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Abstract

This paper examines estimation problems speci�ed by noisy lin-

ear relations describing either dynamical models or measurements.

Each such problem has a graph structure, which can be exploited to

derive recursive estimation algorithms only when the graph is acyclic,

i.e., when it is obtained by combining disjoint trees. Aggregation

techniques appropriate for reducing an arbitrary graph to an acyclic

one are presented. The recursive maximum likelihood estimation

procedures that we present are based on two elementary operations,

called reduction and extraction, which are used to compress succes-

sive observations, and discard unneeded variables. These elementary

operations are used to derive �ltering and smoothing formulas appli-

cable to both linear and arbitrary trees, which are, in turn applicable

to estimation problems in settings ranging from 1-D descriptor sys-

tems to 2-D di�erence equations to multiscale statistical models of

random �elds. These algorithms can be viewed as direct generaliza-

tions to a far richer setting of Kalman �ltering and both two-�lter

and Rauch-Tung-Striebel smoothing for standard causal state space

models.
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1 Introduction

In this paper we investigate the problem of recursive estimation for a set
of unknown variables subject to noisy, linear constraints. Our motivation
for this is to provide a unifying framework that includes not only the stan-
dard, causal Kalman �lter and its information �lter counterpart [1] but
also applies equally well to a much richer set of problems in which some
of the natural, simplifying aspects of the standard problem, that are usu-
ally taken for granted, don't apply, requiring more careful analysis. To
understand part of our perspective, consider for the moment the standard
Kalman �ltering problem

xk+1 = Akxk +Bkwk ; k � 0 (1.1)

yk = Ckxk + rk ; k � 1 (1.2)

where wk and rk are independent, zero-mean Gaussian random vectors
with identity covariances, and where x0 is a Gaussian random vector, in-
dependent of w and r, with mean m0 and covariance P0. While there are
a variety of ways in which to derive optimal estimation algorithms for this
standard problem, as we will see, the one that we must use in our general
case involves adopting a maximum likelihood (ML) perspective in which
initial condition, dynamics (1.1) and observation (1.2) are all viewed as
\measurements", or perhaps, more appropriately, as noisy dynamic con-
straints. That is, we wish to estimate the sequence of unknowns x0, x1, � � �
from the sequence of measurements
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(1.3)

where ~x0 = x0 �m0.
Note three things about this formulation. First of all, thanks to the

lower-bi-diagonal structure of the matrix on the right-hand side of (1.3),
we can readily obtain recursive algorithms for the computation of the de-
sired �ltered or smoothed estimates, essentially by Gaussian elimination.
Secondly, in many cases the dynamic noise Bkwk is not full rank (e.g. think
about a second-order system driven by a single noisy input). Consequently
if we adopt ML perspective we apparently have to deal with a singular
estimation problem, since the \measurement noise" in (1.3) has a singular
covariance. Thirdly, thanks to the identity blocks in the matrix in (1.3),
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it is easy to see that the matrix relating x0; � � � ; xk to the measurements
in (1.3) has full column rank implying that this ML estimation problem
is well-posed in that we do indeed have information about the full state
vector. However, in some situations it is not realistic to assume that we
have useful prior information about x0 so that we either eliminate the �rst
block row of (1.3) or replace it by only partial prior information about x0.
In this case, of course, the matrix in (1.3) may no longer have full column
rank.

In this standard framework the two apparent sources of singularity that
we have pointed out typically cause us no real di�culty. In particular,
thanks again to the presence of the identity blocks in (1.3) { or more fun-
damentally to the recursive nature of the dynamic constraint in (1.1), the
calculations corresponding to the incorporation of these dynamics in the
estimation procedure are reduced to the essentially trivial prediction step
of the Kalman �lter, so that the singularity of BkB

T
k causes no di�culty.

Also, if x0 is partially or completely unknown, we can use the information
form of the �lter, involving inverse covariances, which yields well-de�ned
quantities. In other words, the Kalman �lter and associated smoothing
algorithms, in principle, have no di�culty in dealing with perfect informa-
tion, corresponding to singularity of error covariances, while the informa-
tion �lter and its smoothing counterparts have no problem in dealing with
a complete lack of information, corresponding to singularity of the inverses
of error covariances.

However, what happens if we may have a complete lack of information
about part of the state and perfect information about another part, so that
neither the error covariance nor its inverse may be well-de�ned? In addi-
tion, what if the relationships between unknowns xk and observations do
not have as obvious a sequential structure as that displayed by the lower
bi-diagonal matrix in (1.3)? When and how can we determine recursive
estimation structures for such problems, generalizing both Kalman �lter-
ing and optimal smoothing algorithms for linear stochastic systems? In

this paper we answer these questions by analyzing a rather general linear
estimation problem whose study enables us to expand the range of applica-
bility of Kalman �ltering techniques to systems which are far more diverse
and general than the usual state-space models. Such systems include for
example both 1-D and 2-D stochastic descriptor systems, where the class
of 2-D descriptor systems that we consider contains as special cases the
2-D state-space models of Roesser [2] and Fornasini and Marchesini [3],
and can be used to model 2-D stochastic nearest-neighbor models of the
type considered in [4]. In addition, the multiscale stochastic modeling and
estimation framework developed in [5, 6, 7] also falls within the class of
systems captured in our formalism.

The general estimation formulation adopted here is strongly in
uenced
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by our earlier work on the �ltering and smoothing of 1-D descriptor systems
[8], [9], where a general and 
exible maximum likelihood (ML) approach
was employed to derive recursive estimation algorithms. In addition, in
[10] Chisci and Zappa independently developed a square-root Kalman �l-
ter �lter for essentially the same problem studied in [9]. The main feature
of the ML approach, which was itself motivated by earlier work of Whit-
tle [11], Chapter 11, and of Bierman [12] in the context of square-root
Kalman �ltering, is that no distinction is made between system dynamics
and observations. Speci�cally, all dynamic relations and initial or bound-
ary conditions are viewed as observations, i.e. as noisy constraints on the
state variables. Given a stream of observations, all observations consid-
ered up to a certain point can be compressed in such a way that the ML
estimates based on the original observations or their compressed version
are the same. Furthermore, observations concerning variables that are no
longer of interest can be discarded. This process of compressing past ob-
servations and discarding unneeded variables is extended and generalized
here in several ways. First, and most importantly, we introduce the con-
cept of an xo-graph, which provides a unifying perspective for recursive
estimation as well as an extremely convenient visualization of the structure
of general linear estimation problems which in turn can be exploited to
determine the structure of recursive estimation algorithms for the broad
array of problems mentioned previously. Secondly, with the exception of
[9], the previous work (e.g. in [8], [10]) on estimation for 1-D descriptor
systems under singular covariance and/or information matrix conditions
has focused on \causal" �ltering, i.e. recursive estimation of the \current
state" given \past and present" observations. In this paper we consider
\noncausal" smoothing as well, providing both a generalization and a con-
ceptually and notationally far simpler solution of the smoothing problem
�rst analyzed in [9].

In the next section we state the general linear estimation problem of
interest here, introduce its xo-graph representation, and illustrate by ex-
ample the rich set of problems that are captured in this framework. It
turns out that recursive estimation algorithms can be derived only for the
class of so-called acyclic xo-graphs, and, since all xo-graphs are not neces-
sarily acyclic, in Section 3 we develop aggregation operations on xo-graphs
that can be used to reduce any such graph to an acyclic one. As we will
see, this reduction directly provides a recursive structure for an estimation
problem by identifying a grouping and sequential ordering of both the vari-
ables to be estimated and the observations to be processed. The general
form of this reduction is that of a tree, leading to a generalization of the
estimation problems considered in [5, 6, 7] for multiresolution stochastic
processes. In Section 4 we then introduce the core operations required for
recursive �ltering and smoothing by considering several basic facts about
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ML estimation. In particular, it is shown that two operations, called re-
duction and extraction, can be employed to compress observations, and
discard unneeded variables. These two operations are then employed to
derive recursive and numerically robust �ltering and smoothing algorithms
for ML estimation problems represented by trees. The case of linear trees
is �rst discussed in Section 5, and the merge operation necessary to handle
arbitrary trees is discussed in Section 6.

