regular point

(x; y) 2M , De�nition 3.3, for which det(Dyg(x; y)) = 0 is termed a regular

degenerate point.

Observe that any singular point is degenerate but that the converse

is not true. Thus, in Figure 1 the points a, b and (0,0) are degenerate

points. The points a and b are regular degenerate points while point (0,0)

is singular. All other points in the set M are non-degenerate points.

The set M inherits the subspace topology from Rn. Moreover, M is a

metric space when equipped with the induced metric

d((x1; y1); (x2; y2)) = jj(x1; y1)� (x2; y2)jj

where (x1; y1); (x2; y2) 2M and jj � jj is the standard 2-norm in Rn. Obvi-

ously the metric topology corresponds to the subspace topology. Since Mr,

the set of all regular points in M , is a submanifold of Rn then the induced

manifold topology is equivalent to the subspace topology on Mr � Rn.

Similarly the di�erential structure on Mr is induced by the submanifold

charts. The set M is not a manifold and cannot be given a di�erential

structure.

4 Existence of Global Solutions

In this section a de�nition for global solutions to di�erential/algebraic sys-

tems is proposed which allows for certain jump discontinuities. The moti-

vation for the approach lies in the observation that the presence of regular

degenerate points in DA-systems can naturally induce jump discontinuities

into the solutions [17, 21]. The association of regular degenerate points

(non-causal points in [14, 16]) and points of voltage collapse in di�eren-

tial/algebraic power system models further strengthens the argument for

considering such solutions. To provide an intuitive feel for jump disconti-

nuities in solutions of DA-systems consider the following simple example.

Example Consider the following DA-system

_x = f(x; y) =
2

h(x)
(10)

0 = g(x; y) = (x2 + y4 � 1)(y � 2); (11)
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M 2

M 1

x

y

Figure 2: The constraint sets M1 and M2.

where the piecewise linear function h : R! R is given by

h(x) =

8<
:

1 x < 1
4

�2x+ 3=2 1
4
� x < 1

2

x 1
2
� x

(12)

The function h(x) is Lipschitz continuous and strictly bounded away from

zero. It is included only as an artifact to ensure that Dxg(x; y)f(x; y) does

not depend on x at the point (1,0) and serves to simplify the expressions

obtained below. The zero level set of the function g for this DA-system is

the union of the oval x2 + y4 = 1 and the straight line y = 2, see Figure

2. These two sets do not intersect and are both manifolds, though the line

y = 2 is not compact. We will denote the level set x2 + y4 = 1 as M1 and

the line y = 2 as M2 where the full level set of g is M = M1 [M2. By

inspection, the point (1,0) is a regular degenerate point of the DA-system.

Consider a small open set N �M1 (in the subspace topology) around

the point (1,0) such that for (x; y) 2 N then x > 1
2
and j y j< 1. Observe

that the vector �eld

�(Dyg(x; y))
�1Dxg(x; y)f(x; y) = �

1

y3

in N , since f(x; y) = 2
x
for x > 1

2
. The induced O.D.E. lift of the DA-

system is then �
_x

_y

�
=

�
2
x

� 1
y3

�
: (13)

Consider any initial condition (x0; y0) 2 N such that (x0; y0) 6= (1; 0),

then a solution of (13) is

x(t) =
p
1� y(t)4

y(t) = sgn(y0)(y
4
0 � 4t)

1
4

10



GLOBAL SOLUTIONS FOR DA-SYSTEMS

for t 2 [0;
y40
4
) and where sgn(y0) is the sign of y0. Note that for any initial

condition, then

lim

t!
y
4
0
4

(x(t); y(t)) = (1; 0);

however, since f(1; 0) 6= 0 then (1; 0) is not an equilibrium point, and thus

no local solution, with initial condition (x0; y0) 2 
M , can exist beyond

time
y40
4
.

To de�ne a global solution of a DA-system it is not sensible to con-

sider any piecewise continuous map t 7! (x(t); y(t)) which satis�es the

algebraic constraint and the dynamic constraint (in an integral sense) as

a possible solution. Rather, we assume that jump behaviour will only oc-

cur when the system fails to have a local solution given by the induced

O.D.E. (8). By imposing this requirement it is implicitly assumed that the

parasitic dynamics are stable on M except possibly at degenerate points

where detDyg(x; y) = 0. This issue was discussed in Remark 2. The ge-

ometry of degenerate points need not necessarily force discontinuous jump

behaviour in the solution of a DA-system and the limiting dynamics of a

DA-system in the vicinity of degenerate points are used to provide a means

of determining where discontinuous jumps may be observed.

