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Abstract

The modern method of analysis of the distributed parameter sys-

tems relies on the transformation of the dynamical model to an ab-

stract di�erential equation on an appropriately chosen Banach or,

if possible, Hilbert space. A linear dynamical model in the form of

the �rst order abstract di�erential equation is considered to be well-

posed if its right-hand side generates a strongly continuous semi-

group. Similarly, a dynamical model in the form of the second order

abstract di�erential equation is well-posed if its right-hand side gen-

erates a strongly continuous cosine family of operators.

Unfortunately, the presence of a feedback leads to serious com-

plications or even excludes a direct veri�cation of assumptions of

the Hille-Phillips-Yosida and/or the Sova-Fattorini Theorems. The

class of operators which are similar to a normal discrete operator

on a Hilbert space describes a wide variety of linear operators. In

the present paper two groups of similarity criteria for a given hybrid

closed-loop system operator are given. The criteria of the �rst group

are based on some perturbation results, and of the second, on the ap-

plication of Shkalikov's theory of the Sturm-Liouville eigenproblems

with a spectral parameter in the boundary conditions.

The results are applied to RLCG-transmission lines, a model of

an elastic robot arm and a class of neutral systems.
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1 Abstract Di�erential Equations

Abstract Differential Equations with Right-hand Side being a

Linear Operator which is Similar to a Normal One

The mathematical models of systems involving such physical phenom-
ena as di�usion, wave propagation as well as information and transport
delays engage the partial and/or functional di�erential equations and in-
tegral operators. Particular examples can be found in the mathematical
description of di�usion of heat, electric charges, molecules participating in
chemical reactions, genetic characters, pathogenic viruses, oscillations of
overhead high-voltage transmission lines, lifting ropes, antenna masts, de-
formations of shafts, beams and mechanical constructions, oscillations of
robot elastic arms, propagation of electromagnetic waves in transmission
lines, wave-guides, oscillations of quantum generators, etc. Such systems
are called distributed parameter systems, as opposed to lumped parameter
systems described by ordinary di�erential equations.

Feedback is an essential feature of many distributed parameter sys-
tems in automatic control, electronics (nonlinear oscillation generators),
chemistry (reactors with recycles), mechanical engineering (stabilizers and
dampers of mechanical construction) and must be taken into account in
the analysis.

The modern method of analysis of the distributed parameter systems
relies on the transformation of the dynamical model to an abstract di�er-
ential equation on an appropriately chosen Banach or, if possible, Hilbert
space.

The �rst order abstract di�erential equation has the form

_u(t) = Au(t); u(0) = u0 2 H (1.1)

whereH denotes a real Hilbert space with scalar product h�; �i, A : (D(A) �
H) �! H is an unbounded linear operator.

The family fT (t)gt�0 � L(H) will be called a C0-semigroup if T (0) = I ,
T (s+ t) = T (t)T (s) 8t; s � 0; T (t)u �! u as t �! 0 + 8u 2 H .

If additionally, the mapping t �! T (t)u is an analytic function on
(0;1) for any �xed u 2 H , then we say that A generates an analytic

semigroup on H . If both A and �A generate C0-semigroups then we say
that A generates a C0-group on H .

The following conditions are equivalent:

(i) A is a linear, closed densely de�ned operator and for any u0 2 D(A),
T > 0 there exists a unique classical solution

u 2 C1([0; T ]; H) \C([0; T ]; DA)

of problem (1.1), where DA denotes the Banach space D(A) equipped
with the norm kukA = kuk+ kAukA;
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(ii) A generates a C0-semigroup fT (t)gt�0 on H .

If the above conditions are satis�ed then the function u(t) = T (t)u0, where
u0 2 H , is called a weak solution of (1.1).

The second order abstract di�erential equation has the form

�u(t) = Au(t); u(0) = u0 2 H; _u(0) = u1 2 H (1.2)

where H denotes a real Hilbert space with scalar product h�; �i, and A :
(D(A) � H) �! H , is generally, an unbounded linear operator.

The family fC(t)g
t2R � L(H), such that C(0) = I; C(s+t)+C(t�s) =

= 2C(t)C(s) 8t; s 2 R and the functions R 3 t 7�! C(t)u is continuous for
any �xed u 2 H is called a strongly continuous cosine family of operators

on H .
The following conditions are equivalent:

(i) A is a linear, closed densely de�ned operator and for any u0 2 D(A),
T > 0 there exists a unique classical solution u 2 C2([0; T ]; H) \
C([0; T ]; DA) of the problem (1.2);

(ii) A generates a strongly continuous cosine family fC(t)g
t2R on H .

If the above conditions are satis�ed then the function u(t) =
R t
0
C(s)u1ds+

C(t)u0, where u0; u1 2 H , is called a weak solution of (1.2).
The concept of semigroup is a formal extension of the de�nition of the

exponential scalar function C 3 � 7�! et� (t � 0), to an argument being an
unbounded linear operator A, while the strongly continuous cosine family
of operators is a similar extension of the scalar entire function C 2 � 7�!
cosh(t

p
�) (t 2 R). This justi�es the notation T (t) = etA(t � 0), C(t) =

cosh tA1=2(t 2 R). The fundamental results of the semigroup theory as the
Hille-Phillips-Yosida theorem - see [29, Corollary 3.8,p.12] and the Sova-
Fattorini [6, Theorem 5.1,p.37] theorem determine those classes of linear
unbounded operators on a general Banach space for which such extensions
are possible. To verify the assumptions of the above theorems one should
estimate the norm k(�I �A)�nk of the n-th power of the resolvent of A on
appropriate subsets ofC (observe that for the semigroup generatorA, (�I�
A)�1u0 =

R1
0
e�t�T (t)u0dt is the Laplace transform of a weak solution of

(1.1)). This is a di�cult task especially for an operator A describing a
feedback system with boundary control and/or boundary observation.

Let A : (D(A) � H) �! H be a closed, densely de�ned linear operator
on a Hilbert space H . D(A�) := fv 2 H : there exists (a unique) hv 2 H
such that hAu; vi = hu; hvi for all u 2 D(A)g is the domain of the adjoint
operator A� : (D(A�) � H) �! H with respect to A, de�ned as A�v := hv,
v 2 D(A�). A is called normal if

D(A) = D(A�); AA� = A�A : (1.3)
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It follows from the spectral theorem for normal operators that

(i) The resolvent of A satisfy an estimate

(�I �A)�n


 = [dist(�; �(A))]�n (1.4)

where � 2 C n �(A); n 2 N and �(A) denotes the spectrum of A;

(ii) For any Borel, function f bounded on �(A), the formula

hf(A)u; vi =
Z
�(A)

f(�)dhE(�)u; vi 8u; v 2 H (1.5)

determines an operator f(A) 2 L(H). Here E(�) is the unique (by
the spectral theorem) spectral resolution of identity. If, additionally,
A has a compact resolvent (A is a discrete operator) then (1.5) takes
an equivalent form

f(A)u =

1X
i=1

f(�i)hu; eiiei ; (1.6)

where feig1i=1 is the orthonormal system of eigenvectors of A, corre-
sponding to the eigenvalues of A denoted by f�ig1i=1, Aei = �iei.

The result (i) requires an explanation. If � 2 C n �(A) then apply-
ing the result from [44, Theorem 7.34(b), p.217] we get



(�I �A)�1


 =

[dist(�; �(A))]�1 . Moreover, from [44, Corollary, p.126] we know that the
resolvent (�I �A)�1 is also normal. Hence k(�I �A)�nk = k(�I �A)k�n
= [dist(�; �(A))]�n - see [44, Theorem 5.44, p.127] or [12, problem 162].
The results (ii) are known as the functional calculus for normal operators.

An operator A : (D(A) � H) �! H is similar to a normal operator
N , if there exists an isomorphism S 2 L(H) such that S�1AS = N . The
similarity relation does not change the spectrum of operators.

Putting: f(�) = et� (for semigroup t � 0 and t 2 R for group), f(�) =
(�� �)�1 (for an analytic semigroup, � 2 Sb;�) and f(�) = cosh(t

p
�) (for

a strongly cosine family of operators, t 2 R), in (ii) we obtain, respectively
statements (a), (b), (c) and (d) of the following theorem.

Theorem 1.1 If A is similar to a normal operator then

(a) A generates a C0-semigroup () supfRe� : � 2 �(A)g <1
(b) A generates a C0-group ()
�1 < inffRe� : � 2 �(A)g; supfRe� : � 2 �(A)g <1
(c) A generates an analytic semigroup ()
9 b 2 R; � 2 (�

2
; �) : Sb;� = f� 2 C : jarg(�� b)j � �; � 6= bg �

C n �(A)
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(d) A generates a strongly cosine family of operators ()
9 ! 2 R; �(A) � f� 2 C : Re� � !2 � 1

4!2 Im
2�g :

Frequently, in the analysis of �nite-dimensional dynamics it is enough to
consider the state matrices of simple structure (matrices with linear divisors
exclusively or, equivalently, with a diagonal Jordan form). The class of such
matrices is identical with the class of matrices which are similar to normal
ones.

B. Nagy pointed out (see [6]) that if A generates a uniformly bounded
C0-group (i.e. there exists M � 0 such that kT (t)k � M 8t 2 R) then
{A is similar to a self-adjoint operator and a similarity isomorphism S can
be found in the class of self-adjoint, positive de�nite operators. This is a
partial inverse of the claim (b).

