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Abstract

The identi�cation problem of a functional coe�cient in an ellip-

tic equation is considered. For this purpose methods are introduced,

which combine a modi�ed equation error and the well-known out-

put least squares methods. Estimates of the rate of convergence for

the proposed approach are proved, when the equation is discretized

with the �nite element method. The work is concluded with some

numerical results.
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1 Introduction

In this article we consider the homogeneous, elliptic boundary value prob-
lem

�r � (b(x)ru(x)) = f(x) in 
 ;

uj�0 =
@u
@n

��
�1

= 0 ;
(1.1)

where 
 is a bounded domain in Rn ; n � 3; with smooth boundary @
 =
�0 [ �1; where �0 and �1 are open disjoint subsets of @
: If @
 = �1; we
include the standard compatibility and uniqueness conditions

R


f dx =R



u dx = 0 to (1.1). This equation can describe many physical phenom-

ena, for example, the ow of a water through an aquifer ([1] and articles
therein). In this case, u represents pressure within an aquifer 
; b is the
transmissivity of the rock and f is a source or sink term. A direct problem
related to (1.1) would consist of �nding the unknown solution u, when
we know both functions b and f: In this article we are interested in the
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T. K�ARKK�AINEN

inverse problem arising from (1.1): Having some knowledge of the solution
u; recover the parameter b:

Equation (1.1) can be viewed as a �rst order PDE in the unknown
function b :

�rb � ru� b�u = f : (1.2)

Evidently, this equation becomes singular, when ru = 0: If ru vanish on
some open set, then (1.2) provides no information about the behavior of b
on this set. This suggests that we should either assume some conditions
for ru;�u; such that (1.2) can be solved uniquely as is done in the papers
[2], [3]. Otherwise ru should appear as a weight to the �nal error estimate
between the true solution and the calculated one. This will be the case
with our estimates.

We assume that we have a distributed observation of the solution u;

and we use the output least squares method to transform the identi�cation
problem of b to a minimization problem. The main idea of this work is to
include an extra term to the least squares cost functional, which takes into
account the underlying equation (1.1). This approach is similar to that used
in [3], but avoids the use of an intermediate variable in the optimization.
The same kind of formulation for the identi�cation problem is also behind
the so-called augmented Lagrangian technique, which is presented in [1] on
page 264 but without any estimates of the rate of convergence. A good
review of the existing methods for the parameter identi�cation problems
can be found in [1].

In practice we can usually measure observations at some points of the
domain 
; i.e., we have a discrete observation of the form u(xi); i = 0; :::; n:
After interpolating this point data we can get a distributed observation with
some interpolation and measurement errors.

This paper is organized as follows. In Section 2 we recall some approx-
imation results and inequalities needed in the analysis of the identi�cation
problem. In Section 3 we formulate the identi�cation problem as an optimal
control problem by introducing a cost functional, which is to be minimized
in the computational procedure. This is followed by the main results of this
work, estimates of the rate of convergence in this identi�cation process. We
point out that in Theorems 3.2 and 3.3 we obtain, in 1d case, an optimal
order estimate for the rate of convergence. Finally, in Section 4 we present
some numerical results.

2 Notations and Preliminaries

The standard notations for Sobolev spaces and associated norms will be
used. We will not include the domain 
 in the spaces and norms, since we
assume it to be always �xed. We use (�; �) to denote the L2-inner product
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ERROR ESTIMATES FOR PARAMETER IDENTIFICATION

on 
: We regard C; eC as generic constants, which may vary in di�erent
contexts, but are always independent of h:

In order to de�ne the �nite element spaces let Th; 0 < h < 1; be a family
of triangulations of �
: If the boundary of 
 is curved, we use triangles
with one edge replaced by the curved segment of the boundary ([6]). We
assume that the family Th is regular and quasi-uniform. For �xed integers
r � 1; l � 0; we de�ne a �nite element space as

Srh;l =
n
v j v 2 Cl�1(
); vjT 2 Pr 8 T 2 Th

o
; (2.1)

where Pr is the space of polynomials of degree less or equal to r and C
�1(
)

is interpreted as L2(
): By Sr;0h;l we denote the subspace of S
r
h;l of functions,

which vanish on �0 � @
: By the results in [4] we know that for all v 2
Wm;p(
) there is (an interpolant) vh 2 S

r
h;l such that

kv � vhkk;p � C hm�kkvkm;p for 0 � k � l; k � m � r + 1; 1 � p �1 :