2 XO-Graphs for Linear Estimation

The problem we consider consists of estimating a set of vectors X =
fxi ; i 2 Ig with xi 2 Rni , based on all or part of the set of linear
observations:

ok : zk =

IX
j

Akjxj +Gkuk ; k 2 K (2.1)

where the uk's are zero-mean, independent Gaussian vectors with covari-
ance E[uku

T
k ] = I . For this estimation problem to possess a nontrivial

recursive structure, each observation in (2.1) should couple together only
a limited number of xj 's. For example, in (1.3) each observation involves
only a single xj or two successive values. The dependency structure exist-
ing between observations and vectors to be estimated can be described by
a special type of graph, called an xo-graph. An xo-graph has two types of
nodes: x nodes corresponding to the unknown vectors xi, and o nodes cor-
responding to the observations ok. Each measurement (2.1) is represented
by a set of Jk arcs, where Jk is the number of values of j for which Akj 6= 0,
and where the node ok is connected to node xj if the matrix Akj 6= 0, i.e.
if the unknown vector xj contributes to the observation ok. An important
property of xo-graphs is that to go from a given x-node to another x-node,
we must go through an o-node, and vice-versa. Graphs with this property
are called bipartite [13].

Let us illustrate these ideas with several examples, �rst a simple one
that we will use to illustrate some aspects of our construction and several
others that indicate the generality of this framework.

Example 1 The vectors to be estimated and observations are given by

X = fx1; x2; x3; x4; x5g (2.2a)

O = fo1; o2; o3; o4g (2.2b)

with

o1 : z1 = A11x1 +A12x2 +G1u1 (2.3a)
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o2 : z2 = A21x1 +A22x2 +A23x3 +G2u2 (2.3b)

o3 : z3 = A33x3 +A34x4 +G3u3 (2.3c)

o4 : z4 = A44x4 +A45x5 +G4u4 ; (2.3d)

and the corresponding xo-graph is shown in Fig. 1.

�� @@��
��
��

�� @@ �� @@ �� @@
o1 o2 o3 o4

x1 x2 x3 x4 x5

Figure 1: Xo-graph representing observations (2.3)

Note that by labeling each arc of the xo-graph with the corresponding
Akj matrix, and each node ok with the observation vector zk and matrixGk,
the given estimation problem can be totally represented by an xo-graph.
The advantage of such a representation is that the structure of the xo-
graph can be exploited to perform operations on the observations ok aimed
at estimating the unknown vectors xj recursively. Also, a given xo-graph
is said to be acyclic if the graph obtained by ignoring the x and o labels
of the xo-graph does not contain any cycle. For example, the xo-graph of
Fig. 1 contains the x1{o1{x2{o2{x1 cycle. In the next section we describe
how to reduce such xo-graphs to acyclic ones. Since xo-graphs can always
be decomposed into separate connected components, corresponding here
to decoupled estimation problems, the xo-graphs that we shall consider
when discussing recursive estimation algorithms are therefore trees, i.e.
connected acyclic graphs.

Example 2 The Kalman �ltering and smoothing problems for descriptor
systems can be formulated in the form (2.1). To see this, consider the
descriptor system

Ek+1xk+1 = Akxk +Bkuk ; 0 � k � N � 1 (2.4)

with observations

yk+1 = Ck+1xk+1 +Dkuk ; 0 � k � N � 1 : (2.5)

This model reduces to a standard state-space model when Ek = I , so that
the descriptor estimation problem includes the corresponding problem for
linear state-space models as a special case. To transform the system (2.4){
(2.5) to the form (2.1), the main step is to view the system dynamics (2.4)
as observations linking the state vectors xk and xk+1. Combining these
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observations with (2.5) yields

ok+1 : zk+1 =

�
0

yk+1

�
=

�
�Ek+1
Ck+1

�
xk+1+

�
Ak

0

�
xk+

�
Bk

Dk

�
uk ;

(2.6)
with 0 � k � N � 1. We assume also that some information is separately
available about the initial and �nal state vectors x0 and xN , which is
represented by the observations

o0 : z0 = V0x0 +G�1u�1 (2.7a)

oN+1 : zN+1 = VNxN +GNuN : (2.7b)

The xo-graph corresponding to this estimation problem is shown in Fig.
2. Clearly, it is connected and acyclic, so that it forms a tree. Since each
node in the interior of the tree is connected to exactly two other nodes,
we call it a linear tree. In this context, the estimate of xk based on all o's
is the smoothed smoothed estimate of xk, and its estimate based on the
observations oj such that j � k is the �ltered estimate.

@@ �� @@ �� @@
� � �

@@ ��x0 x1 x2 xN

o0 o1 o2 oN oN+1

Figure 2: Xo-graph for descriptor systems

Example 3 In Example 2, it was assumed that the boundary conditions
for the initial and �nal states x0 and xN were decoupled. For a two-point
boundary value descriptor system (TPBVDS) [14]{[15], these decoupled
conditions are replaced by a single boundary condition coupling x0 and
xN , which can be modeled by an an observation of the form

o0 : zN = V0x0 + VNxN +GNuN : (2.8)

The xo-graph for this example contains the cycle x0{o1{x1 ... oN{xN{o0{
x0, as shown in Fig. 3.
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Figure 3: Xo-graph for boundary-value descriptor systems

Example 4 In the preceding examples the index sets I (for the xi's) and
K (for the zk's) are simply subsets of the integers. The framework we
develop here can handle more general index sets including the 2-D index
set used in 2-D systems. Many 2-D systems, such as those obtained by
discretizing linear stochastic partial di�erential equations, can be described
by a 2-D descriptor model of the form

A0xi+1j+1 +A1xij+1 +A2xi+1j +A3xij = Buij ; (2.9)

where uij is a 2-D white Gaussian noise sequence with unit covariance. This
model includes as special cases the 2-D state-space models introduced by
Roesser [2] and Fornasini and Marchesini [3], which correspond respectively
to the choices

A0 = 0 A1 =

�
I 0
0 0

�
A2 =

�
0 0
0 I

�
(2.10)

and
A0 = I : (2.11)

It is also easy to verify that the 2-D nearest-neighbor stochastic models

zij = AEzi�1j +AW zi+1j +ASzij�1 +ANzij+1 +Buij (2.12)

considered in [4] can be rewritten in the form (2.9) provided that we select

xTij = [zTij z
T
i�1j�1] (2.13)

as partial state vector. For simplicity, it is assumed that the descriptor
model (2.9) is de�ned over the rectangle 0 � i � N , 0 � j � M , and
the boundary conditions are of Dirichlet type, so that xij is known on the
edges of the domain of de�nition. Then, given the observations

yij = Cxij +Duij ; (2.14)

we seek to �nd the ML estimate of xij based on all observations. To
convert this estimation problem into the format (2.1), the dynamics (2.9)
and observations (2.14) can be combined into a single observation oij , in
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the same manner as for the 1-D descriptor systems of Example 2. The
resulting observation oij depends on xij , xi+1j , xij+1 and xi+1j+1, so that
the corresponding xo-graph has the structure shown in Fig. 4. Clearly this
graph contains many elementary cycles.
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Figure 4: Xo-graph for 2-D descriptor systems

Example 5 In [5, 6, 7] a class of recursive models on dyadic trees is intro-
duced and studied as the basis for multiresolution modeling and processing
of stochastic processes. In this setting the index set I consists of nodes on
the tree corresponding to scale/translation pairs (m;n), where m denotes
scale and n translational o�set. As we move from one scale (say m) to the
next �ner one, (m + 1), the number of points doubles and �ner detail is
added to the coarser description. The general form of such a coarse-to-�ne
recursion is

x�k = A�kxk +B�kw�k (2.15)

x�k = A�kxk +B�kw�k (2.16)

where if k denotes the pair (m;n), then �k = (m + 1; 2n) and �k =
(m+ 1; 2n+ 1) are the two descendents of k. If we also have observations

yk = Ckxk + vk ; (2.17)

the xo-graph has a tree structure as depicted in Fig. 5, where ok consists
of (2.15){(2.17).
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Figure 5: Xo-graph for systems over a dyadic tree