De�nition 4.1 Let (x0; y0) 2 Rn satisfy g(x0; y0) = 0. A global solution

of the DA-system (5), (6) with initial condition (x0; y0), de�ned on the

time interval t 2 [0; T (x0; y0)), is a function (x(t); y(t)) : [0; T (x0; y0)) !
Rnx �Rny such that:

i) The partial map t 7! y(t) 2 Rny is piecewise continuous with dis-

continuities occurring at times t�, where � 2 I and I is some general

index set.

ii) The partial map t 7! x(t) 2 Rnx is continuous and piecewise dif-

ferentiable with a �nite number of discontinuities in its derivative

occurring at times t�, where � 2 I.

iii) The curve (x(t); y(t)) is a solution to the DA-system in the sense that

g(x(t); y(t)) = 0 for all t 2 [0; T (x0; y0)) and

x(t) =

Z t

0

f(x(�); y(�))d� + x(0); t 2 [0; T (x0; y0)):

iv) For each � 2 I there exists a degenerate point (x�; y�) 2M with

lim sup
(x;y)!(x�;y�)

jj(Dyg(x; y))
�1Dxg(x; y)f(x; y)jj2 =1;

11
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(x(t),y(t))lim inf

M

(x(0),y(0))

t -> t i
-

t  <  t i

M

(x(t),y(t))

(x(t),y(t))lim

t -> t i
+

t  >  t i

Figure 3: An example of a discontinuous jump of the nature described in

De�nition 4.1. In this example the discontinuous jump occurs at time ti
and the lim inf operation could be replaced by a standard limit if desired.

for (x; y) 2M , where jj � jj2 is the induced matrix norm, and

lim inf
t!t

�

�

jj(x(t); y(t)) � (x�; y�)jj = 0;

where t! t�� indicates t < t�.

v) The limit from above at time t�, of the state (x(t); y(t)) exists and is

equal to

lim
t!t

+
�

(x(t); y(t)) = (x(t�); y(t�));

where (x(t�); y(t�)) 2 M is the initial condition of a local solution

to the DA-system, de�ned on some time interval [t�; T (x(t�); y(t�))).

The global solution will correspond to a local solution, in the vicinity

of (x(t�); y(t�)), at least on an open time interval (t�; t� + �), � �
T (x(t�); y(t�)).

Remark 4.1 Observe that uniqueness will not usually be a property of

solutions satisfying De�nition 4.1. Indeed, it is expected any given local

solution that converges to a degenerate point may be extended to several

global solutions by any one of a number of di�erent, and equally valid,

discontinuous jumps. 2

Remark 4.2 An important property of De�nition 4.1 is that for every

time t� 2 [0; T (x0; y0)) then there exists � > 0 such that the global solution

(x(t;x0); y(t; y0)) corresponds to a local solution on the time interval t 2
[t�; t� + �)). 2

Remark 4.3 Note that only the asymptotic behaviour in the vicinity of

a degenerate point is considered in the criterion for jump behaviour. In

particular, we do not believe that examining the algebraic equation

Dxg(x
�; y�) � f(x�; y�) +Dyg(x

�; y�) � q = 0; q 2 Rny ;

12
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at a degenerate point (x�; y�) will provide any useful indication of the

systems behaviour. Observe, however, that if Dxg(x
�; y�) � f(x; y) has a

component lying in the null space of Dyg(x
�; y�) then

lim sup
(x;y)!(x�;y�)

jj(Dyg(x; y))
�1Dxg(x; y)f(x; y)jj2 =1;

where the limit is taken for (x; y) regular non-degenerate. Thus, the only

degenerate points with a neighbourhood in which _y remains bounded are

those for which Dxg(x
�; y�) � f(x; y) lies completely in the column space of

Dyg(x
�; y�). It is easily veri�ed that this is a non-generic situation (the

property fails for arbitrarily small perturbations of f and g). 2

Point i) allows discontinuities in the y coordinates. Point ii) guarantees

the continuity of the x coordinate but allows jumps in the derivative _x as

indeed must occur if y jumps and f(x; y) depends explicitly on y. Point iii)

simply ensures that the curve (x(t); y(t)) is a solution of the DA-system.