(2.2)
Also, these spaces satisfy the following inverse inequalities

kvhk1;p � C h�1kvhk0;p 8vh 2 S
r
h;l; 1 � p �1 (2.3)

and
kvhk1 � C h�

n

2 kvhk0 8vh 2 S
r
h;l : (2.4)

We will use constantly the following trigonometric inequality: Let a; b 2
R
+ = fx 2 R : x � 0g: Then, for � 2 (0; 1) it holds

a b �
1

4�
a2 + �b2 : (2.5)

By using (2.5) with � = 1
2
it is easy to prove that for v1; :::; vm 2 X we

have an estimate

kv1 + :::+ vmk
2
X � m (kv1k

2
X + :::+ kvmk

2
X) : (2.6)

Let eH1 = eH1(
) � H1(
) be a subspace. We denote by eH�1 =

eH�1(
) the dual space
� eH1(
)

��
equipped with the natural norm

kvk�1 = sup
 2eH1(
)

j(v;  )j

k k1
: (2.7)

A direct consequence of this de�nition for v 2 eH�1(
) and  2 eH1(
) is
an inequality

j(v;  )j � kvk�1k k1 : (2.8)
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3 The Identi�cation Problem and Error Estimates

In this section we formulate our method for the identi�cation of the un-
known coe�cient in (1.1). This is followed by estimates of the rate of
convergence for the proposed method. Let z(x) 2 Hr+2 be a distributed
L2-observation of the state u with an observation error (i.e., how close this
function is to the actual solution of (1.1)) of the form

ku� zk0 � " : (3.1)

Recall that the weak formulation of equation (1.1) reads as

(bru;rv) = (f; v) 8v 2 eH1 ; (3.2)

where eH1 =
�
v 2 H1

j vj�0 = 0
	
: (3.3)

The discretization of (3.2) with �nite element Galerkin method is then
de�ned as:

�nd uh 2 Uh s.t. (bruh;rvh) = (f; vh) 8vh 2 Uh : (3.4)

Here Uh � eH1 is a suitable discrete space.
Let us now introduce those �nite dimensional spaces, which are needed

to de�ne the computational procedure. We need altogether four di�erent
discretization spaces: Uh for the solution u, Bh for the parameter b; Zh
for the observation z and �nally Fh; which will be used to discretize the
right-hand side f: Following the de�nitions of Section 2 we assume that
these spaces are:

Uh = S
r+1;0
h;2 ;

Bh = Srh;1 ;

Zh = S
r+1;0
h;0 ;

Fh = Sr�1h;0 :

(3.5)

We see that all spaces in (3.5) correspond to the same triangulation of
the domain 
: This is just to simplify the things to come. It is not at all
necessary or obligatory to have same grids (i.e. same h) for all spaces.

In the computations we try to �nd a minimizer for a cost functional

J(bh) =

Z



juh(bh)� zhj
2 dx + h4

Z



jr � (bhruh(bh)) + fhj
2 dx

= kuh(bh)� zhk
2
0 + h4 kr � (bhruh(bh)) + fhk

2
0 :

(3.6)
Here uh(bh) is the solution of equation (3.4), which corresponds to a given
parameter bh 2 Bh; zh is the interpolant of z in Zh and fh the interpolant
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of f in Fh: We notice that (3.6) can be computed exactly by applying
a suitable quadrature formula, because all functions there are piecewise
polynomials and the approximation of @
 is assumed to be exact. The
weight h4 in front of the second term is for balancing the di�erent amount
of di�erentiation in two terms.

As we can see, the cost functional (3.6) consists of two parts: The �rst
part represents the usual least squares formulation with L2-observation,
while the second part takes into account the actual state equation (1.1).
Thus, the second term is of the same form as in the so-called equation error
method, which is introduced in [1] on page 253. The di�erence between
the method in [1] and our formulation is, that in [1] they substitute the
observation z directly into the operator r � (bhrz): The disadvantage of
such an approach is the requirement for di�erentiation of error corrupted
data z: The method of this paper avoids this potential di�culty.