Finally, note that several of the examples given above have the feature
that, based on a subset of the full observation set, the vectors to be esti-
mated contain components which are not estimable as well as components
which are known perfectly. For example, consider the descriptor system
(2.4){(2.5) with noiseless boundary conditions of the form (2.7a){(2.7b),
i.e., where G�1 = GN = 0, and where we assume that the ranks of V0 and
VN are each less than the corresponding dimensions of x0 and xN . Then,
suppose we seek to estimate xk recursively based on (2.4), (2.5) and (2.7a){
(2.7b). In this case, we start with (2.7a), from which x0 is not estimable
(since V0 has rank less than the dimension of x0), although some of its
components are known perfectly because G�1 = 0. Furthermore, if�

Ek+1
Ck+1

�

does not full column rank, then xk will not be recursively estimable based
on oj , j � k. Said another way, if we collect the dynamics (2.4), obser-
vations (2.5) and boundary conditions (2.7a){(2.7b) into one set of simul-
taneous equations as we did in (1.3), the matrix we obtain is again lower
bi-diagonal:

0
BBBBBBBBB@

V0 0 0 � � �
�A0 E1 0
0 C1 0

. . .

�AN EN
� � � 0 CN
� � � 0 VN

1
CCCCCCCCCA

: (2.18)

In this case, while the full matrix may in fact be full rank (so that each xk
is estimable based on the use of all observations, including those for j > k),
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the upper left-hand submatrices may not be, so that the straightforward
application of Gaussian elimination, as in standard Kalman �ltering and
smoothing fails.

The above discussion illustrates one key feature of the recursive ML
estimation problems considered in this paper, namely the necessity to cope
simultaneously with the absence of information, as well as the existence of
perfect information, about the vectors we seek to estimate.

3 XO-Graph Reduction

In this section we describe two types of operations that can be employed
to reduce an arbitrary xo-graph to an acyclic one.

A X-aggregation

This operation consists of combining several x-nodes to form a larger x-
node. The e�ect of this operation on the matrices Akj appearing in the
observation relations (2.1) is straightforward. Consider the case of Example
1. Then, the operation consisting of aggregating the nodes x1, x2 and x3 of
Fig. 1 into a larger node is equivalent to stacking the corresponding vectors
into a single column vector

x(1 : 3) =

0
@ x1

x2
x3

1
A ; (3.1)

and the observations can be expressed in terms of this new vector as

o1 : z1 = [A11 A12 0]x(1 : 3) +G1u1 (3.2a)

o2 : z2 = [A21 A22 A23]x(1 : 3) +G2u2 (3.2b)

o3 : z3 = [0 0 A33]x(1 : 3) +A34x4 +G3u3 (3.2c)

o4 : z4 = A44x4 +A45x5 +G4u4 : (3.2d)

The corresponding reduced xo-graph is depicted in Fig. 6.

HH
HH

��
��

@@ �� @@
o1 o2 o3 o4

x(1 : 3) x4 x5

Figure 6: X-aggregation for Example 1
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B O-aggregation

This operation is similar to x-aggregation except that we now combine sev-
eral o nodes to form a single observation. This is accomplished by stacking
the z vectors corresponding to the observations that we want to aggregate.
Consider for example the xo-graph of Fig. 1, and suppose that we want to
aggregate the nodes o1 and o2. Combining the measurement vectors z1 and
z2 of o1 and o2 into a single measurement yields the aggregated observation

o(1 : 2) :

�
z1
z2

�
=

�
A11

A31

�
x1 +

�
A12

A22

�
x2

+

�
0
A23

�
x3 +

�
G1 0
0 G2

��
u1
u2

�
: (3.3)

C Reduction to acyclic form

The two aggregation operations introduced above can be used to reduce
an arbitrary xo-graph into an acyclic one. In general this can be done in
a number of ways, resulting in di�erent levels of aggregation and graph
structures. The simplest way of accomplishing this objective consists of
aggregating all x nodes and all o nodes together, which results in a triv-
ial graph with a single x{o arc. This reduction technique is of course not
very interesting since it destroys completely the dependency structure of
the original xo-graph. A more sensible approach consists in using as few
aggregations as possible to reduce the given xo-graph into an acyclic one.
The procedure that we employ, which is an adaptation of a technique pro-
posed by Lauritzen and Spiegelhalter [16] to perform local computations
on statistical models with a graph structure, consists in triangulating the
chordless cycles of the given xo-graph. The new branches we introduce
by triangulation may be of x to x, o to o, or x to o type. Then, when no
chordless cycle remains, all x-nodes, and all o-nodes, which form cliques, i.e.
sets of mutual neighbors, in the �nal graph need to be aggregated together
(the aggregation can also be performed concurrently with the triangula-
tion). Obviously, the reduction procedure that we have just described is
not unique, since di�erent �ll-in strategies can be used to triangulate a
given xo-graph. However, provided the new branches are selected judi-
ciously, the �nal aggregated acyclic xo-graph will preserve a large part of
the structure of the original graph.

To see how this approach works out in practice, consider the xo-graph
of Fig. 1. It turns out that this graph can be triangulated by adding a
single branch between the x1 and x2 nodes, so that the graph becomes
acyclic after we aggregate the nodes x1 and x2, as shown in Fig. 7.
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@@ �� @@ �� @@ �� @@x1 x2 x3 x4 x5

o1 o2 o3 o4

Figure 7: Reduced acyclic xo-graph for Example 1

For the TPBVDS estimation problem represented by the xo-graph of
Fig. 3 the situation is slightly more complicated. To reduce this xo-graph
to acyclic form, we can �rst aggregate the state vectors xi and xN�i for
i = 0; 1; :::. This yields the xo-graph of Fig. 8.

��

@@

@@

��

��

@@

@@

��

o0
x0
xN

x1
xN�1

x2
xN�2

o1

oN

o2

oN�1

� � �

Figure 8: X-reduction of the TPBVDS xo-graph

To eliminate the remaining cycles from the graph of Fig. 8, we can
aggregate the observations oi and oN�(i�1) for i = 1; 2, ... , which gives
the acyclic xo-graph of Fig. 9.

@
@
@

�
��

@
@@

�
��

@
@@

o0 o1 oN o2 oN�1

x0
xN

x1
xN�1

� � �

Figure 9: O-reduction of the TPBVDS xo-graph

The xo-graph of Fig. 4, which corresponds to the 2-D descriptor es-
timation problem of Example 4 is slightly more di�cult to reduce. One
reduction technique that leads to an acyclic xo-graph consists in organiz-
ing the observations oij and partial states xij into concentric regions, as
shown in Fig. 10. This means that the corresponding recursive estimation
algorithms for estimating xij from the given model and observations will
operate either outwards from the center of the observation region toward
the edges, or inwards from the edges toward the center. However, this
scheme is not the only one that can be used to reduce the given graph to
an acyclic one. For example, by organizing the oij 's and xij 's columnwise
or rowwise, it is possible to process the data from left to right or right to
left, or from top to bottom, and vice-versa.