Point iv) states that jumps may only occur at degenerate points for

which the vector �eld�(Dyg(x; y))
�1Dxg(x; y)f(x; y) becomes unbounded.

The characterisation of such points as potential discontinuities in the solu-

tion follows from a heuristic argument based on the observation that the

derivative _y of the induced O.D.E. lift goes to in�nity at such points, an

idea suggested by Zaborszky [26]. In the case where _y remains bounded in

the vicinity of a degenerate point then a local solution is certainly de�ned

and there appears to be no reason to consider jump behaviour. Of course,

since bounded behaviour in _y near a degenerate point is a non-generic prop-

erty (cf. Remark 4) then in a practical situation one would tend to view

the presence of any degenerate point in the solution as a potential jump

discontinuity. It is possible that by fully understanding the limiting be-

haviour of a solution at degenerate points a better idea of global behaviour

could be obtained. However, until a better understanding of practical be-

haviour at such points is obtained, we suggest that the de�nition remains

open to any �nite jump in the variable y. Point v) requires that the global

solution continue as a local solution, at least for some short time period,

immediately after the jump.

Remark 4.4 In power system models it may be practical to consider

further restrictions on possible discontinuities in the solution. For example,

allowing voltage magnitudes to jump discontinuously but requiring that the

bus phase angles remain continuous. De�nition 4.1, however, is deliberately

general to provide a clearer perspective of the theoretical issues. 2

Example Consider the following global solution to (10), (11) for some

13
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initial condition (x0; y0) 6= (1; 0), x0 >
1
2
, jy0j < 1.

x(t) =

8><
>:

p
1� y(t)4 t 2 [0;

y40
4
)

1 t =
y40
4p

4t+ 1� y40 t 2 (
y40
4
;1)

y(t) =

8><
>:

sgn(y0)(y
4
0 � 4t)

1
4 t 2 [0;

y40
4
)

2 t =
y40
4

2 t 2 (
y40
4
;1)

Thus the global solution to the DA-system is in the form of a piecewise

continuous function t 7! (x(t); y(t)) in which the discontinuities lie in the

y variables.

Remark 4.5 In the case where the state of a DA-system converges to

a regular degenerate point for which jump behaviour is predicted and for

which there is no point in the algebraic constraint set to which the solution

may jump, a global solution to the DA-system cannot exist past the time

at which the state reaches the regular degenerate point. 2

Remark 4.6 A regular degenerate point need not always be associated

with discontinuous solutions. If the vector �eld

�(Dyg(x; y))
�1Dxg(x; y)f(x; y)

remains integrable in the vicinity of such a point then the integral

y(t) = �

Z t

0

(Dyg(x; y))
�1Dxg(x; y)f(x; y) + y0

exists and de�nes a local solution. Indeed, boundedness of _y is not necessary

for the existence of a local solution. An interesting example is the global

behaviour of the DA-system [23]

_x1 = 1� x1

_x2 = 2� x2

0 = x2 � x1y � y3

In this case the solution passing through (0; 0; 0) must remain a local so-

lution (there are no valid discontinuous jumps available), however the y

dynamics

_y =
2� x2 + y � x1y

3y2 + x1

certainly become unbounded at (0; 0; 0). 2

14
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5 Stability De�nitions

In this section the de�nition of stability and attractivity in the context of

di�erential algebraic systems is considered. The de�nition of structural sta-

bility proposed is analogous to that de�ned for classical dynamical systems

[13].

De�nition 5.1 Consider the DA-system (5), (6). We call a point

(x�; y�) 2 Rn an equilibrium point if both g(x�; y�) = 0 and f(x�; y�) = 0.