Now we are ready to de�ne the actual identi�cation problem:

�nd bh 2Mh : J(bh) � J(~bh) 8 ~bh 2Mh ; (3.7)

where

M = fb j 0 < �1 � b � �2 <1 a.e. in 
 ; krbk0 � � <1g (3.8)

is the set for admissible parameters, �1; �2; � 2 R are given constants and
Mh =M \ Bh:

Let bh be the minimizer of (3.7) and let wh = uh(bh) be the solution of
(3.4), which is calculated with this parameter. Concerning the smoothness

of the functions in (1.1), we assume that u(x) 2 eH1 \ Hr+2 \ W 2;1;

b(x) 2 Hr+1 \W 1;1 and f(x) 2 Hr; where r � n
2
:

Between the true solution u of (1.1) and the discrete solution uh; which
is calculated from (3.4) with the true parameter b; we have by (2.2) and
the regularity of our functions a standard error estimate

ku� uhk0 + h ku� uhk1 � C hr+2kukr+2 : (3.9)

This can be found in [4], and in the case of a curved boundary @
 it can
be shown as in [6], when the discretization points on the boundary are
appropriately chosen and the homogeneous Dirichlet condition is realized
in the discretization points on �0 � @
:

Lemma 3.1 Let �h be the L2-projection of b into Bh and uh(�h) the so-

lution of equation (3.4), which corresponds to this parameter. Moreover,

assume that the true parameter satis�es

�1 + � < b(x) < �2 � � 8x 2 
 ;

krbk0 � �� �
(3.10)
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for some � > 0: Then, for h small enough �h 2Mh; and we have

2X
k=0

hk kuh(�h)� ukk � C hr+2 :

Proof: From (2.2) and the regularity of b we know that

kb� �hkk � C hr+1�k kbkr+1 for 0 � k � 1 : (3.11)

Moreover, from (2.2), (2.3), (2.4) and [5] we get, when �h is the interpolant
of b in Bh and r � n

2
; that

kb� �hk1;1 � kb� �hk1;1 + C h�(
n

2
+1)

k�h � �hk0

� C kbk1;1 + C h�(
n

2
+1)(k�h � bk0 + kb� �hk0)

� C (kbk1;1 + kbkr+1) � eC ;
kb� �hk1 � kb� �hk1 + C h�

n

2 (k�h � bk0 + kb� �hk0)

� C h (kbk1;1 + kbkr+1) � C h :

(3.12)

Hence, we can assume that k�hk1;1 is uniformly bounded and that there
exists h0; such that for all h < h0; �h satis�es the bounds

�1 � �h � �2 ;

kr�hk0 � �
(3.13)

as a consequence of (3.10) - (3.12). This implies that �h 2Mh for h small
enough.

It follows from (3.4) that uh(�h) is the solution of

(�hruh(�h);rvh) = (f; vh) 8vh 2 Uh : (3.14)

A combination of (3.4) and (3.14) leads to a formula

(�hr(uh(�h)� uh);rvh) = (f; vh)� (�hruh;rvh)

= (bruh;rvh)� (�hruh;rvh)

= ((b� �h)ruh;rvh) :

(3.15)

By choosing vh = uh(�h)� uh in (3.15), using (3.13) and (3.11) we deduce
that

�1 kr(uh(�h)� uh)k
2
0 � j(�hr(uh(�h)� uh);r(uh(�h)� uh))j

� Ckuhk1;1 kb� �hk0 kr(uh(�h)� uh)k0

� C hr+1 kr(uh(�h)� uh)k0 :

(3.16)
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The boundedness of kuhk1;1 can be proved with the technique used in
(3.12). Hence, (3.16) and the triangle inequality together with (3.9) proves
the H1-estimate.

Next we prove the L2-estimate by using duality. Let us �rst de�ne a
function  as a solution of

�r � (br ) = uh(�h)� u ;

 j�0 =
@ 

@n

����
�1

= 0 :
(3.17)

By the standard regularity results

k k2 � C kuh(�h)� uk0 � ~C : (3.18)

By integration by parts we have, in view of the boundary conditions, when
 h is the interpolant of  in Uh :

kuh(�h)� uk20 = (br ;r(uh(�h)� u))

= ((b� �h)r ;r(uh(�h)� u))

+(�hr( �  h);r(uh(�h)� u))

+(�hr h;r(uh(�h)� u)) :

(3.19)