An interesting feature of the xo-trees obtained in �gures 9 and 10 for
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Figure 10: Reduced xo-graph for 2D descriptor estimation

the TPBVDS and 2-D descriptor estimation problems, respectively, is that
they are linear, i.e. they contain only one branch. A consequence of this
property is that the recursive �ltering and smoothing algorithms for stan-
dard Gauss-Markov state-space models will be applicable with only minor
modi�cations to the above problems, since they correspond to the same
xo-tree. In constrast, more general trees, such as the dyadic tree of Fig.
5 require an interesting variation on the standard Kalman �lter, described
for the multiresolution model of Example 5 in [5, 6, 7] and generalized in
Section 6. One property of these algorithms on trees is that they have
an inherently parallel structure, as the processing on disjoint subtrees can
be carried out in parallel. Indeed it is also possible to use aggregation to
construct a tree structure for the 2-D problem of Fig. 4. Speci�cally, in
this representation we �rst aggregate together the xij 's and oij 's along the
central column of the 2-D array of Fig. 4, yielding the nodes at the top
of the tree and dividing the array into two halves. Each of these is then
subdivided by aggregating the xij 's and oij 's along the central row of each
half. Repeating this procedure on each of the disjoint rectangular regions
produced in the preceding stage yields a tree structure that is used in [17]
to develop multiresolution, pyramidal models for Markov random �elds.
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4 Recursive Maximum Likelihood Estimation

Let x be an unknown vector in Rn. Consider the problem of �nding the
maximum likelihood (ML) estimate of x given the observation

z = Ax +Gu (4.1)

where z belongs to Rp, and u is a zero-mean Gaussian vector in Rm, with
covariance matrix Im. The problems motivating this paper lead us to con-
sider the most general form of (4.1), where �rst we do not assume that
the covariance GGT of the noise Gu is is invertible. In other words, we
allow the possibility that some measurements may be perfect. As noted
earlier, this extension is motivated by the fact that if we view the dynam-
ics of a stochastic linear system as measurements, some of the dynamic
relations for the system may not be a�ected by noise, and will therefore
specify perfect, i.e. noiseless, measurements for some of the system vari-
ables. Another important feature of the above problem is that the matrix
A may not have full column rank. This means that all components of the
vector x need not be estimable from the measurement (4.1). The need to
consider ML estimation in such generality stems from the observation that
the objective of recursive estimation is to incorporate progressively more
information about a given system. In this context, although the �nal ML
estimation problem may be well-posed, i.e. x may be estimable given all
available measurements, as was observed at the end of Section 2, this is
not necessarily the case for intermediate estimation problems based on a
measurement subset.

ML estimation problems where both A and GGT are singular have been
studied in the literature on generalized linear regression models, and the
reader is referred to [18] for a survey of results in this area. The ML
estimation problem requires maximizing the probability density

p(u) =
1

(2�)m=2
exp�

1

2
uTu (4.2)

or equivalently, minimizing the quadratic cost J(u) = uTu=2, under the
constraint (4.1). The solution of this problem is well known and is given
by the following theorem, which appears as Proposition 2.3 of [18] (see also
section 6.4 of [19]).

Theorem 1 x̂ is a ML estimate of x if and only if for some �, x̂ satis�es�
GGT A
AT 0

��
�
x̂

�
=

�
z
0

�
: (4.3)

The estimation error ~x = x� x̂ corresponding to such an estimate obeys�
GGT A
AT 0

��
�
�~x

�
=

�
Gu
0

�
; (4.4)

15



R. NIKOUKHAH, D. TAYLOR, B.C. LEVY, A.S. WILLSKY

so that the bias vectors m� = E[�] and b = x�E[x̂] satisfy

�
GGT A
AT 0

��
m�

�b

�
= 0 : (4.5)

Furthermore the error covariance matrix

P
4
=

�
P�� �P�~x
�P~x� P~x~x

�
(4.6a)

of the vector [�T � ~xT ]T obeys

�
GGT A
AT 0

�
P

�
GGT A
AT 0

�
=

�
GGT 0
0 0

�
: (4.6b)

The operations that will be employed in the remainder of this section to
develop a recursive ML estimation procedure rely on the following canoni-
cal decomposition of an observation of the form (4.1). This decomposition
appears in section 6 of [18], but a proof is included below, since it contains
the precise numerical algorithm required to implement our subsequent re-
sults.

Lemma 1 Given a linear observation of the form (4.1), there exists a

transformation (S, W ) with S invertible and W orthonormal such that

SA =

0
BB@

M1

M2

0
0

1
CCA SGW T =

0
BB@

I 0
0 0
0 I
0 0

1
CCA (4.7)

with M =

�
M1

M2

�
onto, so that if

Sz =

0
BB@

y1
y2
y3
y4

1
CCA Wu =

�
u1
u3

�
; (4.8)

the observation (4.1) takes the form

0
BB@

y1
y2
y3
y4

1
CCA =

0
BB@

M1

M2

0
0

1
CCAx+

0
BB@

u1
0
u3
0

1
CCA ; (4.9)

where u1 � N (0; I) and u3 � N (0; I) are independent.
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Proof: Let

G = V

�
�
0

�
U ; (4.10)

with V and U orthonormal and � diagonal positive de�nite, be a singular
value decomposition of G. Then, consider the matrix

T =

�
T1
T2

�
=

�
UT��1 0

0 I

�
V T : (4.11)

Denoting �
z1
z2

�
=

�
T1
T2

�
z

�
Z1

Z2

�
=

�
T1
T2

�
A ; (4.12)

the observation (4.1) can be decomposed as

z1 = Z1x+ u z2 = Z2x : (4.13)

By performing a QR decomposition of Z2, we can premultiply z2 by an
orthonormal matrix Q such that

Qz2 =

�
y2
y4

�
=

�
M2

0

�
x ; (4.14)

where M2 has full row rank. Next, we project the rows of Z1 onto the row
space of M2. Letting

P2 =MT
2
(M2M

T
2
)�1M2 (4.15a)

be the projection matrix onto the row space of M2, the rows of

~Z1 = Z1(I � P2) (4.15b)

are orthogonal to those of M2. We can then consider the modi�ed mea-
surement

~z1 = z1 � Z1M
T
2
(M2M

T
2
)�1y2 = ~Z1x+ u : (4.16)

By performing a QR decomposition of ~Z1, we can �nd an orthonormal
matrix W such that

W ~z1 =

�
y1
y3

�
=

�
M1

0

�
x+

�
u1
u3

�
; (4.17)

where M1 has full row rank and the covariance of the noise�
u1
u3

�
=Wu (4.18)

is identity, so that u1 and u3 are independent. Thus, we have constructed a
transformation (S;W ) which brings the observation (4.1) to the canonical
form (4.7){(4.9), where by construction [MT

1
MT

2
]T has full row rank. 2
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A Reduction

A key aspect of recursive estimation in general is that we recursively com-
pute and propagate a reduced or compressed version of the information
collected { e.g. in standard causal Kalman �ltering we propagate the esti-
mate of the current state of the system. The generalization of this concept
that we need for the general recursive ML estimation approach developed
here is that of propagating a su�cient statistic, i.e. a compressed version
of the collected information that is statistically equivalent to the original
measurements for the purposes of recursive estimation. More precisely,
we shall freely replace a set of measurements for x by another, usually
smaller, set of measurements that would yield the same family of ML esti-
mates. This replacement procedure is justi�ed by the introduction of the
following concept.

De�nition 1 Two observations

o1 : z1 = A1x1 +G1u1 (4.19a)

o2 : z2 = A2x1 +G2u2 (4.19b)

are said to be equivalent if for any other observation

o3 : z3 = A3x1 +A4x2 +G3u3 ; (4.20)

with u3 independent of u1 and u2, the set of ML estimates (x̂1, x̂2) based
on o1 and o3 is identical to the set of ML estimates (x̂1,x̂2) based on o2
and o3.

Thus, two sets of observations are equivalent if they provide the same
\information" about x. The idea of replacing a set of measurements by
another containing the same information is not new and has been used in-
formally in much of the recursive ML estimation and square-root Kalman
�ltering literature [12]. A notion of equivalence similar to the one intro-
duced here was proposed recently in [10]. The de�nition we consider is
slightly more general, since we require that equivalence should be \context-
free." Speci�cally, given two sets of measurements for a vector x1, for these
two measurements to be equivalent, we require not only that they should
yield the same ML estimates of x1, but also that they should be equivalent
in terms of estimating any other vector x2 for which additional measure-
ments coupling x1 and x2 can be obtained. The motivation for including
the additional measurement o3 in our de�nition of equivalence is that at
any given time, we do not know whether new measurements will become
available at a later stage, so that we require that any operation we perform
on the existing data should not degrade our ability to estimate subsequent
data.
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Among all equivalent measurements of a vector x, we can then ask
ourselves whether it is possible to construct one which provides the most
compact representation for the information contained in the given measure-
ment vector, i.e. a minimal su�cient statistic. The feature that determines
whether a measurement has been maximally compressed is as follows.