De�nition 5.2 Stability [11] Consider the DA-system (5), (6) with an

equilibrium point (x�; y�). Let (x(t;x0); y(t; y0)) denote a solution of the

DA-system with initial conditions (x0; y0) satisfying g(x0; y0) = 0. The

point (x�; y�) is stable if for all � > 0 there exists a positive number

� > 0 such that for any (x0; y0) 2 M with jj(x0; y0) � (x�; y�)jj < � then

jj(x(t;x0); y(t; y0))�(x
�; y�)jj < � for all t > 0. The point (x�; y�) is asymp-

totically stable if it is stable and there exists a positive number � > 0 such

that for all (x0; y0) with jj(x0; y0) � (x�; y�)jj < � then (x(t;x0); y(t; y0))

converges to (x�; y�) as t!1.

To provide practical stability results it is necessary to consider struc-

tural stability of equilibrium points, where the qualitative behaviour of the

DA-system at a given equilibrium point is preserved for small perturbations

of the DA-system. The following de�nition is based on the development in

Section 1, Chapter 16 [13]. The de�nition is not exactly the de�nition of

structural stability [13, pg. 312], however, in a classical O.D.E. setting the

two concepts are equivalent [13, Theorem 1], at least for asymptotically

stable equilibria.

De�nition 5.3 Structural Stability. Consider the DA-system (5), (6)

and let (x�0; y
�
0) be an equilibrium point of this system. Consider any C1

perturbations f�(x; y) and g�(x; y) of f and g of magnitude less than � in

the C1 in�nity norm, i.e. one has the inequalities

sup
(x;y)2Rn

jjf�(x; y)� f(x; y)jj � �;

sup
(x;y)2Rn

jjDf�(x; y)�Df(x; y)jj2 � �;

and similarly for g�. The equilibrium point (x�0; y
�
0) is structurally stable

if:

i) (x�0; y
�
0) is an asymptotically stable equilibrium point of the DA-system

(5), (6).
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ii) For any � > 0, there exists a � > 0 such that any DA-system de�ned

by perturbed functions f�(x; y) and g�(x; y) for any � � � has an

asymptotically stable equilibrium point (x��; y
�
�) such that jj(x��; y

�
�)�

(x�0; y
�
0)jj � �.

Intuitively, one expects that an equilibrium point will be structurally

stable if and only if all the eigenvalues of its linearization have negative real

parts. For a classical O.D.E. this is a standard result [13, Theorem 2, pg.

305], however, for a DA-system the situation is not so simple. Before one

may consider the structural stability of the induced O.D.E. _x = f(x; u(x))

(cf. equation (7)) it is necessary to show that the existence of an equi-

librium point is a structural property of the system. This condition fails

at degenerate points. Considering only non-degenerate points one can rely

on classical theory as long as the equilibrium point of _x = f(x; u(x)) is

hyperbolic.

Theorem 5.1 Consider the DA-system (5), (6) with (x�; y�) a non-

degenerate (De�nition 3.5) equilibrium point. The point (x�; y�) is struc-

turally stable if and only if the linearization of _x = f(x; u(x)) at the point

(x�; y�),

_� =
�
Dxf(x

�; y�)�Dyf(x
�; y�)Dyg(x

�; y�)�1Dxg(x
�; y�)

�
� (� � x�);

has eigenvalues with strictly negative real part.

Proof: Only a brief sketch of the proof is provided. Consider the combined

vector function (f(x; y); g(x; y)) : Rn ! Rn and observe that its derivative

D(x;y)(f(x; y); g(x; y)) can be written

D

�
f(x�; y�)

g(x�; y�)

� �
Inx 0

�Dyg(x
�; y�)�1Dxg(x

�; y�) Iny

�

=

�
A(x�; y�) Dyf(x

�; y�)

0 Dyg(x
�; y�)

�
;

where A(x�; y�) is

A(x�; y�) = Dxf(x
�; y�)�Dyf(x

�; y�)Dyg(x
�; y�)�1Dxg(x

�; y�); (14)

the matrix appearing in the linearization of _x = f(x; u(x)) at (x�; y�). By

assumption A(x�; y�) is full rank (all eigenvalues have strictly negative real

parts) and consequently D(x;y)(f(x; y); g(x; y)) is non-singular.

Consider any di�erentiable one parameter perturbation f�(x; y), g�(x; y)

(where f0(x; y) = f(x; y) and g0 = g(x; y)) of f(x; y), g(x; y). Since

D(x;y)(f(x; y); g(x; y)) is non-singular one can use the implicit function the-

orem to �nd continuous functions

(x; y) = (x(�); y(�))

(f(x(�); y(�)); g(x(�):y(�))) = (f(x�; y�); g(x�; y�)) = (0; 0)
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in a neighbourhood of (x�; y�). This proves that the existence of a hyper-

bolic equilibrium point is robust to small perturbations.