Recall that a system ffigi2I is a Riesz basis in a Hilbert space H if
there exists a linear, bounded operator S mapping H onto itself and an
orthonormal basis feigi2I of H such that fi = Sei 8i 2 I . An operator
A : (D(A) � H) �! H with a compact resolvent is similar to a normal
operator i� A possesses a system of eigenvectors forming a Riesz basis of H .
This follows immediately from the fact that an operator with a compact
resolvent is normal i� it possesses a system of eigenvectors forming an
orthonormal basis of H . For the proof of necessity see [18, pp.260-263 and
pp.276-277], [38, pp.250-255] or, less explicitly [44, Theorem 7.2, p.167].
Su�ciency can be deduced from [44, Theorem 7.2, p.167].

Remark 1.1 There are operators which are not similar to normal ones but
still satisfy an estimate analogous to (1.4). This is the case for hyponormal
operators (a densely de�ned operator A : (D(A) � H) �! H is called
hyponormal if D(A) � D(A�) and kAuk � kA�uk 8u 2 D(A)). As an
example of a hyponormal operator one may take the generator of a right-
shift semigroup on L2(0;1). In [17] this observation is employed to show
that the statements of Theorem 1.1 remain true for hyponormal operators.
Let us recall, however, that for operators with a compact resolvent the
notions of normality and hyponormality are equivalent.

A very important feature of the spectral approach to the problem of
well-posedness of systems (1.1) and (1.2) is the possibility of collecting
essential information by the examination of the spectral properties of A,
which makes considerations simpler than with other analytical tools. This
enables one to investigate a wide class of in�nite-dimensional systems by
elementary methods available also for engineers. As an example we shall
consider the stability problem of the system (1.1).

The most commonly used concepts of asymptotic stability of the system
(1.1) are:
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� hv; T (t)ui �! 0 as t ! 1 8u; v 2 H (weak asymptotic stability,
w{(AS))

� T (t)u �! 0 as t!1 8u 2 H (strong asymptotic stability, s{(AS))

� kT (t)k �! 0 as t!1 (uniform asymptotic stability) ()
� 9M � 1; 9� > 0 : kT (t)k � Me��t 8t � 0 (exponential stability,
(EXS )).

The following implications hold: (EXS) =) s{(AS) =) w{(AS). For
eventually compact semigroups (i.e. there exists t0 > 0 such that T (t)
is a compact operator on H for all t � t0) all the above concepts are
equivalent. In particular, this is the case if dim H <1. For the semigroup
whose in�nitesimal generator has a compact resolvent we have: s{(AS)
() w{(AS).

To derive practically checkable criteria of (EXS), it is of great impor-
tance to characterize the notion of (EXS) in terms of the spectrum of
semigroup generator. Pr�uss [30], Huang[14] and Weiss [45] have proved
that the following conditions are equivalent:

(i) (EXS)

(ii) � 7�! (�I � A)�1 is an analytic function on the open right complex
halfplane and bounded on the closed right complex halfplane

(iii) � 7�! (�I � A)�1 is a bounded function on {R and �(A) lies in the
open left complex halfplane.

Only an incomplete spectral characterization of the notion of s{(AS) is
known. The next theorem follows from the functional calculus for normal
operators and the diagram obtained in [11, p.88].

Theorem 1.2 Let A be an operator which is similar to a normal one.

Then:

(a) A generates a uniformly bounded semigroup , supfRe� : � 2 �(A)g
� 0

(b) A generates an (EXS) semigroup () supfRe� : � 2 �(A)g < 0

(c) Under the additional assumption that A has a compact resolvent we

have: A generates a s{(AS) semigroup () �(A) is contained in the left

open complex half-plane.

Remark 1.2 The last statement appears also in [15, Corollary 2.5/(i),
p.319].
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CONTROLLER PLANT

_v =Pv+Q�

y =R�v+D�
_u = Lu

boundary
observation
� = �1u

boundary
control
y = �0u

- - -� y r

Figure 1: The feedback control system

Remark 1.3 Levan [24] has proved that if A is normal then A is strictly
dissipative (i.e. RehAf; fi � 0 8f 2 D(A) with equality only for f = 0)
i� the semigroup generated by A is s{(AS). However, his results are not
explicitly expressed by the spectrum of A.

2 Hybrid Feedback Operators

Let us consider a feedback control system consisting of a distributed pa-
rameter plant with boundary observation and boundary control worked out
by a �nite-dimension controller (e.g. conventional controller), depicted in
Fig.1.

Here P2 L(Rn), Q2 L(Rr, Rn), R2 L(Rm, Rn), D2 L (Rr, Rm), H
is a Hilbert space; L : (D(L) � H) �! H , is a linear closed operator with
domain D(L) � D(�0); D(L) � D(�1) where �0;�1 are some boundary
operators, e.g. Dirichlet or Neumann trace operators. The closed-loop
system is naturally described on the space X = Cn�H by a hybrid linear

operator

A

�
v
u

�
=

�
Pv +Q�1u

Lu

�
;

D(A) =

��
v
u

�
2 X : u 2 D(L); R�v +D�1u = �0u

�
: (2.1)

The problem is to recognize whether a closed-loop system operator A gen-
erates a strongly continuous semigroup on X . As we know from Theorem
1.1, the spectral approach is an e�ective tool for establishing the well-
posedness of the feedback system (i.e. generation of a semigroup by the
closed-loop system operator) if we can prove that the operator describing
the closed-loop system is a discrete operator, similar to a normal one.

A critical survey of the existing criteria for a given ordinary di�erential
operator to a system of eigenvectors which forms a Riesz basis, done from

7



P. GRABOWSKI

a viewpoint of practical applications, is present in [11, Chapter I and refer-
ences therein]. In particular, from that survey we know that the so-called
strict regularity of the boundary conditions decides about the existence of
a Riesz basis of eigenvectors. There are some criteria based on determi-
nants which allow to check strict regularity of given boundary conditions
in a simple way, provided that a spectral parameter does not enter these
conditions. The case of a spectral parameter appearing in the boundary
conditions is much more involved.

The sequel of this paper is devoted to continuation of a discussion of
that problem initiated in [11].

The eigenproblem for A takes the form8<
:

(�I� P)v = Q�1u
Lu = �u; u 2 D(L)

R�v +D�1u = �0u

9=
; (2.2)

and for � =2 �(P) (2.2) reduces to8<
:

Lu = �u; u 2 D(L)
W(�)�1u = �0u;

W(�) = D +R�(�I� P)�1Q

9=
; : (2.3)

The spectral parameter � rationally enters the transfer function W in (2.3),
but after the multiplication of both sides of the boundary condition by the
characteristic polynomial det(�I�P) of the matrix P, it enters the boundary
condition polynomially.

In some cases the existence of a system of eigenvectors of A forming a
Riesz basis can be proved by the use of perturbation methods. The essence
of the perturbation methods is to characterize the admissible classes of per-
turbations under which the property of having a Riesz basis of eigenvectors
is stable with respect to a perturbation from that class. Usually, an unper-
turbed operator corresponds to an open-loop system, but sometimes it may
describe its conservative part. The perturbation expresses the feedback or
the dissipative part of the closed-loop system operator.

For other classes of system (2.3), one may seek a similarity isomorphism
between A and the linearizing operator for (2.3). For this last operator
some criteria guaranteeing the existence of a Riesz basis of eigenvectors are
known.

Proving the existence of Riesz bases by both direct and perturbation
approaches is in practice limited to problems with one-dimensional spatial
variable. There are only a few incomplete results on the problem of Riesz
bases in multidimesional case and we shall not invoke them here.
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3 Perturbation Methods

A typical application of perturbation methods to control theory problems
relies on the treatment of a feedback as a perturbation of the open-loop
system operator. Our approach to the problem of similarity of the operator
(2.3) to a normal operator will be di�erent and we shall regard A as the
result of perturbing the operator G,

G

�
v
u

�
=

�
Pv
Lu

�
; D(G) = D(A) (3.1)

by a �nite-rank operator

�
v
u

�
7�!

�
Q�1u
0

�
. Notice that G does not

correspond to an open-loop system operator. Usually in applications the
observation operator �1 is G-bounded. Lasiecka & Triggiani [22] pointed
out that the property of having a Riesz basis of eigenvectors is not stable
even with respect to a one-dimension perturbation of a discrete normal
operator. To be more precise, if (D(N) � H) �! H is a discrete normal
operator acting on a Hilbert space H then not for all a, b 2 H ; a =2
D(N�) the operator N + ba�N (ba�Nu = bhNu; ai, u 2 D(N)) has a
Riesz basis of eigenvectors (i.e.is not similar to a normal discrete operator
under one-dimensional perturbation). This di�culty causes that there is
only a limited number of results which can be used to solve the question of
similarity of A to a normal operator, provided that G is similar to a normal
operator. This problem has been investigated in [22, Theorem 3.1, p.71],
[2, Theorem 3.2, p.50] and [1, Theorem 2.3, p.1428-1429]. This last result
seems to have the simplest possible set of assumptions to be e�ectively
veri�ed.

Theorem 3.1 (Baskakov-Katsaran) Let A : (D(A) � H) �! H be a

linear operator in Hilbert space H, with the following properties

(i) A is invertible with a compact inverse and f� 2 C : �1 � jarg�j � �2,
�1 < �2g � C n �(A) ;

(ii) �(A) = f�jgj2J (i 6= j () �i 6= �j) contains only a �nite number of

nonsingle eigenvalues and for some � 2 [0; 1) we have

sup
i6=j

j�ij
j�j j1��

1

j�i � �j j <1; sup
i6=j

j�ij� 1

j�i � �j j <1 ; (3.2)

(iii) generalized eigenvectors of A form a Riesz basis in H (clearly only

�nitely many of them are not eigenvectors).
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If T is a Hilbert-Schmidt operator and TAv is A-bounded (A� denotes a

fractional power of A) then the operator ~A = A+ TA� has the spectrum

f~�jgj2J = �( ~A) (i 6= j () ~�i 6= ~�j);

8<
:
����j � ~�j

���
j�j j�

9=
;
j2J

2 ` 2(J)

only a �nite number of eigenvalues are nonsingle, and the corresponding

system of generalized eigenvectors also forms a Riesz basis in H (again

only �nitely many of generalized eigenvectors of ~A are not eigenvectors).