De�nition 2 The observation

o : z = Ax+Gu (4.21)

is called reduced if A has full row rank.

To gain some intuition about the information contained in a reduced
observation, consider the case of a reduced measurement where x is es-
timable, i.e. such that A has full column rank. Then the ML estimate of x
is given by x̂ = A�1z, and without loss of information we can premultiply
(4.21) by A�1, which yields

x̂ = x+ ~Gu (4.22)

where ~G = A�1G and P~x~x = ~G ~GT is the ML error covariance. Thus, in
this case, a reduced observation just encodes the ML estimate of x and
its error covariance. More generally, when x is not estimable, the reduced
observation (4.21) can be viewed as encoding the ML estimate and error
variance for the estimable part x0 = Ax of x.

The introduction of the concept of reduced observation is justi�ed by
the following result.

Theorem 2 Any observation o admits an equivalent reduced observation.

Furthermore, if

o1 : z1 = A1x+G1u1 (4.23a)

o2 : z2 = A2x+G2u2 (4.23b)

are two equivalent reduced observations, there exists an invertible matrix T
such that

A1 = TA2 (4.24a)

G1G
T
1

= TG2G
T
2
T T : (4.24b)

The relations (4.24a){(4.24b) show that the reduced observation corre-
sponding to a given measurement is unique up to left multiplication by an
invertible matrix.

Proof: Without loss of generality o can be assumed to be in the canonical
form (4.9). The new observation

Rfog :

�
y1
y2

�
=

�
M1

M2

�
x+

�
u1
0

�
(4.25)
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obtained by retaining only the �rst two block rows of (4.9) is reduced since
M is onto. To verify Rfog is equivalent to o, consider a measurement

o0 : z0 = Ex+ Fx0 +G0u0 (4.26)

coupling x with another variable x0. Because the last two blocks of the
decomposition (4.9) do not contain x and the noise u3 is independent of
both u1 and u

0, the ML estimates of x and and x0 based respectively on o
and o0, and on Rfog and o0 are identical.

To complete the proof of Theorem 2, we need to prove that if o1 and o2
are two equivalent reduced observations of the form (4.23a) and (4.23b),
they are necessarily related through (4.24a){(4.24b). Note that the ML
estimates of x based on oi with i = 1; 2 satisfy

�
G1G

T
i Ai

AT
i 0

��
�i
x̂

�
=

�
zi
0

�
: (4.27)

Since the observation oi is reduced A
T
i has full column rank, so that �i = 0,

and (4.27) reduces to
zi = Aix̂ (4.28)

for i = 1; 2. In order for the solutions of equation (4.28) to coincide for
i = 1; 2, A1 and A2 must have the the same right null space. Since A1 and
A2 have full row rank, this means that they must have the same reduced
row echelon form, so that there exists an invertible matrix T such that
(4.24a) holds. In addition, to ensure that the solutions of (4.28) are the
same for i = 1; 2, we must also have z1 = Tz2, which in combination with
(4.24a) implies (4.24b). 2

B Extraction

Another operation that is needed in deriving recursive estimation algo-
rithms involves discarding unneeded variables that are no longer of interest.
Equivalently, given a measurement, we want to be able to extract a sub-
measurement concerning only the variables in which we are still interested.
For example in standard Kalman �ltering, the prediction step in fact corre-
sponds to an extraction of relevant information about xk+1 from previous
measurements and current dynamics and the dropping of the estimate of
xk from the set of statistics to be updated when the next measurement is
to be incorporated. This operation, which will be called extraction, was
�rst described in [8], [9] and was also introduced in [10] in the context of
square-root Kalman �ltering for descriptor systems. The main di�culty in
performing an extraction is that we want to ensure that we are not throw-
ing away any useful information information concerning the variables that
are of interest. This requirement can be expressed as follows.
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De�nition 3 The observation

o1 : z1 = Ax1 +G1u1 (4.29)

is said to be an extraction of the vector x1 from the measurement

o0 : z0 = A0x0 +A1x1 +G0u0 (4.30)

if for all observations

o2 : z2 = A2x1 +A3x2 +G2u2 ; (4.31)

with u2 independent of u0 and u1, the set of ML estimates x̂1, x̂2 based on

o1 and o2 is identical to the set of ML estimates x̂1, x̂2 based on o0 and o2.

The following result provides a general mechanism for performing ex-
tractions.

Theorem 3 The observation

o1 : Lz = LA1x1 + LG1u (4.32)

is an extraction of x1 from

o : z = A0x0 +A1x1 +G1u (4.33)

if L is a basis of the left null space of A0, i.e., it is a matrix of maximum

rank such that LA0 = 0.

Proof: First observe that to construct L we need only to perform a QR
factorization of A0. Speci�cally, let Q be an orthonormal matrix such that�

Q1

Q2

�
A0 =

�
M
0

�
; (4.34)

where M has full row rank. Then L = Q2. To prove that (4.32) is an
extraction of (4.33), note that the ML estimates of x1 and x2 based on
(4.33) and (4.31) must satisfy0

BBBB@

G1G
T
1

0 A0 A1 0
0 G2G

T
2

0 A2 A3

AT
0

0 0 0 0
AT
1

AT
2

0 0 0
0 AT

3
0 0 0

1
CCCCA

0
BBBB@

�1
�2
x̂0
x̂1
x̂2

1
CCCCA =

0
BBBB@

z1
z2
0
0
0

1
CCCCA (4.35)

for some �1, �2 and x̂0, whereas the ML estimates of x1 and x2 based on
the extracted measurement (4.32) and (4.31) obey0

BB@
LG1G

T
1
LT 0 LA1 0

0 G2G
T
2

A2 A3

AT
1
LT AT

2
0 0

0 AT
3

0 0

1
CCA

0
BB@

�e
�2
x̂1
x̂2

1
CCA =

0
BB@

Lz1
z2
0
0

1
CCA : (4.36)
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Note that the second and last block rows of (4.35) and (4.36) are identical.
To show that the ML estimates x̂1 and x̂2 which solve (4.35) and (4.36)

are the same, assume �rst that �1, �2, x̂0, x̂1 and x̂2 satisfy (4.35). The
third block row

AT
0
�1 = 0 (4.37)

of this equation implies that �1 is in the left null space of A0, and since L
is a basis of this null space, there exists a vector �e such that

�1 = LT�e : (4.38)

Substituting this relation inside the fourth block row of (4.35) yields the
third block row of (4.36), and multiplying the �rst block row of (4.35) by
L and taking into account LA0 = 0, we obtain the �rst block row of (4.36).
Thus, the vectors �e, �2, x̂1 and x̂2 satisfy (4.36).

Conversely, let the vectors �e, �2, x̂1 and x̂2 obey (4.36). Then de�ne
the vector �1 through (4.36). This implies that the third block row of
(4.36) is the same as the fourth block row of (4.41), and since L is a basis
of the left null space of A0, we have

AT
0
�1 = 0 ; (4.39)

so that the third block row of (4.35) is satis�ed. Finally, consider the �rst
block row

L(G1G
T
1
�1 +A1x̂1 � z1) = 0 (4.40)

of (4.36). This implies that the vector

a
4
= G1G

T
1
�1 +A1x̂1 � z1 (4.41)

is orthogonal to the left null space of A0, so that it must be in its column
space, i.e. we can �nd x̂0 such that a = �A0x̂0, which implies that the
�rst block row of (4.35) is satis�ed. This shows that the ML estimates x̂1
and x̂2 based on (4.31) and (4.33) are the same as those based on (4.32)
and (4.33), so that (4.32) is an extraction of (4.33). 2

The extraction operation admits also the following interpretation [20] in
terms of the canonical decomposition of Lemma 1. Consider the observation
o given in (4.33). Suppose that we view x1 as known and let

Mx1fog : z �A1x1 = ~z = A0x0 +G1u1 (4.42)

be the observation obtained by letting x1 be part of the measurement
vector. Then, decomposing Mx1fog as in (4.9), and retaining the last two
blocks of the decomposition, i.e., those that are discarded when performing
a reduction with respect to x0, yields an extraction Xx1fog of x1 from o.
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C Recursive Estimation

We have now all the elements necessary to develop recursive ML estimation
algorithms. The algorithms considered below will be based entirely on the
following elementary operations:

(i) Aggregating two observations: o = o1 ^ o2

(ii) Reducing an observation o: or = Rfog.