To complete the proof it is su�cient to apply classical theory [13, The-

orem 2, pg. 305] to the induced O.D.E. _x = f(x; u(x)), around the point

(x(�); u(x(�))).

As mentioned above, the requirement that the point be non-degenerate

is necessary, however, convergence of DA-system solutions to degenerate

points lies at the heart of the discontinuous jump behaviour discussed in

Section 4. To study such points we use the concept of attractivity, which

is modi�ed slightly to allow for non-uniqueness and possible �nite time

existence of solutions.

De�nition 5.4 Attractivity [19, Pg. 8] Consider the DA-system (5),

(6) along with a point (x�; y�) 2 M . The point (x�; y�) is attractive

if there exists an open neighbourhood N � M of (x�; y�) such that; for

each (x0; y0) 2 N and every global solution (x(t;x0); y(t; y0)) 2 N of

the DA-system that exists and remains in N for a maximal time inter-

val t 2 [0; T (x0; y0)), and each � > 0 there exists �(x0; y0) 2 (0; T (x0; y0))

such that

jj(x(t;x0); y(t; y0))� (x�; y�)jj � �

for all t 2 [�(x0; y0); T (x0; y0)).

Observe that the global solution may continue to exists in M after

time T (x0; y0), however, such a solution must not remain in N . In particu-

lar, regular degenerate points responsible for discontinuous jump behaviour

may well be attractive but certainly are not stable.

Remark 5.1 An equivalent de�nition of asymptotic stability [19, pg.

10] is a point (x�; y�) which is both stable (De�nition 5.2) and attractive

(De�nition 5.4). 2

6 Lyapunov Stability Results

In this section the role of Lyapunov theory in stability analysis of global

solutions of DA-systems is considered. A major advantage of Lyapunov

theory in such analysis lies in its applicability to systems with non-unique

solutions.

De�nition 6.1 [19, pg. 12] A function a : R+ ! R+ is said to be of

class K if it is continuous, strictly increasing and a(0) = 0.

17
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De�nition 6.2 [19, pg. 345] Let (x(t;x0); y(t; y0)) be a global solution of

(5), (6) with initial conditions (x0; y0). Let V :M ! R be a Lipschitz con-

tinuous function. The Dini derivative of V (x(t;x0); y(t; y0)) with respect

to time is

D+
t V (x(t;x0); y(t; y0)) =

lim sup
h!0+

V (x(t + h;x0); y(t+ h; y0))� V (x(t;x0); y(t; y0))

h
; (15)

where this limit exists.

In particular, if (x(t;x0); y(t; y0)) is a local solution (De�nition 3.1) of

(5), (6) for some time interval [t; t+�) where � > 0 then the Dini derivative

D+
t V (x(t;x0); y(t; y0)) at time t is well de�ned. Indeed, if (x(t;x0); y(t; y0))

is a global solution of (5), (6) de�ned on some time interval [0; T (x0; y0))

then the Dini derivative (15) is well de�ned for all t 2 [0; T (x0; y0)). We

use the following lemma.

Lemma 6.1 [19, pg. 349] Let V : [t1; t2] ! R be a Lipschitz continuous

function for which there exists � > 0 such that for any t 2 (t1; t2)

D+
t V (t) � ��;

then

V (t2) � V (t1)� �(t2 � t1):

A simple corollary of Lemma 6.1 is that if D+
t (V (t)) � 0 for all t 2

(t1; t2) then V (t) is monotonic non-increasing. Similarly if D+
t (V (t)) � 0

then V (t) is monotonic non-decreasing [19, pg. 347].

Theorem 6.1 Let (x�; y�) 2 M and let U � M be some open set in M

(in the subspace topology) such that U � f(x�; y�)g contains no equilib-

rium points. Let (x0; y0) be some initial condition in U � f(x�; y�)g and

denote a solution of the DA-system (5), (6) with this initial condition as

(x(t;x0); y(t; y0)). De�ne T �(x0; y0) (possibly in�nite) to be the in�num

over all possible global solutions, (x(t;x0); y(t; y0)), of the maximum time

T (x0; y0) for which each solution (x(t;x0); y(t; y0)) 2 U exists and remains

in U .