Next we manipulate the last term in (3.19) in the same way as in (3.15):

(�hr h;r(uh(�h)� u)) = (f;  h)� (�hru;r h)

= (bru;r h)� (�hru;r h)

= ((b� �h)ru;r h)

= ((b� �h)ru;r( h �  ))

+(b� �h;ru � r ) :

(3.20)

By the de�nition of L2-projection we have

(b� �h; �h) = 0; 8�h 2 Bh : (3.21)

Thus, by taking �h as the interpolant of ru � r in Bh; we obtain by the
regularity of u;  and the results (3.11), (2.2) for the last term in (3.20)

(b� �h;ru � r ) = (b� �h;ru � r � �h)

� C kb� �hk0 h kru � r k1

� C hr+2 kuk2;1 k k2

� C hr+2 k k2 :

(3.22)

7
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Finally, a combination of (3.12), (3.18) - (3.22) and (2.2) gives

kuh(�h)� uk20 � C (kb� �hk1 kr(uh(�h)� u)k0 kr k0

+k�hk1 kr( �  h)k0 kr(uh(�h)� u)k0

+kruk1 kb� �hk0 kr( h �  )k0 + hr+2 k k2)

� C hr+2 k k2

� C hr+2 kuh(�h)� uk0 :

(3.23)
This proves the L2-estimate.

To this end, let � be the interpolant of u in Uh: By using the inverse
inequality (2.3) and the estimate (2.2) we deduce

kuh(�h)� uk2 � C h�1 kuh(�h)� �k1 + ku� �k2

� C h�1 (kuh(�h)� uk1 + ku� �k1) + C hr

� C hr :

(3.24)

This completes the proof.

Lemma 3.2 Between the solution u of (1.1) and the solution wh = uh(bh);
which corresponds to the minimizer bh of (3.7) we have, for h small enough,

estimates

kwh � uk0 � C (hr+2 + ") ;

kr � (bhrwh)�r � (bru)k0 � C (hr + h�2 ") :

Proof: Because bh is the minimizer of (3.7) and because for h small enough
also �h 2Mh; we have J(bh) � J(�h): By (3.6) this means

kwh � zhk
2
0 + h4 kr � (bhrwh) + fhk

2
0

� kuh(�h)� zhk
2
0 + h4 kr � (�hruh(�h)) + fhk

2
0

= I1 + h4 I2 ;

(3.25)

where we have denoted I1 = kuh(�h)� zhk
2
0 and I2 = kr � (�hruh(�h)) +

fhk
2
0: For I1 we have, using (2.6), Lemma 3.1, (3.1) and the regularity of z

together with (2.2):

I1 � 3 (kuh(�h)� uk20 + ku� zk20 + kz � zhk
2
0)

� C (h2(r+2) + "2) :
(3.26)

Similarly, adding and subtracting suitable terms to I2; we get using (2.6),

8
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(1.1) and the regularity of f; �h and u:

I2 � 2 (kr � (�hruh(�h)) + fk20 + kfh � fk20)

� 2 kr � (�hruh(�h))�r � (bru)k20 + Ch2r

� 4 (kr � (�hr(uh(�h)� u))k20 + kr � ((�h � b)ru)k20) + Ch2r

� C (kuh(�h)� uk22 + k�h � bk21 + h2r) :
(3.27)

Lemma 3.1 bounds the �rst term and (3.11) the second term in (3.27) with
O(h2r): This proves that I2 is also of order O(h

2r):
A combination of (3.25) - (3.27) gives us the following estimates

kwh � zhk0 � C (hr+2 + ") ;

kr � (bhrwh) + fhk0 � C (hr + h�2 ") :
(3.28)

From the �rst estimate we get, using once again triangle inequality

kwh � uk0 � kwh � zhk0 + kzh � zk0 + kz � uk0

� C (hr+2 + ") :
(3.29)

Similarly, it follows from (3.28) that

kr � (bhrwh)�r � (bru)k0

= kr � (bhrwh) + fk0

� C (kr � (bhrwh) + fhk0 + kf � fhk0)

� C (hr + h�2 ") ;

(3.30)

which ends the proof.