In fact, the generalized eigenvectors of ~A form the so-called Bari basis of
H and this is why the eigenvalues of A and ~A are asymptotically equal.

The next result corresponds in a way to the limit case � = 0 of Theorem
3.1, but now the perturbation is assumed to be a closed operator.

Theorem 3.2 (Katsnel'son-Shkalikov) Let H be a Hilbert space and

L : (D(L) � H) �! H be a linear operator similar to a normal discrete

operator. Suppose also that there exists p 2 (0; 1] such that

(i) lim supn!1 n j�nj�p <1, where f�ngn2N = �(L), j�1j � j�2j � : : : ;

(ii) �(L) � f� 2 C : jIm�j � h j�� cj(p�1)=pg for some h � 0 and c 2 C :

If T : (D(T ) � H) �! H is a linear closed operator such that D(L) �
D(T ), L(p�1)=2TL(p�1)=2 has an extension to an operator from L(H) and
all eigenvalues of A = L+ T are simple and asymptotically separated then

A is also similar to a normal discrete operator.

The above theorem was proved initially under the assumption that L is
self-adjoint (in this case (ii) is trivially satis�ed) - see [19, Theorem 3.1,
p.47]. The generalization above is taken from [39, p.236].

4 Shkalikov's Theory

The theory concerns the Sturm-Liouville boundary-value problems, con-
taining a spectral parameter in the boundary conditions,

`(y; �) = y(n) + p1(x; �)y
(n�1) + � � �+ pn(x; �)y = 0 (4.1)

Uj(y; �) =

n�1X
k=0

ajk(�)y
(k)(0) + bjk(�)y

(k)(1) = 0; j = 1; 2; : : : ; n (4.2)

where ps(x; �) =
Ps

�=0 p�s(x)�
� ; pss(x) = const, s = 1; 2; : : : ; n; ajk(�),

bjk(�) - are arbitrary polynomials of the spectral parameter �.
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De�nition 4.1 A nonnegative integer �j is said to be the order of the
boundary condition Uj(y; �) of the form (4.2) if the linear form Uj(y; �)
contains the terms ��y(k)(0) or ��y(k)(1) for � + k = �j and it does not

contain such terms for �+k > �j . � = �1+�2+ : : :+�n is then called the

total order of the boundary conditions (4.2). If any n boundary conditions

equivalent to (4.2), i.e. obtained from (4.2) by taking linear combinations,

have the total order not less than � then we say that the boundary conditions

(4.2) are normalized.

For further considerations we assume without loss of generality that the
boundary conditions (4.2) are normalized and that they are arranged in the
decreasing orders, to be precise: �1 � �2 � : : : �n.

Assume also that p�s 2 Wr
1(0; 1), r � 0 and the characteristic polyno-

mial of the problem (4.1), (4.2)

!n + p11!
n�1 + � � �+ pnn = 0 (4.3)

has only simple roots: !1; !2; : : : ; !n.

Remark 4.1 Without loss of generality we may assume that 0 � � � s�1.
This implies r + (� � s+ 1) � r, and p�s 2Wr�s+�+1

1 (0; 1) \ L1(0; 1).

Under the above assumptions the complex plane C can be decomposed
into 2h, h � n sectors S1; S2; : : : ; S2h and in each sector (4.1) has the
fundamental system of solutions of the following asymptotic form as j�j !
1 (the theory of Birkho� and Tamarkin),

y
(s�1)
k (x; �) = !s�kk �s�1 exp(!k�x)

"
rX

�=0

����ks� (x) +O(��r�1)

#
(4.4)

k; s = 1; 2; : : : ; n; r � 0, r - is arbitrary and �xed; �ks� 2 Wr��+1
1 (0; 1),

� = 0; 1; : : : ; r, �ks0 does not depend on s, and �ks� does not depend on
the choice of a sector.

Let �Jk =
P

�2Jk !�, where Jk(k = 1; 2; : : : ; n) denotes a k-element
subset of f1; 2; : : : ; ng; for k = 0 we put �J0 = 0. Let us consider the set
of all complex numbers �Jk which can be obtained by variating over all
possible selections of Jk (in this way we get nothing more than the set of
all possible sums which can be created from the set of complex numbers
!1; !2; : : : ; !n). LetM be the smallest convex polygon containing all points
�Jk . It may happen that M is an interval.

Further, we consider the characteristic determinant

�(�) = det[Uj(yk; �)]j;k=1;2;:::;n (4.5)
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with functions yk de�ned in sectors S1; S2; : : : ; S2h by (4.4). This determi-
nant may be expressed as

�(�) = ��
X
Jk

[F Jk ]r exp(��Jk ) ; (4.6)

�
F Jk

�
r
= F Jk

0 + ��1F Jk
1 + � � �+ ��rF Jk

r +O(��r�1) : (4.7)

De�nition 4.2 The problem (4.1), (4.2) is said to be regular if the num-

bers F Jk
0 in the resolutions of [F Jk ]0, corresponding to the vertexes of M

are nonzero. The problem (4.1), (4.2) is strictly regular if it is regular and
additionally, the zeros of �(�) are asymptotically simple and isolated one

from another.

In what follows, we assume without loss of generality that pnn = 1 and
for simplicity of notation we represent (4.1) in the form

`(y; �) = `0(y) + �`1(y) + �2`2(y) + � � �+ �n�1`n�1(y) + �ny = 0 : (4.8)

For any �xed r � 0 let us denote:

W r
2 =Wn�1+r

2 (0; 1)�Wn�2+r
2 (0; 1)� � � � �Wr

2(0; 1) (n components)

and de�ne an operator

W r
2 3 ~v =

2
666664

v0
v1
...

vn�2
vn�1

3
777775 7�! H~v =

2
666664

v1
v2
...

vn�1
�Pn�1

�=0 `�(v�)

3
777775

where v0 = y, v1 = �v0; : : :, vn�1 = �vn�2 and hence, H�~v 2 W r��
2 (�-th

power of H, � = 0; 1; 2; : : :. In (4.2) we make substitutions according to the
rule

��y(k)(0 or 1) =(
(H�~v)

(k)
0 (0 or 1); � + k < n+ r

��+k�n�r+1(Hn+r�k�1~v)
(k)
0 (0 or 1); � + k � n+ r

)
(4.9)

where the subscript 0 means that we take the �rst component of an appro-
priate vector. As a result of these substitutions we represent the boundary
conditions in a form

~Uj(~v; �) =

�j(r)X
i=0

�iU i
j(~v); 1 � j � n (4.10)

12
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where now the functionals U i
j do not depend on �. Next, we make the

following partition of indices �j(r):

�1(r) � �2(r) � : : : �q(r) > 0 = �q+1(r) = : : : �n(r) :

Consider the space W r
2;U �CNr where

W r
2;U = f~v 2W r

2 : ~Uj(H
k~v; �) = ~Uj(H

k~v) = 0 for 0 � k � n+ r � 2

and all boundary conditions of order � n+ r � k � 2g (4.11)

Nr =

qX
j=1

�j(r) (4.12)

(if all �j(r) are zero then Nr = 0). Let us de�ne an operator

Hr : (D(Hr) �W r
2;U �CNr 7�!W r

2;U �CNr ;

~v

U
�1(r)
1

z12

: : :

z1(�1(r)�1)

z1�1(r)

: : :

similar blocks

of variables

for successive

numbers �j(r);

j = 2; 3; : : : ; q

Hr =

H~v

z12 � U
�1(r)�1
1 (~v)

z13 � U
�1(r)�2
1 (~v)

: : :

z1�1(r) � U1
1 (~v)

�U0
1 (~v)

: : :

similar blocks

of variables

for successive

numbers �j(r);

j = 2; 3; : : : ; q

D(Hr) = f(~v; U�1(r)
1 ; z12; : : : z1�1(r); : : : U

�q(r)
q ; zq2; : : : ; zq�q(r)) :

~v 2W r+1
2;U ; zj� 2 C; 2 � � � �j(r); 1 � j � qg : (4.13)

(4.13) will be called Shkalikov's linearization of the problem (4.1), (4.2)
because the eigenvalue problem for Hr in this space W r

2;U �CNr reduces
clearly to (4.1), (4.2).

Theorem 4.1 (Shkalikov [40]) Let the above assumptions hold and, ad-

ditionally, let the boundary conditions be strictly regular. Under these as-

sumptions:

13
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(i) There exists a system of generalized eigenvectors (only �nitely many

of them are not eigenvectors) of the operator (4.13) which forms a Riesz

basis in W r
2;U �CNr .

(ii) A necessary and su�cient condition for the existence of a system of

generalized eigenvectors of the operator (4.13) which forms a Riesz basis

in W r
2;U , is that all boundary conditions should have the order � n+ r�1

(the case of Nr = 0). If such a system of generalized eigenvectors exists,

then only a �nite number of them are not eigenvectors.