Assume there exists a class K function a : R+ ! R+ such that

T �(x0; y0) � a(jj(x0; y0)� (x�; y�)jj):

Assume that there exists a Lipschitz continuous \Lyapunov function"

V : U ! R with V (x�; y�) = 0. Furthermore, assume there exist two

functions b; d : R+ ! R+ of class K such that V satis�es the following

conditions:

18
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i) For all (x; y) 2 U then

b(jj(x; y)� (x�; y�)jj) � V (x; y):

ii) The Dini derivative of V (x(t;x0); y(t; y0)) with respect to time satis-

�es

D+
t V (x(t;x0); y(t; y0)) � �d(jj(x(t;x0); y(t; y0))� (x�; y�)jj):

iii) If a discontinuous jump occurs in the solution at time t� then

lim inf
t!t

�

�

V (x(t;x0); y(t; y0)) � lim
t!t

+
�

V (x(t;x0); y(t; y0)):

Then the point (x�; y�) is attractive (De�nition 5.4). If furthermore,

the point (x�; y�) is a non-degenerate equilibrium point, then it is asymp-

totically stable.

Remark 6.1 Observe that Assumption iii) constrains discontinuous jump

behaviour of global solutions in the same manner that the standard Lya-

punov monotonicity assumption (Assumption ii)) constrains continuous so-

lutions. It is necessary to consider an assumption of this form when apply-

ing Lyapunov theory to discontinuous solutions of dynamical systems [21,

pg. 146]. In applying Theorem 6.1 one would aim to guarantee (by prior

analysis and heuristic knowledge of the system) that any global solution of

the DA-system satis�es the theorem's assumptions on the set of interest.

Thus, the results do not require that the actual solutions of the DA-system

be computed. 2

Proof: De�ne c : R+ ! R+ via

c(�) = sup
jj(x;y)�(x�;y�)jj��

V (x; y); (x; y) 2 U:

Thus, c is a class K function with the property V (x; y) � c(jj(x; y) �
(x�; y�)jj) on U . For any � > 0, we exploit the class K properties of c to

choose � > 0 such that c(�) < b(�) and � 2 (0; �) such that c(�) < d(�)a(�).

Let (x0; y0) 2 V �1((0; �)) \ U be any initial condition in the intersection

of the inverse image of (0; �) and U . By assumption, for t 2 [0; T �(x0; y0))

then (x(t;x0); y(t; y0)) 2 U and conditions ii) and iii) now yield

(x(t;x0); y(t; y0)) 2 V �1((0; �)) \ U; for all t 2 [0; T �(x0; y0)):

Now choose �(x0; y0) 2 (
c(�)

d(�)
; a(�)) and observe that �(x0; y0) < a(�) �

T �(x0; y0). It follows that jj(x(t;x0); y(t; y0)) � (x�; y�)jj cannot be larger
than � for every t 2 [0; �(x0; y0)], since if this were the case

D+
t V (x(t;x0); y(t; y0)) � �d(�)

19



R. MAHONY AND I. MAREELS

for all t 2 [0; �(x0; y0)] and Lemma 6.1 along with property iii) gives

0 � V (x(t1;x0); y(t1; y0)) � c(�)� d(�)�(x0; y0);

which contradicts the choice of �(x0; y0). Thus, there exists a

t1 2 [0; �(x0; y0)] such that

c(jj(x(t1;x0); y(t1; y0))� (x�; y�)jj) � c(�) < b(�):

Since V is decreasing along solutions one obtains for t 2 [t1; T
�(x0; y0))

b(jj(x(t;x0); y(t; y0))� (x�; y�)jj) � V (x(t;x0); y(t; y0))

� V (x(t1;x0); y(t1; y0))

� c(jjx(t1;x0); y(t1; y0)� (x�; y�)jj)

< b(�):

This ensures that

jj(x(t;x0); y(t; y0))� (x�; y�)jj < �

for all t 2 [t1; T
�(x0; y0)) and proves that (x�; y�) is an attractive point,

De�nition 5.4.

If (x�; y�) is a non-degenerate equilibrium point then choose N � U an

open neighbourhood of (x�; y�) to contain no singular or degenerate points.