Theorem 3.1 For h small enough the calculated parameter bh and the

original parameter b satisfy an error estimateZ



jb� bhjjruj
2 dx � C

�
hr + h�2 "

�
:

Proof: The following equation between b; u and bh; wh is valid in L2(
)

�r � ((b� bh)ru) = �r � (bru) +r � (bhrwh)

�r � (bhr(wh � u)) :
(3.31)

Now we proceed with the technique introduced in [1] on page 243. Let us
�rst de�ne two disjoint subsets of 
; such that R1 = fx 2 
 : b(x)�bh(x) �
0g and R2 = 
 � R1: Let us also de�ne a function  2 L1(
) by taking
 = 1 in R1 and  = �1 in R2: Now, by taking the L2-inner product of
(3.31) with  u 2 L1 we get

�(r � (jb� bhj ru); u) = (r � (bhrwh)�r � (bru);  u)

�(r � (bhr(wh � u);  u) :
(3.32)
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Since b and bh are both bounded in H1; this implies that x ! jb � bhj

is an element of H1; and therefore jb � bhj ru 2 H1 as a consequence of
u 2 W 2;1: So, by integration by parts on the left-hand side we �nd from
(3.32)

Z



jb�bhj jruj
2 dx � C (kr�(bhrwh)�r�(bru)k0+kwh�uk2) : (3.33)

This is a consequence of a calculation

(r � (bhr(wh � u);  u) = (bh�(wh � u);  u) + (rbh � r(wh � u);  u)

� C k uk1 (kbhk0 k�(wh � u)k0

+ krbhk0 kr(wh � u)k0)

� C(�2; �) kwh � uk2 ;

(3.34)
which is true because bh 2 Mh: From Lemma 3.2 we know that the �rst
term in (3.33) satis�es the result of the theorem. For the second term we
get from (2.2) and Lemma 3.2, by using the inverse inequality (2.3)

kwh � uk2 � C (h�2 kwh � �k0 + k�� uk2)

� C
�
h�2 (kwh � uk0 + ku� �k0) + hr

�
� C

�
h�2 (hr+2 + ") + hr

�
� C

�
hr + h�2 "

�
;

(3.35)

where � is now the interpolant of u in Uh: A combination of (3.33) and
(3.35) proves the result.

Next we will introduce better estimates for the case n = 1: In this case
the domain 
 reduces to an interval I = (a; b):We assume that at least on
one end of the interval we have a Neumann condition u0(a) = 0 or u0(b) = 0:
We change the cost functional (3.6) to

eJ(bh) = kuh(bh)� zhk
2
0 + h2 k(bh u

0

h(bh))
0 + fk2

�1 ; (3.36)

where 0 denotes the di�erentiation with respect to x-variable and the second
norm is realized in the dual space eH�1 of the test function space eH1:

Theorem 3.2 For n = 1 we have, for h small enough, an error estimate

k(b� bh)u
0
k0 � C (hr+1 + h�1 ") ;

which holds, if bh 2Mh is the minimizer of (3.36).

Proof: A weak form of equation (3.31) reads as

((b�bh)u
0; v0) = ((bh w

0

h)
0
�(b u0)0; v)+(bh (wh�u)

0; v0) 8v 2 eH1 : (3.37)

10
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Because eH1 is now either the whole space H1 or its subspace of the form

eH1 =
�
v 2 H1

j v(a) = 0 or v(b) = 0
	
; (3.38)

we can de�ne a test function v 2 eH1 as a solution of a boundary value
problem

v0(x) = [(b� bh)u
0](x); x 2 I ;

v(a) = 0 or v(b) = 0 :
(3.39)

So, by using this v in (3.37), applying the Poincare inequality and inequality
(2.8) we get

k(b� bh)u
0
k
2
0

� C (kbhw
0

h)
0
� (b u0)0k�1 + kbh (wh � u)0k0) kv

0
k0

� C (kbhw
0

h)
0
� (b u0)0k�1 + k(wh � u)0k0) k(b� bh)u

0
k0 :

(3.40)

A direct calculation shows that for the dual norm eH�1 we have an
inequality

k(a g0)0k�1 � ka g0k0 ; (3.41)

when g satis�es the boundary conditions in (1.1). Hence, as in (3.25) -
(3.27) we get, for the cost functional (3.36), when using the inequality
(3.41)

kwh � zhk
2
0 + h2 k(bhw

0

h)
0
� (b u0)0k2

�1

= kwh � zhk
2
0 + h2 k(bhw

0

h)
0 + fk2

�1

� kuh(�h)� zhk
2
0 + h2 k(�h u

0

h(�h))
0 + fk2

�1

� C h2 (k(�h u
0

h(�h))
0 + fk2

�1 + h2(r+1) + h�2 ")