Sargsian generalized Shkalikov's theory to a multidimensional boundary-
value problem of the order with special boundary conditions,�

y0(x) + P(x)y(x) = �y(x); 0 � x � 1
(A0 + �A1)y(0) + (B0 + �B1)y(1) = 0

�
(4.14)

where A0, A1, B0, B1 2 L(Rn), P(x) 2 L(Rn) for a �xed x 2 [0; 1]. Let Vi
denote the i-th row of the boundary conditions.

De�nition 4.3 We say that Vi is of the �rst order if the parameter �
enters this row. Otherwise, we say that Vi is of the null order. The sum

of orders of all rows creating boundary conditions is called the total order
of boundary conditions. The boundary conditions are normalized if any n
rows, equivalent to the given, i.e. obtained from the given by taking linear

combinations, have the same total order.

In what follows, we assume that the boundary conditions in (4.14) are
normalized. Without loss of generality one may assume that the �rst s
rows have the null order.

Let
W 2;k = W2;k �W2;k �W2;k � � � � �W2;k

denote n copies of the standard Sobolev W2;k(0; 1) space.

w1
2;V := fy 2 W 1;2 : Vi(y) = 0; i = 1; 2; 3; : : : ; sg

w2
2;V :=

�
y 2 W 2;2 : A0y(0) + A1[y

0(0) + P(0)y(0)] + B0y(1)+

+B1[y
0(1) + P(1)y(1)] = 0; Vi(y

0 +Py) = 0; i = 1; 2; 3; : : : ; sg :

The problem (4.14) can be regarded as an eigenvalue problem in the space
w1
2;V for the operator

Hy = y0 +P(x)y; D(H) = w2
2;V : (4.15)

The characteristic function of this problem can be written in the form
�(�) =

Pn
k=0 pk(�)e

k� where pk(�) is a polynomial.

14
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De�nition 4.4 If deg p0(�) = deg pn(�) then (4.14) is called a regular
eigenvalue problem. If p0(�) 6= 0, pn(�) 6= 0 then (4.14) is called an almost
regular eigenvalue problem.

Sargsian [35, Theorem 2, p.5] and [34, Theorem 4.1, p.14] obtained the
following result

Theorem 4.2 (Sargsian) If the boundary value problem (4.14) is regular,

all eigenvalues of H are simple and inffj�� �j: �, � 2 �(H), � 6= �g > 0
then H has a system of eigenvectors which forms a Riesz basis in w12;V .

If the boundary problem is almost regular, all eigenvalues of H are simple

and inffj�� �j: �, � 2 �(H), � 6= �g > 0 then the system eigenvectors

of H form a complete system in w12;V for which there exists a biorthogonal

system.

To apply the above results to problem (2.3) one should look for an iso-
morphism under which Shkalikov's linearization is similar to the operator
A.

5 Examples of Applications

5.1 Example 1: RLCG transmission line

Consider an RLCG transmission line with a proportional feedback depicted
in Fig.2.

PROPORTIONAL
CONTROLLER
OR FINITE-

DIMENSIONAL
DYNAMICS

-

-0 1
x

I(1; �) = 0

6
V (1; �)��

��
6e

b
b
-� = 0

6
V (0; �)

RLCG

TRANSMISSION

LINE

Figure 2: The control system with RLCG transmission line
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The closed-loop system is governed by the equations8>>>>>>>><
>>>>>>>>:

L
@I(x;�)
@�

= �@V (x;�)
@x

�RI(x; �); 0 � x � 1; � � 0

C@V (x;�)
@�

= �@I(x;�)
@x

�GV (x; �); 0 � x � 1; � � 0

I(1; �) = 0; � � 0
V (0; �) = KV (1; �) + e; � � 0
V (x; 0) = 0; 0 � x � 1
I(x; 0) = 0; 0 � x � 1

9>>>>>>>>=
>>>>>>>>;

: (5.1)

5.1.1 The case of RC transmission line (L = 0; G = 0)

Eliminating I(x; �) and substituting u(x; t) = V (x;RCt)� e=(1-K) we get8>>>>><
>>>>>:

@u(x;t)
@t

= @2u(x;t)
@x2

; 0 � x � 1; t � 0

@u(x;t)
@x

= 0; t � 0

u(0; t) = Ku(1; t); t � 0

u(x; 0) = e=(K-1); 0 � x � 1

9>>>>>=
>>>>>;

: (5.2)

In H = L2(0; 1) with standard scalar product

hu1; u2i =
Z 1

0

u1(x)u2(x)dx

we can rewrite (5.2) into an abstract form (1.1) with

Au = u00; D(A) = fu 2 H2(0; 1) : u0(1) = 0; u(0) = Ku(1)g (5.3)

u0 = e=(K-1) (u0 =2 D(A)) : (5.4)

The eigenproblem for A, Au = �u, u 2 D(A), u 6= 0 reduces to the two-
point boundary value problem8<

:
u00(x) = �u(x); 0 � x � 1
u0(1) = 0
u(0) = Ku(1)

9=
; : (5.5)

Assuming a solution in the form u(x) = C1e
�
p
�x +C2e

p
�x, we obtain

�n =

8><
>:
�
ln2�� (2n� + �)2

�
+ 2{(2n� + �) ln�; K < �1

�(�+ 2n�)2; jKj � 1�
ln2�� 4n2�2

�
+ 4n�{ ln�; K > 1

9>=
>; ;

n 2 Z (5.6)
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where � = jKj+ (K2 � 1)1=2, jKj > 1; � = arccosK, jKj � 1.
Thus, if jKj � 1 the point spectrum of A is located on the negative real

semiaxis, but if jKj > 1 it is located on the parabola

Re� = ln2�� 1

4 ln2�
Im2� :

All eigenvalues are single for jKj 6= 1 and double for jKj = 1, except for 0
which is single if K = 1.

Now, we are going to prove

Lemma 5.1 If jKj 6= 1 then the system fungn2Z of eigenvectors of A,
corresponding to eigenvalues �n,

un(x) = 2s cosh[�n(1� x)]; 0 � x � 1; n 2 Z (5.7)

where

�n =

8<
:

{(�+ 2n�); jKj < 1
ln� + 2n�{; K > 1
ln� + (� + 2n�){; K < �1

9=
; (5.8)

and

s = e�n =

8<
:

e{�; jKj < 1
�; K > 1

��; K < �1

9=
; (5.9)

forms a Riesz basis in H = L2(0; 1).

Proof: Observe that �2n = �n, n 2 Z and

un(x) = "n(x) + s"n(1� x) (5.10)

where
"n(x) = exp(�nx) = g(x) � exp(2n�x{) : (5.11)

g(x) =

8<
:

e{x�; jKj < 1
ex ln�; K > 1
e{�xex ln�; K < �1

9=
; : (5.12)

In virtue of (5.11), (5.12), the operator M of multiplication by g trans-
forms the classical Fourier basis fexp(2n�{(�))g

n2Z in H = L2(0; 1) into
the system of exponentials f"ngn2Z. Next, the operator

(L")(x) = "(x) + s"(1� x) (5.13)

transforms the system of exponentials f"ngn2Z into fungn2Z. Since M
and L are linear and bounded jointly with their inverses, the de�nition of
Riesz basis implies that the system (5.7) is such a basis.
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The operator A is similar to a normal discrete operator with spectrum
located on the negative real semiaxis or on the parabola having the branches
directed to the left. However, this implies that A generates a strongly
cosine operator family and hence an analytic semigroup. This semigroup
is (EXS), equivalently (AS), i�

� cosh� < K < 1 : (5.14)

The resolvent of A has the form

((�I �A)�1v)(x) =
�K

cosh
p
��K

Z 1

0

1(y � x)
sinh

p
�(x � y)p
�

v(y)dy+

+
1

cosh
p
��K

Z 1

0

8<
:

sinh
p
�x cosh

p
�(1�y)p

�
; x < y

sinh
p
�y cosh

p
�(1�x)p

�
; x > y

9=
; v(y)dy; v 2 H :

(5.15)
To examine the solvability of the initial-value problem (5.3), (5.4) and to
establish the exponential decay of solutions without the knowledge that
A has a system of eigenvectors forming a Riesz basis in H , one should
estimate precisely k(�I �A)�nk on the real axis for n = 2; 3; : : : and on
the right complex halfplane for n = 1, which is a di�cult task.

5.1.2 RC transmission line steered by a SISO dynamical con-

troller

If in the above example we replace a proportional controller by a SISO
�nite-dimensional dynamical system then the closed-loop system is gov-
erned by the equations8>>>>><

>>>>>:

_v(t) = Fv(t) + u(1; t)g; t � 0

@u(x;t)
@t

= @2u(x;t)
@x2

; 0 � x � 1; t � 0

@u(1;t)
@x

= 0; t � 0

h�v(t) + du(1; t) = u(0; t); t � 0

9>>>>>=
>>>>>;

where F 2 L(Rn); g,h 2 Rn, d 2 R. Here we neglect the initial conditions
as they are immaterial. In the space X = Cn�L2(0; 1) we may write down
the dynamics in the form (1.1) with the right-hand side

A

�
v
u

�
=

�
Fv + u(1)g

u00

�
;

D(A) =

��
v
u

�
2 X : u 2 H2(0; 1); u0(1) = 0; u(0) = h�v + du(1)

�
:

(5.16)
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Comparing (2.1) and (5.16) we may �nd that in the discussed example
H = L2(0; 1); Lu = u00, D(L) = fu 2 H2(0; 1) : u0(1) = 0g; P = F, Q = g,
R = h, D = d (r = m = 1) and the boundary control and observation
operators are the Dirichlet trace operators,

�0u = u(0); �1u = u(1) :

Thus, the reduced eigenvalue problem (2.3) takes the form8<
:

u00(x) = �u(x); u 2 H2(0; 1)
u0(1) = 0
u(1)[h� adj(�I� F)g + ddet(�I� F)] = u(0) det(�I� F)

9=
; : (5.17)

The polynomials in � appearing in the last equation can be easily identi-
�ed as the numerator and denominator of the controller transfer function,
respectively. The plant is of parabolic type and thus the term �2u(x) does
not appear in the right-hand side of the �rst equation of (5.17), which is
needed for the applicability of Theorem 4.1. We try to apply Theorem 3.1
and to do this we represent the operator (5.16) as a perturbation of the
operator

G

�
v
u

�
=

�
Fv
u00

�
; D(G) = D(A) : (5.18)

The perturbation has a form

�
v
u

�
7�!