Choose � 2 (0; �) such that
�
V �1((0; �)) \ U

�
� N and c(�) < d(�)a(�).

Consequently, any solution (x(t;x0); y(t; y0)) with (x0; y0) 2 V �1((0; �)) \
U remains in N and the induced O.D.E. lift guarantees in�nite time ex-

istence of solutions (T �(x0; y0) = 1). It follows directly that the point

(x�; y�) is stable. Choose �(x0; y0) >
c(�)

d(�)
and observe that the above

argument gives that (x�; y�) is also attractive. Consequently, (x�; y�) is

asymptotically stable.

Remark 6.2 The existence assumption (i.e. T �(x0; y0) > 0 for (x0; y0) 6=
(x�; y�)) in Theorem 6.1 is vital to the above argument. This should not

come as any surprise since Lyapunov theory always comes with the implicit

assumption that the solutions of the system considered exist. For classical

Lipschitz continuous O.D.E. theory the existence of a Lyapunov function

can be used to prove in�nite time existence of solutions [19, pg. 25], how-

ever, for DA-systems the assumption must be made explicit. Observe that

for an attractive non-degenerate equilibrium point of a DA-system one does

indeed obtain in�nite time existence in the sense of classical O.D.E. theory.

The exact nature of the existence assumption need not necessarily be that

given in the theorem statement. Other existence assumptions (perhaps mo-

tivated by physical insight) may be directly available and provide a more
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intuitive result. We believe, however, that all basic existence assumptions

will be formally equivalent to the assumption made in Theorem 6.1. 2

Remark 6.3 The result does not require uniqueness of solutions. To

check structural stability one must still compute the eigenvalues of the

linearization of the induced O.D.E. lift. 2

Remark 6.4 The metric structure of M has been exploited throughout

the above proof, however, the induced Euclidean metric is not necessarily

the best to use for Lyapunov results. Consider the metric de�ned by taking

the in�num of the length of all curves lying wholly inM connecting the two

points of interest. The advantage of such a metric is that the DA-system

evolves on M not Rn and it should be easier to �nd suitable functions

a; b; d of class K when the distance measure used is more representative of

the geometry of the problem. 2

There are several aspects of Theorem 6.1 which should be commented

upon. The theorem can be used to determine the attractive nature of any

point, regular or degenerate. Similarly the set U � f(x�; y�)g may contain

singular and degenerate points at which discontinuous jumps and non-

uniqueness of solutions is possible. This freedom causes the main technical

di�culties in the proof. Firstly, it is necessary to consider Dini deriva-

tives and Lipschitz continuous Lyapunov functions since the results must

be valid at singular points where M has no di�erentiable structure and the

classical derivative is not well de�ned. We believe that this is a considerable

advantage since most methods of choosing Lyapunov functions for power

systems are valid only on path connected regular submanifolds of M [8].

Such functions can now be pasted together along singular boundaries (pre-

serving Lipschitz continuity) to provide global Lyapunov functions. Sec-

ondly, some form of existence assumption is necessary. Without such an

assumption the presence of regular degenerate points (x�; y�) may cause

the global solution to jump outside the set U . In this aspect the theory

di�ers from traditional Lyapunov arguments for O.D.E.'s where existence

of a Lyapunov function ensures boundedness and consequently in�nite time

existence of solutions [19, Theorem 6.2]. Thirdly, the best general result

possible is a proof of attractivity since the solution may cease to exist at the

point (x�; y�). In the case where (x�; y�) is non-degenerate the existence

assumptions can be dropped and the result extends to asymptotic stability.

Example 6.1 Consider the DA-system (cf. [23])

_x1 = 1� x1

_x2 = 2� x2

0 = x2 � x1y � y3:
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Expressing x2 explicitly as a function of x1 and y one obtains a cubic

function x2 = x1y + y3 which is monotonic increasing in y for x1 > 0

and has two turning points for x1 < 0. It is easily veri�ed that the non-

monotonic nature of the constraint in the region x1 < 0 will certainly

induce discontinuous jump behaviour in the solution. However, the fact

that the constraint is a cubic in y ensures that for any choice of x1 and x2
there will always be at least one value of y which satis�es the constraint. As

a consequence it is easily veri�ed that global solutions to the DA-system

exist for all time. In the notation of Theorem 6.1 one has that the set

U = f(x1; x2; y) j x2 = x1y + y3g and that T �(x1(0); x2(0); y(0)) = 1 for

all initial conditions (x1(0); x2(0); y(0)) 2 U .