� C h2 (k(�h (uh(�h)� u)0)0k2
�1 + k((�h � b)u0)0k2

�1 + h2(r+1) + h�2 ")

� C h2 (kuh(�h)� uk21 + k�h � bk20 + h2(r+1) + h�2")

� C h2 (h2(r+1) + h�2") :
(3.42)

As in (3.28) - (3.30) this gives us the estimates

kwh � uk0 � C (hr+2 + ") ;

k(bh w
0

h)
0
� (b u0)0k�1 � C (hr+1 + h�1 ") :

(3.43)

From the inverse inequality (2.3), (3.9) and (3.43) we then deduce

k(wh � u)0k0 � C (h�1kwh � uhk0 + ku� uhk1)

� C
�
h�1(kwh � uk0 + ku� uhk0) + hr+1

�
� C (hr+1 + h�1") :

(3.44)

A combination of (3.40) - (3.44) proves the result.
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Remark 3.1 Because Theorem 3.2 needs only H1-estimate for uh(�h)�u;
it might be enough to take Uh = S

r+1;0
h;1 : Notice that with this discrete

space the homogeneous Neumann condition is not satis�ed exactly for wh:
However, it is reasonable to expect that the convergence of w0h to zero on
the boundary is of same order as in the previous estimate.

In the next theorem we show that a similar result as in Theorem 3.2
can be proved in 1d also for the cost functional (3.6)

Theorem 3.3 For n = 1 we have, for h small enough, an error estimate

k(b� bh)u
0
k0 � C (hr+1 + h�1 ") ;

which holds, if bh is the minimizer of (3.6).

Proof: Like in Theorem 3.2 we see that

k(b� bh)u
0
k0 � C (k(bhw

0

h)
0
� (b u0)0k�1 + k(wh � u)0k0) : (3.45)

The second term in (3.45) is treated in Theorem 3.2, (3.44). From the
results of Lemma 3.2 we know that for the cost functional (3.6) we have an
estimate

k(bhw
0

h)
0
� (b u0)0k0 � C (hr + h�2 ") : (3.46)

Moreover, we know that bh; wh satisfy an equation

(bhw
0

h; v
0

h) = (f; vh) 8vh 2 Uh : (3.47)

Because bh 2 Bh � H1 and wh 2 Uh � H2; we have bhw
0

h 2 H1 by the
standard regularity results in 1d: Therefore, we can integrate by parts in
(3.47), which becomes to the form

� ((bh w
0

h)
0; vh) = (f; vh) 8vh 2 Uh : (3.48)

Hence, this combined with (1.1) gives

((bh w
0

h)
0
� (b u0)0; vh) = 0 8vh 2 Uh : (3.49)

From the de�nition of eH�1-norm we then deduce by using (3.49), (3.46)
and taking �h as the interpolant of � in Uh

k(bhw
0

h)
0
� (b u0)0k�1 = sup

�2eH1

j((bh w
0

h)
0 � (b u0)0; �)j

k�k1

= sup
�2eH1

j((bh w
0

h)
0 � (b u0)0; �� �h)j

k�k1

� C hk(bhw
0

h)
0
� (b u0)0k0

� C (hr+1 + h�1 ") :

(3.50)

This proves the result.
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Remark 3.2 From the proof of Theorem 3.2 we see that this kind of tech-
nique (i.e., the way of choosing the test function v in (3.39)) can not be
applied, when the equation (1.1) is given with the homogeneous Dirichlet
boundary conditions. However, we believe that the estimates in Theorems
3.2 and 3.3 are valid, for n = 1; with all kind of combinations of homo-
geneous boundary conditions. This general statement is veri�ed in the
next section, where we have computed some numerical examples with the
Dirichlet conditions as well.