�
g
0

�
u(1). Under the assumption

that G�1 exists, or equivalently F�1 exists and d 6= 1, we have

u(1) =

�
G

�
v
u

�
;

�
�
�

��
X

=

��
Fv
u00

�
;

�
�
�

��
X

=

= v�F��+

Z 1

0

u00(x)�(x)dx 8
�
v
u

�
2 D(G) :

The integration-by-parts yields

� = � 1

d� 1
(F�)�1h; �(x) =

x

d� 1
; 0 � x � 1 :

Hence, the operator (5.16) can be written as

A

�
v
u

�
= G

�
v
u

�
+

�
g
0

��
G

�
v
u

�
;

�
�
�

��
X

: (5.19)

Observe that

�
�
�

�
=2 D(G�) where G� is the adjoint operator with respect

to G,

G�
�
v
u

�
=

�
F�v + u0(0)h

u00

�
;
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D(G�) =

��
v
u

�
2 X : u 2 H2(0; 1); u(0) = 0; du0(0) = u0(1)

�
:

The perturbation therefore is G-bounded. G�1 belongs to B1(X), the
class of compact linear operators on X , which can be established by cal-
culating G�1 explicitly. The spectrum of G is a union of the spectrum of
the matrix F and the operator (5.3), describing the RC-transmission line
steered only by a proportional controller,8<

:
�00(x) = ��(x); � 2 H2(0; 1)
�0(1) = 0
�(0) = d�(1)

9=
; : (5.20)

The eigenproblem (5.20) was discussed in details previously. As we know
for jdj 6= 1 it has a sequence of simple eigenvalues f�ngn2Z and the corre-

sponding system of eigenvectors f�ngn2Z forms a Riesz basis in L2(0; 1).
This means that �(G) n�(F) = f�ngn2Z and the system of eigenvectors of

G,

��
0
�n

��
n2Z

forming a Riesz basis of the subspace f0g � L2(0; 1) in

X , corresponds to the sequence f�ngn2Z. It is clear that completing this
system by the n-tuple of generalized eigenvectors of G, corresponding to
�(F) one obtains a Riesz basis in the whole space X (this is justi�ed by
the result of [23, Theorem 3.6, p.323] according to which codimension of a
subspace spanned by the generalized eigenvectors of G, G�1 2 B1(X),
is either 0 or 1; thus if the completing n-tuple would not exist then
the codimension would be exactly n). From the formulae for f�ngn2Z
which are already known we deduce that (3.2) holds for � = 1

2
(see also

[1, p.1431]). Now, it follows from (5.19) and Theorem 3.1 that A has a
system of generalized eigenvectors forming a Riesz basis in X , provided

that

�
�
�

�
2 D �(G�)1=2�. This last condition holds i�

X
n2Z

j�nj
����
��

0
�n

�
;

�
�
�

�� ����
2

=
X
n2Z

1

j�nj

����
�
G

�
0
�n

�
;

�
�
�

�� ����
2

=

=
X
n2Z

1

j�nj j�n(1)j
2
<1

(a contribution from the spectrum of the matrix F is not essential as it
gives only a �nite number of components and therefore is neglected). The
convergence of last series follows from the previously examined properties
of the systems f�ngn2Z, f�ngn2Z. The result we have just proved can be
formulated as
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Lemma 5.2 If jdj 6= 1, then there exists a system of generalized eigenvec-

tors of A forming a Riesz basis in X and only a �nitely many of them are

not eigenvectors. The asymptotic eigenvalues of A are equal to eigenval-

ues of the problem (5.20), corresponding to the system with a proportional

controller.

Remark 5.1 Formally, we have proved Lemma 5.2 under an additional
assumption that det F 6= 0. This assumption is not essential as �v can be
added to and subtracted from the Cn- component of A with � 6= 0 chosen
such that det(�I� F) 6= 0, and F��I can play the role of F; �v is counted

into the perturbation and the vector

�
�
�

�
is modi�ed appropriately.

Corollary 5.1 In virtue of Lemma 5.2 the spectrum of A lies in a region

bounded by a parabola which guarantees that A generates a strongly contin-

uous cosine family of operators on X and hence an analytic semigroup.

5.1.3 The case of RLCG transmission line (LC > 0)

If H = L2(0; 1)�L2(0; 1), the dynamic equations (5.1) can be rewritten in
the abstract form (1.1) with

A

"
i

v

#
=

2
4 � 1

L
v0 � R

L
i

� 1
C
i0 � G

C
v

3
5 ;

D(A) =

��
i
v

�
2 H1(0; 1)�H1(0; 1) : i(1) = 0; v(0) = Kv(1)

�
:

(5.21)
For simplicity we introduce

� =
1

2

�
R

L
+

G

C

�
; � =

1

2

�
R

L
� G

C

�
; z =

r
L

C
; r =

p
LC

and now we are able to represent A in the particular form

A =
1

r
A0 + P

where

A0

�
i
v

�
=

�
0 �z�1
�z 0

� �
i0

v0

�
; D(A0) = D(A) (5.22)

P

�
i
v

�
=

� ��� � 0
0 ��+ �

� �
i
v

�
; P 2 L(H) : (5.23)
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The operator 1
r
A0 describes the lossless transmission line, and P describes

dissipation.
Observe that A2

0 can be decomposed into the current operator,

Aii = i00; D(Ai) = fi 2 H2(0; 1) : i(1) = 0; i0(0) = Ki0(1)g (5.24)

and the voltage operator,

Avv = v00; D(Av) = fv 2 H2(0; 1) : v0(1) = 0; v(0) = Kv(1)g : (5.25)

The operator (5.25) is equal to the operator (5.3) which we discussed in
the RC-transmission line case while (5.24), after replacing x by 1� x is its
adjoint. Thus, the system of eigenvectors of A0,("

i�n

v�n

#)
n2Z

;

"
i�n (x)

v�n (x)

#
=

"
2s sinh [�n(1� x)]

�2sz cosh [�n(1� x)]

#
; 0 � x � 1 ;

where s is de�ned by (5.9), corresponding to eigenvalues ��n, with �n
given by (5.8), may be represented in the form��

i+n
v+n

�
;

�
i�n
v�n

��
=

�
N 0
0 L

� �
1 1
z �z

���
"n
0

�
;

�
0
"n

��
(5.26)

where f"ngn2Z is the system of exponentials (5.11), (5.12), L is de�ned by
(5.13) and

(N")(x) = �"(x) + s"(1� x) : (5.27)

However, we know from Lemma 5.1 that for jKj 6= 1, f"ngn2Z forms a

Riesz basis in L2(0; 1), hence

��
"n
0

�
;

�
0
"n

��
n2Z

is a Riesz basis in H

and since L, N are linear and bounded jointly with their inverses then
by (5.26), 1

r
A0 has a Riesz basis of eigenvectors. Moreover, its eigenvalues

f 1
r
�ngn2Z lie in a strip parallel to {R. Now, one can apply the perturbation

Theorem 3.2 to establish that if all eigenvalues ��n of A, corresponding to
the two solutions of the equation

�2n = (R + �L)(G + �C) = r2
�
(�+ �)2 � �2

�
(5.28)

are single then the operator (5.21) has the system

��
i�n
v�n

��
n2Z

of eigen-

vectors forming a Riesz basis of H , e.g."
i�n (x)

v�n (x)

#
=

"
2s sinh [�n(1� x)]

2s(R + ��n L)
1=2(G + ��nC)

�1=2 cosh [�n(1� x)]

#
;

0 � x � 1: (5.29)
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A detailed analysis of (5.28) shows that all eigenvalues are single i� jKj > 1
or jKj < 1, ((arccosK + 2n�)=r)2 6= �2. Though the perturbation P
changes the eigenvalues of 1

r
A0 into the eigenvalues of A, they are still

located in a strip parallel to {R. A is similar to a normal discrete operator
with its spectrum located in a vertical strip, and so A generates a group

on H . Under the reasonable assumption: 2� =
�
R
L
+ G

C

�
> 0, this group

is (EXS), equivalently (AS) i�

� cosh

s
(LG +RC)2(�2 +RG)

(LG+RC)2 + 4�2LC
< K < cosh

p
RG : (5.30)

5.1.4 RLCG transmission line steered by a SISO dynamic con-

troller (LC � 0)

The closed-loop system is described in the state space X = Cn�L2(0; 1)�
L2(0; 1) by a linear operator

A

2
664
y

i

u

3
775 =

2
664

Fy + gu(1)

� 1
L
u0 � R

L
i

� 1
C
i0 � G

C
u

3
775 ;

D(A) =

8<
:
2
4 y
i
u

3
5 2 X : i; u 2W1;2(0; 1); i(1) = 0; u(0) = du(1) + h�y

9=
; :

(5.31)
On the one hand it has the form (2.1), with H = L2(0; 1)� L2(0; 1),

L

"
i

u

#
=

2
4 � 1

L
u0 � R

L
i

� 1
C
i0 � G

C
u

3
5 ;