(iii) Extracting a vector x from an observation o: ox = Xxfog.

(iv) The equivalence of two observations o1 and o2: o1 � o2. when o1 and
o2 are both reduced, this means that they can be obtained from each
other by left multiplication by an invertible matrix.

Note that since the reduction and extraction operations described above
rely on numerically stable techniques such as the singular value decompo-
sition, QR factorizations, and orthonormal projections, all algorithms ob-
tained by combining such operations can be implemented in a numerically
reliable manner. The recursive estimation algorithms described in the next
two sections rely on the following result, which is a direct consequence of
theorems 2 and 3.

Theorem 4 Consider the observations

o1 : z1 = A1x1 +A2x2 +G1u1 (4.43a)

o2 : z2 = A3x2 +A4x3 +G2u2 : (4.43b)

Then

RfXx3fo1 ^ o2gg � RfXx3fRfXx2fo1gg ^ o2gg : (4.44)

Thus, we can either perform extraction and reduction operations in one
step by working with all observations together, or we can perform these
operations recursively, as more observations become available. That is, we
can �rst process (4.43a), keeping only a reduced form of the information
concerning x2 contained in o1 and then can combine this with (4.43b),
allowing us to repeat the process by extracting x3 and again transforming
this into reduced form.

5 Estimation on Linear Trees

In this section, we consider estimation problems corresponding to linear
xo-trees, which are trees with a single branch. The main motivation for
considering such trees arises from the observation that standard state-space
estimation problems have exactly this tree structure. Thus, provided that
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they are expressed abstractly in terms of the elementary operations in-
troduced in the previous section, all the standard Kalman �ltering and
smoothing algorithms are applicable to this family of trees. Another moti-
vation for considering such trees is that many problems that do not obvi-
ously have such a structure can, through the use of the x- and o-aggregation
operations introduced in Section 2, be reduced to linear trees. This is the
case for example of the TPBVDS and 2-D descriptor estimation problems
whose reduced graphs appear in Fig. 9 and Fig. 10, respectively.

Consider the estimation problem

o0 : z0 = E0x0 +G0u0 (5.1a)

ok : zk = Ekxk +Ak�1xk�1 +Gk�1uk�1 ; 1 � k � N (5.1b)

oN+1 : zN+1 = ANxN +GN+1uN+1 (5.1c)

whose xo-graph is the linear tree of Fig. 2.

A Filtering

The Kalman �ltering algorithm for this problem can be described as follows.
Let ôfk be the observation obtained by extracting xk from the combination
of all observations oj with 0 � j � k, and then reducing the resulting
extracted observation, i.e.

ôfk
4
= RfXxkf^

k
j=0ojgg : (5.2)

Then, Theorem 4 implies that ôfk satis�es the recursion

ôf
0

= Rfo0g (5.3a)

ôfk+1 = RfXxk+1fô
f
k ^ ok+1gg (5.3b)

for 0 � k � N �1, which is the abstract form of the forward Kalman �lter.
In these recursions, the observation ôfk represents a complete summary of
the information about xk contained in the past observations oj , 0 � j � k.

To the observation ô
f
k , we can then associate a family of ML estimates x̂

f
k of

xk based on the past observations, where the estimate x̂fk is unique only if
xk is estimable from the observations oj with 0 � j � k. This is ensured in
particular if the matrices Ek have full rank for all k. When xk is estimable,
the observation ôfk can be represented as

ôk : x̂fk = xk + P
f1=2
k vk ; (5.4)

where P
f1=2
k is a square-root of the error covariance matrix P f

k of the

estimate x̂
f
k , and vk is a zero-mean Gaussian vector with unit variance.
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Example 2, continued: The Kalman �ltering problem for descriptor
systems has been investigated in [21], [22], [8], [10]. When xk is estimable
from past observations, a general 3-block form for the optimum �lter and
its associated Riccati equation were obtained in [8], which includes also a
complete analysis of the steady-state convergence of the optimum �lter.
The case when xk is not estimable was subsequently examined in [9], [23],
[10].

For descriptor systems, it is shown in Section 2 that the observations
(5.1a){(5.1c) take the form (2.6). Then, the recursive �ltering scheme
(5.3a){(5.3b), when applied to these observations, reduces exactly to the
square-root algorithm of [10]. It is also easy to verify that when xk is es-
timable, the recursions (5.3a){(5.3b) yield the 3-block Kalman �lter of [8].
To see this, note that the �rst step of the recursion (5.3b) requires extract-
ing xk+1 from the combination of ôk and observation (2.6). But, when xk
is estimable, ôfk can be expressed in the form (5.4), and the extraction step

consists in backsubstituting xk = x̂fk � P
f1=2
k vk inside (2.6). This yields

the observation

�
Ax̂fk
yk+1

�
=

�
Ek+1
Ck+1

�
xk+1 +

�
AkP

f1=2
k �Bk

0 Dk

��
vk
uk

�
; (5.5)

where vk and uk are independent. From this observation, we see that xk+1
will be estimable provided the matrix [ET

k+1 C
T
k+1]

T has full column rank,
which is precisely the condition obtained in [8]. Then, the next step of
the recursion (5.3b) requires reducing the observation (5.5). One way to
achieve this is to apply the reduction procedure described in the proof of
Lemma 1. However, the resulting �lter has an implicit form. To obtain a
closed-form expression for the �lter, we need only to note that according
to Theorem 1, the ML estimate x̂fk+1 of xk+1 satis�es

0
@ AkP

f
k A

T
k +Qk �Sk Ek+1

�STk Rk Ck+1
ET
k+1 CT

k+1 0

1
A
0
@ �k

�k
x̂fk+1

1
A =

0
@ Akx̂

f
k

yk+1
0

1
A (5.6a)

with
Qk = BkB

T
k Sk = BkD

T
k Rk = DkD

T
k ; (5.6b)

from which we deduce the 3-block expression

x̂fk+1 =
�
0 0 I

�0@ AkP
f
k A

T
k +Qk �Sk Ek+1

�STk Rk Ck+1
ET
k+1 CT

k+1 0

1
A
y0
@ Akx̂

f
k

yk+1
0

1
A
(5.7)
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which was obtained for the �lter in [8]. HereMy denotes the Moore-Penrose
pseudo-inverse ([24], p. 243) of a matrixM . Similarly, the expression (4.6b)
for the error covariance of a ML estimate yields the 3-block Riccati equation

P f
k+1 = �

�
0 0 I

�
0
@ AkP

f
k A

T
k +Qk �Sk Ek+1

�STk Rk Ck+1
ET
k+1 CT

k+1 0

1
A
y0
@ 0

0
I

1
A :

(5.8)
2

B Smoothing

With the exception of [9], [23], most treatments of recursive ML estimation
for problems of the type considered here (or special cases thereof as in [8])
have dealt exclusively with problems of �ltering. In this subsection we
present the generalizations of the two-�lter and double-sweep smoothing
algorithms [25], [26], [27] for standard state-space models to the general
ML estimation problem on linear trees. As we will see, while the two-�lter
generalization is straightforward, the double-sweep or Rauch-Tung-Striebel
(RTS) algorithm has a subtle twist, due to the nature of the extraction and
reduction processes, in order to deal with the fact that variables that are
not estimable using past data may become estimable when future data is
included as well.