Corollary 3.1 If the observation z is assumed to approximate u in H1
0

instead of L2 with an observation error

kr(u� z)k0 � " : (3.51)

Then for a cost functional

J(bh) = kr(uh(bh)� zh)k
2
0 + h2 kr � (bhruh(bh)) + fhk

2
0 (3.52)

an error estimate Z



jb� bhjjruj
2 dx � C

�
hr + h�1 "

�
(3.53)

is valid for n = 2; 3 and estimate

k(b� bh)u
0
k0 � C (hr+1 + ") (3.54)

is true for n = 1 with the assumptions previously made.

For n = 1 a minimization of

eJ(bh) = k(uh(bh)� zh)
0
k
2
0 + k(bh u

0

h(bh))
0 + fk2

�1 (3.55)

leads to an estimate

k(b� bh)u
0
k0 � C (hr+1 + ") (3.56)

with same remarks as before.

Remark 3.3 The estimates of Theorems 3.1, 3.2, 3.3 and Corollary 3.1
are also valid for an equation

�r � (b(x)ru(x)) + a(x)u(x) = f(x) in 
 ;

uj�0 =
@u
@n

��
�1

= 0 ;
(3.57)

when a(x) is a given, nonnegative function in L1:

13
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4 Numerical Examples

Now we introduce some numerical experiments, which have been made with
the methods of Section 3 for n = 1; 2:We restrict ourselves to the standard
domain 
 = [0; 1] or 
 = [0; 1]� [0; 1]:

From the previous section we know that we should guarantee the bound-
edness of rbh in L2 with respect to a given constant �: In order to realize
this nonlinear constraint we use an external penalty formulation. This
means that in the actual computations we minimize functionals

J(bh) = kuh(bh)�zhk
2
0+h

4
kr�(bhruh(bh))+fhk

2
0+

1

�
maxf0; krbhk0��g

2

(4.1)
for n = 1; 2; and

eJ(bh) = kuh(bh)� zhk
2
0 + h2 k(bh u

0

h(bh))
0 + fk2

�1 +
1

�
maxf0; kb0hk0 � �g2

(4.2)
for n = 1 with a suitable chosen penalty parameter �:

In the cost functional (4.2) we need eH�1-norm of the term (bh u
0

h(bh))
0+

f: This can be obtained by �rst calculating function  as the solution of

� 00 = (bh u
0

h(bh))
0 + f ;

 j�0 =
@ 

@n

����
�1

= 0 ;
(4.3)

(with the condition
R


 dx = 0; if @
 = �1). Then, a simple calculation

shows that k 0k0 is completely equivalent with the desired H�1-norm. A
�nite element analogue of equation (4.3) is used in the computations.

Example 4.1 First we compute a one dimensional example with mixed

boundary conditions u(0) = u0(1) = 0: We have u(x) = sin(�x)2 and

b(x) = exp(�x) + 1: Cost functional (4.2) is minimized with the E04UCF-

routine from NAG-library with double precision. As initial value we set

bh(x) = 3; and we take � = 25; � = 0:01: We do not have any observation

error, i.e., z = u:We use second order Lagrange basis for discrete functions

uh; zh and piecewise linear approximation for bh: Notice that the result of

Theorem 3.2 predicts O(h2) convergence between b and bh; when taking into

account Remark 3.1.
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h L2-error L2-err / h2

1/6 3:58�10-1 12.888
1/9 1:83�10-1 14.841
1/12 1:08�10-1 15.527
1/15 1:66�10-2 3.727
1/18 8:45�10-3 2.737
1/21 4:56�10-3 2.011
1/24 2:74�10-3 1.577
1/27 1:79�10-3 1.305
1/30 1:23�10-3 1.106
1/33 1:04�10-3 1.131

Table 4.1: Weighted L2-error between b and bh in Example 4.1 with
di�erent values of h: In the last column L2-error divided by h2:

0 0.2 0.4 0.6 0.8

x

1.4

1.5

1.6

1.7

1.8

1.9

2

b (x) & b(x)
 h

Figure 4.1: True and computed parameter in Example 4.1 with h = 1
21
:

Remark 4.1 Figure 4.1 shows that the maximum error between b and bh
lies near the points 0; 1

2
; 1 as expected, because u0(0) = u0( 1

2
) = u0(1) = 0:

Example 4.2 Same as Example 4.1, but this time we include also an ob-

servation error to the computations. We assume that z = u + c sin(4�x);
where the constant c de�nes the distributed error " between u and z: Here

we take " = 1
100

: In this example we expect, due to Theorem 3.2, an error

of the form O(h2 + "
h
):
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h L2-error L2-er=(h2 + "
h
)