D(L) =

("
i

u

#
2 H : i; u 2W1;2(0; 1); i(1) = 0

)
;

P = F; Q = g; R = h; D = d (r = m = 1);

�0

�
i
u

�
= u(0); �1

�
i
u

�
= u(1)

but on the other hand A can be represented in a perturbed form

A

2
4 y
i
u

3
5 = G

2
4 y
i
u

3
5+

2
4 g

0
0

3
5*G

2
4 y
i
u

3
5 ;
2
4 a
b
c

3
5+ ; where
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G

2
64
y

i

u

3
75 =

2
664

Fy

� 1
L
u0 � R

L
i

� 1
C
i0 � G

C
u

3
775 ; D(G) = D(A) ;

a = � 1

L
b(0)(F�)�1h, a, b and c are solutions of the two boundary-value

problems8<
:

b00(x) = RGb(x); 0 � x � 1
b0(0) = 0
db(0)� b(1) = L

9=
; ;

8<
:

c00(x) = RGc(x); 0 � x � 1
c(0) = 0
dc0(0)� c0(1) = RC

9=
;

provided that G�1 exists.
Unfortunately, Theorem 3.1 cannot be applied. To explain this recall

that from the examination of the eigenproblem for (5.21) follows that G,
has a Riesz basis of generalized eigenvectors for jdj 6= 1 (only �nitely many
of them are not eigenvectors). But (3.2) holds only for � = 0, and since2
4 a
b
c

3
5 =2 D(G�) the perturbation does not belong to B2(X), the class of

Hilbert-Schmidt linear operators.
A positive answer to the existence problem of a Riesz basis formed by

the eigenvectors of the operator (5.31) can be derived in other way, which
we will now show.

1o (5.31) can be written in a di�erent perturbed form. The role of per-
turbation plays now the \dissipative" part of A,

A

2
664
y

u

i

3
775 = G

2
664
y

u

i

3
775+

2
6664

0

�G
C
u

�R
L
i

3
7775 ;

G

2
664
y

u

i

3
775 =

2
6664

Fy + gu(1)

� 1
C
i0

� 1
L
u0

3
7775 ; D(G) = D(A) (5.32)

and without loss of generality we may assume that G�1 exists and
belongs to L(X).

2o Gn is an isomorphism of DGn , DGn = (D(Gn), h�; �in),*24 y1
u1
i1

3
5 ;
2
4 y2
u2
i2

3
5+

n

=

*
Gn

2
4 y1
u1
i1

3
5 ; Gn

2
4 y2
u2
i2

3
5+

X

;
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onto X and thus G has a Riesz basis of generalized eigenvectors in X
i� GjD(Gn+1), i.e. the part of G in DGn has a Riesz basis of generalized
eigenvectors in DGn .

3o The space DGn is formed by elements

2
4 y
u
i

3
5 ; y 2 Cn; u; i 2Wn;2(0; 1)

for which n pairs of equalities hold:8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

h�y = Lu
i(1) = 0;

h�Fy = �h�gMu+ L(�i0=C)
u0(1) = 0;

h�F2y = �h�FgMu� h�gM(�i0=C) + L(u"=LC)
i00(1) = 0;

h�F3y = �h�F2gMu� h�FgM(�i0=C)� h�gM(u"=LC)+

+L(�i000=LC2)
u000(1) = 0;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(5.33)
where L� = �(0)� d�(1), M� = �(1). If the pair (F; h�) is observable
then y can be uniquely determined from (5.33). To be more precise,

Oy = �1u+�2i ; (5.34)

where O� =
�
h;F�h; (F�)2h; : : : ; (F�)n�1h

�
is the Kalman matrix of

observability; �1;�2 2 L(W1;2(0; 1);C), and according to (5.33)

�1� =

2
666666664

L�

�h�gM�

�h�FgM�+ L( 1
LC

�00)

�h�F2gM�� h�gM( 1
LC

�00)

: : : : : : : : : : : : : : : : : : : : : : : : : : :

3
777777775

;

�2� =

2
666666664

0

L(� 1
C
�0)

�h�gM(� 1
C
�0)

�h�FgM(� 1
C
�0) + L(� 1

LC
1
C
�000)

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

3
777777775

:

Hence

y = �1u+ �2i; �1� = O�1�1�; �2� = O�1�2� (5.35)
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and �nally any vector from DGn is of the form

2
4 �1u+ �2i

u
i

3
5, where

i; u 2 Wn;2(0; 1) and satis�es an appropriate number of conditions
(5.33).

4o To get an idea what is the form of GjD(Gn+1), the part of G in DGn ,
we should add a successive, (n+1)-th pair of equalities to (5.33). The
added pair of relationships can be written also in a form in which y
does not appear as we may eliminate y, with the aid of (5.35), from
the equation determining h�Fny. Moreover, an equivalent form of the
equation determining h�Fny may be obtained by expressing h�Fny in
terms of h�g, h�Fng; : : : ; h�Fn�1g (here we use the Cayley-Hamilton
Theorem) and employing directly (5.33). Taking the last n pairs of
equalities into account, we get from the extended in such a way system
(5.33), an identity

OFy +OgMu = �1

�
� 1

C
i0
�
+�2

�
� 1

L
u0
�

: (5.36)

By (5.36) GjD(Gn+1) can be expressed in DGn as

2
6664

0 �2(� 1
L

d
dx
) �1(� 1

C
d
dx
)

0 0 � 1
C

d
dx

0 � 1
L

d
dx

0

3
7775
2
64
�1u+ �2i

i

u

3
75 :

5o Now, it can be proved that the spaces: DGn and f0g�Wn�1
2;U are isomor-

phic and under the natural isomorphism between them, the operator
GjD(Gn+1) is similar to 0�Hn�1, whereW

n�1
2;U denotes Shkalikov's space

and Hn�1 is Shkalikov's operator de�ned in Wn�1
2;U , corresponding to

a linearization of the boundary-value problem with spectral parameter
� in the boundary conditions,8<

:
u00(x) = LC�2u(x); (LC > 0)
M(�)[u(0)� du(1)]� L(�)u(1) = 0
u0(1) = 0

9=
; (5.37)

where M(�) = det(�I�F), L(�) = h�adj[�I�F]g (d+ L(�)
M(�)

expresses

the controller transfer function).
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The natural isomorphism is given by

2
64

0

v0

v1

3
75

| {z }
2f0g�Wn�1

2;U

=

2
664
I ��1 ��2
0 I 0

0 0 � 1
C

d
dx

3
775
2
64
�1u+ �2i

u

i

3
75

| {z }
2DGn

(5.38)

with an inverse

2
4 �1u+ �2i

u
i

3
5 =

2
664
I �1 �2(C

R 1
x
(�)ds)

0 I 0

0 0 C
R 1
x
(�)ds

3
775
2
4 0
v0
v1

3
5 :

The similarity relation can be written in terms of the operator matrices

2
664
I ��1 ��2
0 I 0

0 0 � 1
C

d
dx

3
775
2
6664

0 �2(� 1
L

d
dx
) �1(� 1

C
d
dx
)

0 0 � 1
C

d
dx

0 � 1
L

d
dx

0

3
7775 �

�

2
664
I �1 �2(C

R 1
x
(�)ds)

0 I 0

0 0 C
R 1
x
(�)ds

3
775 =

2
664

0 0 0

0 0 I

0 1
LC

d2

dx2
0

3
775

and is determined up to some evident correspondence between bound-
ary conditions. Hence, the partGjD(Gn+1) of G in DGn has a Riesz basis
formed by generalized eigenvectors i� for Shkalikov's operatorHn�1 de-
�ned in Shkalikov's spaceWn�1

2;U the same property holds. But by The-
orem 4.1 this occurs if the boundary conditions (5.37) are strictly regu-
lar. Observe that (5.37) can be obtained directly from the eigenproblem
for G by eliminating y and i. The fundamental system of solution of

(5.37) is built of two exponential functions x 7�! e��
p
LCx; e�

p
LCx

and according to (4.5) the characteristic equation of the problem (5.37)
has the form

�(�) = 2�
p
LCfM(�) cosh�

p
LC� [L(�) + dM(�)]g = 0 : (5.39)

The regularity of boundary conditions easily follows from (5.39).
Asymptotic distribution of zeros of an entire function � can be de-
rived by dividing both sides of (5.39) by M(�) (M(�) 6= 0 if j�j > kFk).
Since limj�j!1

L(�)
M(�)

�! 0, the asymptotic zeros agree with the roots
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of the equation cosh�
p
LC =d, and thus for jdj 6= 1 they are simple.

Finally, the boundary conditions (5.37) are strongly regular, provided
that jdj 6= 1.

6o The whole discussion of spectral properties of G can be summarized as

Lemma 5.3 If the pair (F,h�) is observable and jdj 6= 1, then G has

a Riesz basis of generalized eigenvectors in X and only �nitely many

of them are not eigenvectors. The spectrum �(G) is asymptotically

equal to the spectrum of an unperturbed operator related to proportional

controller only.

7o Similarly as it was done for an entire function � we may point out
that the spectrum of A is asymptotically equal to the spectrum of the
perturbed operator related to a purely proportional controller. Such
an operator has been already examined. Those investigations, Lemma
5.3 and Theorem 3.2 lead to

Lemma 5.4 If the pair (F,h�) is observable and jdj 6= 1, then the

operator A has a Riesz basis of generalized eigenvectors in X and only

�nitely many of them are not eigenvectors. Moreover, A generates a

linear C0-group on X.