To begin, we construct a backward Kalman �lter which is the counter-
part of the forward �lter (5.3a){(5.3b) in the sense that it starts from the
other end of the tree and propagates the opposite direction. Let ôbk be the
observation obtained by extracting the vector xk from the combination of
the observations oj such that k + 1 � j � N + 1, and then reducing the
resulting extracted observation, i.e.

ôbk = RfXxkf^
N+1

k+1 ojgg : (5.9)

Then, ôbk can be computed recursively with the backward Kalman �lter

ôbN = RfoN+1g (5.10a)

ôbk = RfXxkfô
b
k+1 ^ ok+1gg : (5.10b)

Consider now the smoothed observation ôsk obtained by extracting xk
from all observations, and then reducing the resulting extracted observa-
tion, so that

ôsk = RfXxkf^
N+1

j=0 ojgg : (5.11)

According to Theorem 4, ôsk can be constructed by extracting xk separately
from the past and future observations, and reducing the resulting observa-
tions, which gives ôfk and ôbk, and then reducing the combination of these
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two observations. Thus, we have

ôsk = Rfôfk ^ ô
b
kg ; (5.12)

which is the two-�lter smoothing formula for the given tree estimation
problem.

It reduces to the usual two-�lter smoothing formula when xk is es-
timable separately from the past and future observations, and the corre-
sponding covariance matrices P f

k and P b
k are positive de�nite. This can be

veri�ed by noting that under these assumptions, the observations ôfk and
ôbk can be expressed as

ôfk : dfk
4
= (P f

k )
�1=2x̂fk = (P f

k )
�1=2xk + ufk (5.13a)

ôbk : dbk
4
= (P b

k )
�1=2x̂bk = (P b

k )
�1=2xk + ubk ; (5.13b)

where ufk and ubk are two independent zero-mean Gaussian vectors with
unit intensity. Then, when the reduction operation described in the proof
of Theorem 2 is applied to the combination ôfk ^ ô

b
k, it requires �nding an

orthonormal matrix T such that

T

�
(P f

k )
�1=2 dfk

(P b
k )
�1=2 dbk

�
=

�
(P s

k )
�1=2 dsk
0 ak

�
; (5.14)

where x̂sk and P
s
k denote the smoothed estimate of xk and its error variance,

dsk = P s�1=2x̂sk, and ak is an arbitrary vector. Premultiplying (5.14) by its
transpose, and taking into account the orthogonality of T , yields

(P s
k )
�1 = (P f

k )
�1 + (P b

k )
�1 (5.15a)

(P s
k )
�1x̂sk = (P f

k )
�1x̂fk + (P b

k )
�1x̂bk (5.15b)

which are the usual two-�lter smoothing relations.
Turning to the generalization of the RTS smoothing formula for a linear

xo-tree, we �nd that we must be a bit careful in developing this result. In
particular the usual RTS smoother for causal systems consists of a forward
Kalman �lter to process the data and a reverse sweep that processes the
�ltered estimates alone in order to produce the smoothed estimates. If
one were to write this smoothing problem as a large, static estimation
problem { i.e. as in (1.3) { we would �nd that this procedure corresponds
simply to a Gaussian elimination step (the Kalman �lter) on the block
tridiagonal normal equations arising from (1.3) and a back substitution
(the reverse sweep) to yield the smoothed estimate. In our more general
problem of ML estimation on linear trees, we also have a tridiagonal set of
normal equations, and the Kalman �ltering reduction/extraction procedure
described previously corresponds to the Gaussian elimination step with one
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signi�cant di�erence, namely that because of the possibility that xk may
not be estimable based only on the past, the �ltering procedure given by

(5.3b) may discard some measurements that are of no value for �ltering but

may be of use for smoothing.
In particular, suppose that we have ôfk as in (5.2) and suppose that

some part of xk is not estimable based on ôfk . More precisely, suppose that
some part of Akxk is not estimable. In this case the incorporation of ok+1
as in (5.3b) will include some nonestimable portion of xk . For recursive
�ltering, however, at this point we are longer interested in xk but rather
in xk+1, and the result is that the extraction process for xk+1 in (5.3b)
will discard that portion of ok+1 that contains nonestimable parts of xk.
that is, at each step in the Gaussian elimination process we discard some of
the equations, i.e. we ignore some measurements, which are not important
for �ltering. However, these discarded pieces of information may very well
be of value for smoothing (e.g. if Ek+1xk+1 is estimable based on future
data, then ok+1 will provide useful information for the part of Akxk not
estimable based solely on past information).

The net result of all of this is that, unlike the standard causal case,
the backward sweep of the general RTS algorithm will also involve the
processing of at least a part of the raw data (corresponding to the discarded
measurements). To see how to do this, we note that the culprit here is the
coupling between xk and xk+1 in ok+1. Thus, let us collect all information
about these two variables into three sets: the set prior to ok+1 (which
involves xk but not xk+1), ok+1 itself, and the information subsequent
to ok+1 (involving xk+1 but not xk). That is, we observe that all the
information about xk and xk+1 contained in the observations oj with 0 �

j � N+1 is also contained in the compressed observation ôfk ^ok+1^ ô
b
k+1.

Since we do not necessarily assume that xk is separately estimable from the
past or future observations alone, the forward and backward observations
ôfk and ôbk+1 can be assumed to take the general form

ôfk : zfk = Lfkxk +Gf
ku

f
k (5.16a)

ôbk+1 : zbk+1 = Lbk+1xk+1 +Gb
k+1u

b
k+1 (5.16b)

where ufk and ubk+1 are independent with unit variance. Then, according
to Theorem 1, the smoothed estimates x̂sk and x̂sk+1 satisfy the system

0
BBBB@

Gf
kG

fT
k 0 0 Lfk 0

0 GkG
T
k 0 Ak Ek+1

0 0 Gb
k+1G

bT
k+1 0 Lbk+1

LfTk AT
k 0 0 0

0 ET
k+1 LbTk+1 0 0

1
CCCCA

0
BBBB@

�f
�
�b
x̂sk
x̂sk+1

1
CCCCA =

0
BBBB@

zfk
zk+1
zbk+1
0
0

1
CCCCA

(5.17)
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for some vectors �f , � and �b. Dropping the third and �fth block rows of
(5.17) gives

0
@ Gf

kG
fT
k 0 Lfk

0 GkG
T
k Ak

LfTk AT
k 0

1
A
0
@ �f

�
x̂sk

1
A =

0
@ zfk

zk+1 �Ek+1x̂
s
k+1

0

1
A : (5.18)

If we now assume that xk is estimable from all observations, the relation
(5.18) yields the Rauch-Tung-Striebel smoothing recursion

x̂sk =
�
0 0 I

�0@ Gf
kG

fT
k 0 Lfk

0 GkG
T
k Ak

LfTk AT
k 0

1
A
y0
@ zfk

zk+1 �Ek+1x̂
s
k+1

0

1
A ;

(5.19)
where the smoothed estimate x̂sk is obtained by �rst propagating the
Kalman �lter (5.3b) in the forward direction, which gives the observa-

tions ôfk , and then propagating (5.19) in the backwards direction, so that
the whole tree is swept twice in opposite directions. In general, both of
these sweeps use the original data zk. However, by carefully organizing
the observations (5.1b) in the standard causal case, it is straightforward to
recover the usual RTS algorithm.