1/6 4:24�10-1 4.834
1/9 4:31�10-1 4.214
1/12 2:83�10-1 2.226
1/15 2:38�10-1 1.539
1/18 2:12�10-1 1.158
1/21 2:16�10-1 1.017
1/24 2:12�10-1 0.878
1/27 2:12�10-1 0.780
1/30 2:12�10-1 0.704
1/33 2:12�10-1 0.639

Table 4.2: Weighted L2-error between b and bh in Example 4.2 with
di�erent values of h: In the last column L2-error divided by h2 + "

h
:

Example 4.3 In this example we try to verify the result of Theorem 3.3.
We take u(x) = sin(�x)2; b(x) = cos(2�x)+2 and minimize cost functional
(4.1) with initial condition bh = 4 without an observation error by using

same values for �; � as in the previous examples. The discrete space Uh
consists of third order Hermite polynomials, Zh is constructed with second

order and Bh and Fh with �rst order Lagrange polynomials, respectively.

h L2-error L2-err /h2

1/9 2:03�10-1 16.414
1/12 9:48�10-2 13.651
1/15 4:85�10-2 10.908
1/18 2:81�10-2 9.090
1/21 1:72�10-2 7.573
1/24 1:15�10-2 6.649
1/27 7:98�10-3 5.816
1/30 3:12�10-3 2.809
1/33 2:60�10-3 2.832
1/36 1:89�10-3 2.448
1/39 1:87�10-3 2.845

Table 4.3: Weighted L2-error between b and bh in Example 4.3.

As we mentioned in Remark 3.2, the better convergence estimates should
be also valid with homogeneous Dirichlet boundary conditions. The next
two examples illustrate this situation.
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Example 4.4 Otherwise the same as Example 4.1, but now computed with

homogeneous Dirichlet boundary conditions.

h L2-error L2-err / h2

1/6 3:10�10-1 11.163
1/9 1:64�10-1 13.286
1/12 9:31�10-2 13.411
1/15 1:49�10-2 3.369
1/18 7:74�10-3 2.506
1/21 4:20�10-3 1.852
1/24 2:61�10-3 1.505
1/27 1:77�10-3 1.292
1/30 1:26�10-3 1.135
1/33 9:14�10-4 0.995

Table 4.4: Weighted L2-error between b and bh in Example 4.4.

0 0.2 0.4 0.6 0.8

x

1.4

1.5

1.6

1.7

1.8

1.9

2

b (x) & b(x)
 h

Figure 4.2: True and computed parameter in Example 4.4 with h = 1
21
:

Example 4.5 Example 4.3 computed with homogeneous Dirichlet bound-

ary conditions.
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h L2-error L2-err /h2

1/9 2:33�10-1 18.904
1/12 1:15�10-1 16.561
1/15 6:12�10-2 13.774
1/18 3:64�10-2 11.783
1/21 2:33�10-2 10.290
1/24 1:58�10-2 9.090
1/27 1:10�10-2 8.134
1/30 7:93�10-3 7.234
1/33 5:72�10-3 6.381
1/36 4:15�10-3 5.423
1/39 2:91�10-3 4.423

Table 4.5: Weighted L2-error between b and bh in Example 4.5.

Example 4.6 Two dimensional example using Dirichlet boundary condi-

tions with the cost functional (4.1). u(x; y) = sin(�x) sin(�y) and b(x; y) =
x4y4 + 1 without an observation error. Initially bh(x) = 4: The basis for

functions bh; zh; fh is taken as a tensor product of 1d second order Lagrange

polynomials and third order Hermite polynomials are used for Uh: Due to

Theorem 3.1 we expect O(h2) convergence.

h L1-error L1-err /h2

1/3 1:53�10-1 1.381
1/4 1:34�10-1 2.152
1/5 4:49�10-2 1.121
1/6 6:50�10-2 2.338
1/7 2:13�10-2 1.042
1/8 1:60�10-2 1.025

Table 4.6: Weighted L1-error between b and bh in Example 4.6.
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Figure 4.3: Error function in Example 4.6 with h = 1
8
:

Remark 4.2 From Figure 4.3 it can be seen that the maximum error for

the computed parameter is in the corners of the domain, where the gradient

of u vanishes.
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