5.2 Example 2: Stabilization system of an elastic robot

arm

A stabilization system of an elastic robot arm has been discussed in [8]. Its
dynamical model is governed by the system of equations8>><
>>:

_y(t) = �kay(t) + kEIwxx(0; t)

wt(x; t) = v(x; t)

vt(x; t) = �EI
m wxxxx(x; t)

9>>=
>>; ; 0 � x � 1; t � 0 (5.40)

with the boundary conditions

w(0; t) = 0; wxx(1; t) = 0; wxxx(1; t) = 0; wx(0; t) = y(t); t � 0 :
(5.41)

The last two equations of (5.40) correspond to the Euler-Bernoulli model
of an elastic beam, while the �rst equation constitutes the dynamic equa-
tion of a stabilizing controller acting in a feedback loop with boundary
observation and boundary control.
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Taking n = m = r = 1, H = L2(0; 1) � L2(0; 1) we may represent the
above dynamical model in the abstract form (2.1) with

A

2
4 y
w
v

3
5 =

2
4 �kay + kEIw00(0)

v

�EI
m w0000

3
5 ; D(A) = f

2
4 y
w
v

3
5 2 C�H :

w 2 H4(0; 1); w(0) = 0; w00(1) = 0; w000(1) = 0; w0(0) = yg ;

P = [�ka]; Q = [kEI]; R = [1]; D = [0]; L

�
w
v

�
=

�
v

�EI
mw0000

�
;

D(L) =

��
w
v

�
2 H : w 2 H4(0; 1); w(0) = 0; w00(1) = 0; w000(1) = 0

�
;

�0

�
w
v

�
= w0(0); �1

�
w
v

�
= w00(0) :

Any system of eigenvectors of A cannot form a Riesz basis in the space
X = C�H = C�L2(0; 1)�L2(0; 1). Indeed, if it would be the case then the
component systems: fwng1n=1; fvng1n=1 would form Riesz bases in L2(0; 1).
Hence these systems would be uniformly bounded with respect to n 2 N

(i.e. quasinormalized) and since vn = �nwn, the sequence of eigenvalues
f�ng1n=1 would be bounded. This contradicts the fact that A has countably
many eigenvalues and is unbounded. The use of our spectral approach to
solve the question of well-posedness of the system under investigation is
therefore impossible. However, following [8], we may seek a realization of
an abstract dynamical model on a smaller space, choosing

H = H2
0(0; 1)� L2(0; 1); H2

0(0; 1) = fu 2 H2(0; 1) : u(0) = 0g

as a candidate for the state space. The realization of an abstract dynamical
model on this space is

d

dt

�
w
v

�
= ~A

�
w
v

�
; ~A

�
w
v

�
=

�
v

�EI
m w0000

�
;

D( ~A) = f
�
w
v

�
2 H : w 2 H4(0; 1) \H2

0(0; 1);

w(0) = 0; w00(1) = 0; w000(1) = 0; v0(0) = �kaw0(0) + kEIw00(0)g :
(5.42)

Observe that an equation describing the feedback appears in the de�nition
of the domain of ~A and thus we cannot represent ~A in the form: \the main
part + perturbation, related to the feedback". This makes it impossible to
apply the perturbation methods to solve the question whether ~A generates
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a linear C0-semigroup on H . Gnedin [8] has found a scalar product in H ,
equivalent to the natural one, with respect to which ~A is maximally dissi-

pative. This means that ~A generates a linear C0-semigroup of contractions
on H . Applying the Pr�uss-Huang-Weiss criterion, Gnedin has pointed out
that this semigroup is (EXS) i� k > 0.

Now, we show how the results of [8] can be derived and even strength-
ened by a direct spectral analysis based on Shkalikov's theory. The eigen-
problem for ~A takes the form8>>>>>>><

>>>>>>>:

v = �w

�EI
m w0000 = �v

v0(0) = kEIw00(0)� kaw0(0)

w(0) = 0
w00(1) = 0
w000(1) = 0

9>>>>>>>=
>>>>>>>;

(5.43)

and leads to the following Sturm-Liouville problem with a spectral param-
eter entering the boundary conditions,8>>>>>><

>>>>>>:

EI
m w0000 + �2w(x) = 0; 0 � x � 1

(�+ ka)w0(0) = kEIw00(0)

w000(1) = 0

w00(1) = 0

w(0) = 0

9>>>>>>=
>>>>>>;

: (5.44)

Substituting � = �2
q

EI
m , ~a = a=(EI), K = k

p
mEI we get from (5.44),

8>>>>><
>>>>>:

w0000 + �4w(x) = 0; 0 � x � 1

(�2 +K~a)w0(0) = Kw00(0)

w000(1) = 0

w00(1) = 0

w(0) = 0

9>>>>>=
>>>>>;

: (5.45)

The orders of successive boundary conditions in (5.45) are �1 = 3, �2 = 3,
�3 = 2, �4 = 0, respectively, while coe�cients p�s in the �rst equation of
(5.45) are constant. The characteristic polynomial of (5.45) is !4 + 1 =
(!2 �p2! + 1)(!2 +

p
2! + 1) = 0.

The construction of the smallest convex polygonM, containing all pos-
sible sums of the roots !1; !2; !3; !4 of the characteristic polynomial is
depicted in Fig.3. Assuming the solution of the �rst equation of (5.45) to
be

w(x) = C1e
�!1x + C2e

�!2x + C3e
�!3x + C4e

�!4x
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and putting w into the remaining equations of the system (5.45) we get2
666664

f(�; !1) f(�; !2) f(�; !3) f(�; !4)

�3!31e
�!1 �3!32e

�!2 �3!33e
�!3 �3!34e

�!4

�2!21e
�!1 �2!22e

�!2 �2!23e
�!3 �2!24e

�!4

1 1 1 1

3
777775

2
666664

C1

C2

C3

C4

3
777775 =

2
666664

0

0

0

0

3
777775

where f(�; !) = !�(�2 + K~a) � K�2!2. The above homogeneous, linear
system has a nonzero solution i� � is a root of the characteristic determinant

�2�6fe{�
p
2
h
�2 +K~a+

p
2{K�

i
+ e��

p
2
h
�2 +K~a�

p
2K�

i
+

+e�{�
p
2
h
�2 +K~a�

p
2{K�

i
+ e�

p
2
h
�2 +K~a+

p
2K�

i
+ 4(�2 +K~a)g

which can be represented as

�2�8fe{�
p
2
h
1 +

p
2{K��1 +K~a��2

i
+ e��

p
2
h
1�

p
2K��1 +K~a��2

i
+

+e�{�
p
2
h
1�

p
2{K��1 +K~a��2

i
+ e�

p
2
h
1 +

p
2K��1 +K~a��2

i
+

+4(1 + K~a��2)g :

�
�
�
�
�
�
�
��
@

@
@

@
@

@
@

@@��
�

�
�

�
�

��
@
@
@
@
@
@
@
@@

0

{
p
2

�{p2

�p2 p
2

x

xx

x!2 =
�1+{p

2
!1 =

1+{p
2

!4 =
1�{p
2

!3 =
�1�{p

2

S
S
So

M

Figure 3: The construction of the polygon M

Since for large j�j, 1 is the dominating term of each expression in the
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square brackets, the boundary conditions (5.45) are regular. Substitut-
ing � = 1�{p

2
�, the analysis of asymptotic form of the spectrum can be

repeated - see [8, Theorem 3; it states that Re�n �! �2k
p
mEI and

j�nj � �2(n+1
2
)2
q

EI
m as n �! 1, f�ngn2N = �( ~A))], from which we

deduce that the boundary conditions are in fact strictly regular. Now, by
Theorem 4.1 a realization of ~A on a suitable space has a system of eigen-
vectors forming a Riesz basis. To determine both the state space and the
particular realization of ~A we take r = 0. The orders of all boundary con-
ditions are not greater than n+ r�1 = 3. The second part of Theorem 4.1
applies (N0 = 0). The state space is therefore W 0

2;U , while the operator H
takes a form

H~v = H

2
664
v0
v1
v2
v3

3
775 =

2
664

v1
v2
v3
�v00000

3
775 :

According to the rule (4.9), the term �2w0(0), for which � = 2, k = 1 should

be replaced by (H2~v)
(1)
0 = v02(0) as � + k = 3 < n+ r = 4. As a result the

�rst boundary condition now is

v02(0) + ~aKv00(0)�Kv000 (0) = 0

while the remaining ones do not change essentially,

v0000 (1) = 0; v000 (1) = 0; v0(0) = 0 :

An exact form of Shkalikov's space can be determined to be

W 0
2;U = f~v 2W 0

2 : Uj(H
k~v) = 0 for 0 � k � n+ r � 2 = 2

and all boundary conditions of order � 2� kg =

= f~v =

2
664
v0
v1
v2
v3

3
775 2W3

2(0; 1)�W2
2(0; 1)�W1

2(0; 1)� L2(0; 1) : v000 (1) = 0 ;

v0(0) = 0 (k = 0); v1(0) = 0 (k = 1); v2(0) = 0 (k = 2)g :

By (4.13) the Shkalikov operator H0 takes the form (now r = 1)

H0

2
664
v0
v1
v2
v3

3
775 = H

2
664
v0
v1
v2
v3

3
775 =

2
664

v1
v2
v3
�v00000

3
775 ; D(H0) =W 1

2;U =

= f~v =

2
664
v0
v1
v2
v3

3
775 2W4

2(0; 1)�W3
2(0; 1)�W2

2(0; 1)�W1
2(0; 1) :
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Uj(H
k~v) = 0 for 0 � k � n+ r � 2 = 3 and

all boundary conditions of order � n+ r � k � 2 = 3� kg =

= f~v =

2
664
v0
v1
v2
v3

3
775 2W4

2(0; 1)�W3
2(0; 1)�W2

2(0; 1)�W1
2(0; 1) :

v02(0) + ~aKv00(0)�Kv000 (0) = 0; v0000 (1) = 0;

v000 (1) = 0 ; v0(0) = 0 (k = 0) ;

v001 (1) = 0; v1(0) = 0 (k = 1); v2(0) = 0 (k = 2); v3(0) = 0 (k = 3)g :

The boundary conditions marked by frames also enter the de�nition of
state space.