6 Arbitrary Trees

In [5, 6, 7] the estimation problem for multiscale processes on dyadic trees,
as described by the model (2.15){(2.16) of Example 5, is considered, and
the generalization of the RTS algorithm is developed for this problem.
In this section we consider the more general problem of possibly singular
measurements on arbitrary trees, and we describe the extensions of both the
two-�lter and RTS algorithms to this setting. To begin this development, it
is useful to observe that the forward and backward Kalman �lters for linear
trees were initialized at each extremity of the tree, and then combined all
tree observations sequentially, in the order in which they were encountered.
The same principle applies for arbitrary trees: the �ltering and smoothing
algorithms that we develop in this section rely on initializing a �lter at
each extremity of the tree, and then merging the outputs of di�erent �lters
as we move inward from the extremities of the tree. The key additional
operation needed to perform this task is the generalization of the merge

operation introduced in [5, 6, 7], whereby the outputs of Kalman �lters
characterizing the observations contained in nonoverlapping subtrees are
combined to yield estimates which now summarize the observations on the
subtree formed by the union of the merging subtrees.
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A Merge operation

Consider an o-node connected to the nodes xj , with 1 � j � N , as shown
in Fig. 11. Then, if T denotes the given tree, the tree T � fog obtained
by removing from the node o and the arcs connected to it from T can be
partitioned into N subtrees Tj , where a node belongs to the subtree Tj if
the unique path connecting it to o passes through node xj . Note that since
o is only connected to the nodes xj , 1 � j � N , any path leading to o
must necessarily go through one of these nodes. Let O be the observation
obtained by o-aggregation of all observations contained in the tree T . Let
also Oj be the observation obtained by aggregating all observations of the
subtree Tj . The observation O can be decomposed as

O = O1 ^ �O1 (6.1a)

�O1 =
�
^Nj=2Oj

�
^ o ; (6.1b)

where �O1 corresponds to the observation obtained by removing all obser-
vations contained in subtree T1 from O, or equivalently, by aggregating the
observations Oj for j 6= 1 with the o-node observation. Then, let ôj be the
observation obtained by extracting xj from Oj , and reducing the resulting
observation, so that

ôj = RfXxjfOjgg : (6.2)

Similarly, let �o1 be the observation obtained by extracting x1 from �O1 and
reducing the resulting observation, i.e.

�o1 = RfXx1f �O1gg: (6.3)

Then the merge operation

�o1 = RfXx1f
�
^Nj=2ôj

�
^ ogg (6.4)

is the extension to arbitrary trees of the forward and backward Kalman
�ltering identities obtained in the previous section. It is a direct conse-
quence of Theorem 4, and provides a mechanism for recursively processing
the tree observations, starting from the extremities of the tree and moving
inwards.
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Figure 11: Merge operation

B Smoothing

Both the two-�lter and RTS smoothing algorithms can be extended to
trees, although, as we now show, the structure of the tree leads to some
di�erences in the structure of these algorithms. To begin, we consider the
two-�lter algorithm.

Suppose that we wish to compute the smoothed estimate at a particular
node x on an arbitrary tree. If we remove this x node and the arcs con-
nected to it, we break the tree into disjoint components. The observations
contained into each component can be processed recursively through the
use of merging steps, so as to get a measurement summarizing the informa-
tion about x contained in each subtree. All the subtree measurements can
then be combined, thus yielding a smoothed observation characterizing the
information about x contained in the whole tree.

�
�

@
@
x

o2 � � � oN

o1

T2 TN

T1

Figure 12: Smoother geometry

In detail, consider an x-node of a tree T , which is connected to nodes
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oj with 1 � j � M , as shown in Fig. 12. The tree T � fxg obtained
by removing x and the arcs connected to it from T is partitioned into M
disconnected subtrees Tj , where a node belongs to the subtree Tj if the
unique path connecting this node to x goes through the node oj . Then,
let Oj be the observation obtained by o-aggregation of all observations
contained in the subtree Tj , including oj , and let ôj be the observation
obtained by extracting x from Oj and reducing the resulting observation,
i.e.

ôj = RfXxfOjgg : (6.5)

Let also ôs be the smoothed observation obtained by extracting x from
the o-aggregation of all observations in the tree, and reducing the resulting
observation, so that

ôs = RfXxfOgg : (6.6)

Then, the analog of the two-�lter formula for arbitrary trees is given by

ôs = Rf^Mj=1ôjg ; (6.7)

which shows that ôs can be obtained by combining the information about
x contained in each subtree, and reducing the resulting observation. Note
that (6.7) is actually an \M -�lter" smoothing formula, where M denotes
the degree of the node x in the graph, i.e., the number of branches connected
to x.

In (6.7) the observations ôj can be constructed recursively by using
merge operations to progressively collapse the tree Tj from its extremities
towards node x. This can be performed systematically by giving a root
structure to the tree T , where x is selected as the root, the observations oj
are located on the �rst level of the tree, to the oj 's are put on the second
level, etc. Then, by using merge operations to move from the higher to lower
levels of the tree, one can progressively compress the observations contained
in each subtree Tj , so as to place ourselves in the situation corresponding
to Fig. 12.

Note that the generalization of the two-�lter algorithm has a very simple
structure with considerable symmetry. However, in contrast to the case of
a linear tree, the computational structure of the algorithm is far more
complex in the case of an arbitrary tree. Speci�cally, suppose that we wish
to obtain the best estimate of xk at every node of the tree. As we have
just seen, the computation for each such node corresponds to breaking the
tree into disjoint subtrees by removing the node xk and by performing
recursive processing toward xk in each subtree. For a linear tree, this leads
to two recursive �lters, one from each extremity to the other, providing all

of the subtree estimates required for optimal smoothing at all x-nodes. For
an arbitrary tree, with several extremities, this is obviously not the case,
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implying that there are many more recursive �lters (essentially from each
extremity toward every other extremity).

The complexity of the aboveM -�lter smoother motivates the consider-
ation of alternative processing strategies which would be globally optimal
for the whole tree. One such structure is the RTS algorithm, which was �rst
derived in [5, 6, 7] for the nonsingular estimation problem over dyadic trees
described in Example 5, and was recently extended to arbitrary trees and
arbitrary (possibly singular) observations in [28]. This algorithm works as
follows. From each extremity of the tree, we start a recursive �lter. These
recursive �lters move towards the center of the tree, processing observations
and estimating variables, until a node of degree M > 2 is encountered, at
which time the �lter stops its progression until M � 1 �lters have reached
the node. If the node is an o-node, a merge operation is performed, and if
it is an x-node, so that the geometry of Fig. 12 is applicable, the observa-
tions o2, ... , oN are reduced into a single observation. Then a single �lter
carrying the merged information of the M � 1 �lters is sent along the last
edge from which a �lter has not arrived yet. Proceeding in this manner,
there comes a time whenM �lters meet at a node of degreeM , which plays
the role of \center" of the tree. These M �lters merge their information
and start backtracking along their earlier trajectories. At each node of
degreeM > 2, they transmit the merged information to the waitingM � 1
�lters, which in turn start retracing their earlier paths. The resulting RTS
algorithm needs therefore to traverse each edge of the tree only twice, once
in each direction, to compute the smoothed estimates at each x-node of
the tree, so that it is globally optimal.

Finally, note that the above RTS algorithm can also be applied to 2-
D estimation problems, provided that graph transformations of the type
described in [23] are employed to give a tree structure to the graph depicted
in Fig. 4.

7 Conclusions

In this paper we have developed a general framework for deriving recursive
ML estimation algorithms for problems speci�ed by noisy linear relations
describing either linear stochastic models or measurements. An xo-graph
structure was associated to each estimation problem. It was then shown
that if any xo-graph can be reduced to acyclic form through the use of
x- or o-aggregation operations, and for any such acyclic form it is pos-
sible to derive recursive estimation algorithms for the corresponding re-
duced estimation problem. The recursive ML estimation algorithms we
have developed rely on two elementary operations, called reduction and
extraction, which can be used to compress observations, and extract the
information about certain variables contained in these observations. The
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resulting �ltering and smoothing algorithms were illustrated for both linear
and arbitrary trees. These results are very general, since they apply to 1-D
and multidimensional stochastic systems, systems with singular dynamics,
and stochastic processes de�ned at multiple resolution levels. Furthermore,
the procedures employed to perform reduction and extraction operations
rely on numerically stable methods, of the same type as to those arising
in square-root Kalman �ltering, and thus yield numerically reliable esti-
mation techniques. This general framework appears to o�er considerable
promise for a wide variety of estimation problems, including those for 2-D
processes and those involving scale-recursive process descriptions.
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