Consider the Lyapunov function V (x1; x2; y) := (1 � x1)
2 + (2 � x2)

2.

Along solutions of the DA-system one has

d

dt
V (x1(t); x2(t); y(t)) = �2(1� x1(t)) _x1(t)� 2(1� x2(t)) _x2(t)

= �2V (x1(t); x2(t); y(t)):

By inspection V satis�es Assumptions i) and ii) of Theorem 6.1. Moreover,

since V does not depend on y then Assumption iii) will also be satis�ed by

any jump discontinuities the solution may display. It follows that Theorem

6.1 applies and one concludes that the point (x1; x2; y) = (1; 2; 1) is an at-

tractive point of the DA-system. Moreover, since (1; 2; 1) is non-degenerate

then in fact it is globally asymptotically stable. 2

It is important to consider extensions of Theorem 6.1 which consider

the basin of attraction of the point (x�; y�).

Corollary 6.1 Let (x�; y�) 2M be an attractive point for the DA-system

(5), (6) with its basin of attraction containing an open neighbourhood N

of (x�; y�). Let U � M be some open set in M such that U � f(x�; y�)g
contains no equilibrium points. Let (x0; y0) be some initial condition in

U � f(x�; y�)g and denote a solution of the DA-system (5), (6) with this

initial condition as (x(t;x0); y(t; y0)). De�ne T �(x0; y0) (possibly in�nite)

to be the in�num over all possible global solutions, (x(t;x0); y(t; y0)), of the

maximum time T (x0; y0) for which each solution (x(t;x0); y(t; y0)) 2 U is

well de�ned.

Assume that there exists a Lipschitz continuous \Lyapunov function"

V : U ! R with V (x�; y�) = 0 and V (x; y) � 0 for all (x; y) 2 U .

Furthermore, assume there exists real numbers �1; �2 > 0 such that

i) For all (x(t;x0); y(t; y0)) 2 (U �N) then

V (x(t;x0); y(t; y0)) � �1
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ii) The Dini derivative of V (x(t;x0); y(t; y0)) with respect to time satis-

�es

D+
t V (x(t;x0); y(t; y0)) � ��2:

iii) If a discontinuous jump occurs in the solution at time t� then

lim inf
t!t

�

�

V (x(t;x0); y(t; y0)) � lim
t!t

+
�

V (x(t;x0); y(t; y0)):

The basin of attraction of (x�; y�) will contain the set

f(x0; y0) 2 U j V (x0; y0) < �1 + �2T
�(x0; y0)g:

Proof: Consider any initial condition (x0; y0) 2 U . If V (x0; y0) < �1 +

�2T
�(x0; y0) then choose �(x0; y0) 2 (

V (x0;y0)��1
�2

; T �(x0; y0)). It follows

that there exists a time t1 2 (0; �(x0; y0) such that (x(t1;x0); y(t1; y0)) 2 N

otherwise Lemma 6.1 gives

0 � V (x(�(x0; y0);x0); y(�(x0; y0); y0)) � V (x0; y0)� �2�(x0; y0);

which contradicts V (x; y) � 0. Since, N is contained in the attractive basin

of (x�; y�) the result follows.

7 Conclusion

The main contribution of this paper is the analysis of discontinuous jump

behaviour in the solutions of di�erential/algebraic systems. The framework

in which this theory has been presented is deliberately general to provide

a clear perspective of the technical di�culties that need to be addressed.

There are of course practical considerations that must be addressed before

jump discontinuities could be considered in the modelling of power system

behaviour. The applicability of Lyapunov theory to deal with \global" solu-

tions to a di�erential/algebraic system, however, is an encouraging reason

to pursue this approach. Other approaches to modelling the degenerate

behaviour of power systems should not be ignored. In particular, singu-

lar perturbation theory may o�er a better understanding of the manner in

which perturbations will e�ect the algebraic constraint function, and con-

sequently, the dynamics of the di�erential/algebraic system. Recent work

in this area has been undertaken by Venkatasubramanian et al. [24].
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