The relationship between (5.44) and (5.45) suggests a consideration of
the operator H2

0 ,

v0

v1

v2

v3

H2
0

v2

v3

�v00000

�v00001

= =

= H0

2
664

v1
v2
v3
�v00000

3
775 (5.46)

W 0
2;U � D(H2

0 ) = f~v =

2
664
v0
v1
v2
v3

3
775 2 D(H0) : H0~v 2 D(H0)g =

= f~v 2W5
2(0; 1)�W4

2(0; 1)�W3
2(0; 1)�W2

2(0; 1) : the components of

~v satisfy those boundary conditions which enter the de�nition of D(H0)

and the following additional boundary conditions:

v03(0) + ~aKv01(0)�Kv001 (0) = 0; v0001 (1) = 0; v001 (1) = 0; v1(0) = 0 ;

v002 (1) = 0; v2(0) = 0; v3(0) = 0; v00000 (0) = 0g : (5.47)

Now, it is not di�cult to see that two groups of variables can be extracted
from ~v-the �rst includes the variable v0 and v2, the other - variables v1
and v3. This corresponds to a decomposition of H2

0 into the direct sum
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of two operators. One of them, connected with the group of relationships
including only the variables v1, v3 is marked by frames in (5.46). To be
more precise, we have de�ned the operator

H2
0R

�
W
V

�
=

�
V

�W 0000

�
;

D(H2
0R) = f

�
W
V

�
2 H : W 2 H4(0; 1) \ H2

0(0; 1);

W (0) = 0; W 00(1) = 0; W 000(1) = 0; V 0(0) + K~aW 0(0) = KW 00(0)g :

Since by Theorem 4.1 H2
0R has a system of generalized eigenvectors (only

�nitely many of them are not eigenvectors) which forms a Riesz basis in

H = H2
0(0; 1)� L2(0; 1) and S�1H2

0RS =

q
EI
m

~A, where

�
W
V

�
= S

�
w
v

�
=

" q
EI
m w

v

#
;

the same holds for ~A. Recall that {�2 = �2 = �
q

m
EI

and in virtue of

the above mentioned result of [8, Theorem 3], the spectrum of ~A is lo-
cated in a vertical strip. ~A can be decomposed into the direct sum of two
operators - one acts in a �nite-dimensional subspace spanned by general-
ized eigenvectors corresponding to nonsimple eigenvalues, the second acts
on a complementary subspace spanned by eigenvectors of ~A. Clearly, the
�nite-dimensional component generates a C0-group. By Theorem 1.1 the
in�nite-dimensional part generates a C0-group as well and thus ~A gener-
ates a C0-group on H . Note that Gnedin obtained only the generation of
a C0-semigroup.

For k > 0 we have supfRe� : � 2 �( ~A)g < 0, and thus this semigroup
is (EXS) in the topology induced by the norm of H . We have established
this result without the use of the Pr�uss-Huang-Weiss criterion.

5.3 Example 3: Multidimensional neutral system

In this subsection we will examine spectral properties of the operator

A

�
v
 

�
=

�
Av + (AC +B) (�r)

 0

�
; D(A) = f

�
v
 

�
2M2 =

Cn � L2(�r; 0;Cn) :  2W1;2(�r; 0;Cn); v =  (0)�C (�r)g :
(5.48)
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Our investigations are motivated by the fact that A arises in the problem
of building up an abstract di�erential equation onM2 related to the delay-
di�erential system of neutral type,8>><

>>:
_v(t) = Av(t) + (AC + B)x(t� r); t � 0
v(t) = x(t)�Cx(t� r); t � 0
v(0) = v0
x(�) = �(�); �r � � � 0

9>>=
>>;

-see [10, Section 6.2.5].
If 0 =2 �(A) then A is an isomorphism of DA onto M2. Thus the

existence of a Riesz basis of eigenvectors of A in M2 is equivalent to the
existence of a Riesz basis of eigenvectors of AjD(A2) in DA, where DA

denotes the Hilbert space (D(A); h�; �iA), ha; biA = ha; biM2 + hAa;AbiM2 .
Notice that any element of DA has the form:�

L 
 

�
= T

�
0
 

�
; T =

�
I L
0 I

�
; L =  (0)�C (�r) :

The operator matrix T de�nes an isomorphism ofDA onto f0g�W1;2(�r; 0;
Cn). Now

T�1AjD(A2)T

�
0

 

�
=

�
I �L
0 I

� "
0 L d

dx

0 d
dx

# �
I L

0 I

� �
0
 

�
=

=

�
0 0

0 ~A

� �
0
 

�
8 2 D( ~A) �W1;2(�r; 0;Cn)()

�
L 
 

�
2 D(A2) ;

where
~A =  0 ;

D( ~A) = f 2W2;2(�r; 0;Cn) : A (0) + B (�r) =  0(0)�C 0(�r)g :
(5.49)

This means that A has a system of eigenvectors which forms a Riesz basis
in M2 if and only if ~A has a system of eigenvectors which forms a Riesz
basis in W1;2(�r; 0;Cn).

The operator (5.48) is a particular form of (2.1) with X = M2, H =
L2(�r; 0;Cn); L =  0, D(L) = W1;2(�r; 0;Cn); P = A, Q = AC+B,
R=I, D=C; �0 =  (0), �1 =  (�r). (2.2) reduces to�

 0 = � ;  2W1;2(�r; 0;Cn)
(�C +B) (�r) = (�I�A) (0)

�
(5.50)

i.e. to (4.14) with P(x) = 0, �r � x � 0; A0 = B, A1 = C, B0 = A,
B1 = �I. All boundary conditions are of the �rst order and (4.15) is
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identical with the eigenproblem for ~A. Since the characteristic function is
�(�) = det(�I� �e��rC�A� e��rB), we have in De�nition 4.4: p0(�) =
(�1)n det(�I � A), deg p0(�) = n; p1(�) = det(�C + B), deg pn(�) = n,
provided that detC 6= 0. In virtue of Theorem 4.2, ~A has a system of
eigenvectors which forms a Riesz basis in W1;2(�r; 0;Cn) if detC 6= 0, all
eigenvalues of ~A are simple and inffj�� �j : �, � 2 �(A), � 6= �g. The
assumption 0 =2 �(A) is not essential. Thus we have proved
Lemma 5.5 If detC 6= 0, all eigenvalues of A are simple and inffj�� �j:
�, � 2 �(A), � 6= �g > 0 then there exists a system of eigenvectors forming

a Riesz basis in M2.

For comparison, let us try to use Theorem 3.1. To do this we represent
(5.48) in a particular form

A

�
v
 

�
= G

�
v
 

�
+

nX
j=1

�
ej
0

���
pj
qj

�
; G

�
v
 

��
M2

;

where

G

�
v
 

�
=

�
Av
 0

�
;

fejgnj=1 is a Cartesian basis in Cn; f�Tj gnj=1 denotes the sequence of rows
of the matrix AC + B; fpjgnj=1, pj = (A�)�1(I � C�)�1�j 2 Cn; fqjgnj=1
denotes the sequence of constant functions de�ned on [�r; 0] with their val-
ues (C�� I)�1�j 2 Cn. We assume that G is invertible, which is equivalent
to two requirement: detA 6= 0, 1 =2 �(C). Moreover, G�1 2 B1(M2). The
spectrum of G is a union of the spectrum of the matrix A and the operator

Q =  0; D(Q) = f 2W1;2(�r; 0;Cn) :  (0)�C (�r) = 0g :
If all elementary divisors of C are linear then its modal matrix S is nonsin-
gular as it is constructed of n linearly-independent eigenvectors of C. Under
the isomorphism induced in L2(�r; 0;Cn) by the multiplication operator
S�(�) =  (�), Q is similar to

R� = �0; D(R) = f� 2W1;2(�r; 0;Cn) :

�(0)� diagf�1; �2; : : : ; �ng�(�r) = 0g; f�jgnj=1 = �(C) :

Suppose that detC 6= 0. Then, any scalar eigenproblem to which the eigen-
problem for R can be decomposed, generates a Riesz basis of exponentials
fexp(�j;k(�))gk2Z in L2(�r; 0), where �j;k = 1

r
[ln j�j j+ {(arg�j + 2k�)],

k 2 Z. This follows from the spectral properties of the RC-transmission
line steered only by a proportional controller. Now,

fexp(�j;k(�))ejgj=1;2;���;n;k2Z and fexp(�j;k(�))Sejg
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are the systems of eigenvectors of Q and R, respectively, which form Riesz
bases in L2(�r; 0;C). After completing the �rst system by the n-tuple
of generalized eigenvectors of A we get a Riesz basis in M2 of general-
ized eigenvectors of G and only �nitely many of then are not eigenvectors.
However, the condition (3.2) is not satis�ed for any � 2 (0; 1), while for
� = 0 the perturbation does not belong to B2(M

2) except for the trivial
case AC+B= 0, when G = A. Thus if AC+B6= 0, Theorem 3.1 cannot be
applied.
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