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Abstract

The standard linear signal, linear observations model is consid-

ered, in which the coe�cient matrices depend on unknown param-

eters. Using the reference probability method an explicit recursive

formula is obtained for the unnormalized conditional distribution of

the signal and unknown parameters, given the observations.
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1 Introduction

The standard model for linear, discrete time signal and observations is

considered, in which the coe�cient matrices depend on unknown, time

varying parameters. An explicit recursive expression is obtained for the

unnormalized, conditional expectation, given the observations, of the state

and the parameters. The method are an adaptation of those in [2], and

are based on the introduction of an equivalent probability measure under

which the observation random variables are independent of both the signal

and unknown parameters. Our construction of the equivalent measure is

explicit and the recursion has a simple form.

Finally, we consider the parameter estimation problem for a general

ARMAX model. In this case it is remarkable that the recursive formulae

for the unnormalized densities do not involve any integration.
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2 Linear Dynamics and Parameters

All processes are de�ned initially on a probability space (
;F ;P). The

discrete time model we wish to discuss has the form

xk+1 = A(�1k)xk +B(�2k)vk+1 (1)

yk = C(�3k)xk +D(�4k)wk : (2)

Here k 2 IN and x0, or its distribution, are known. The signal process

xk takes values in some Euclidean space IRd while the observation process

yk takes values in IRq. fv`g, ` 2 IN, is a sequence of i:i:d: random vari-

ables, with density functions  , and v` has values in IRd. Similarly, fw`g,

` 2 IN, is a sequence of i:i:d: random variables with strictly positive density

function �, and w` also takes values in IRq, that is w` has the same dimen-

sions as y`. The matrices A(�
1
�
), B(�2

�
), C(�3

�
) and D(�4

�
) have appropriate

dimensions and depend on the parameters �1; : : : ; �4.
For simplicity we suppose the parameters �ik, i = 1; 2; 3; 4, are real

valued and satisfy the dynamic equations

�ik+1 = �i�ik + �ik+1:

Here either �i0, or its distribution, is known.
The �i, i = 1; 2; 3; 4, are real constants and f�i`g is a sequence of i:i:d:

random variables with densities �i. Finally, we suppose the matrices B(r)
and D(r) are nonsingular for all r 2 IR.

Notation 2.1 Write G0k+1 = �f�i`, 1 � ` � k, i = 1; 2, �j` , 1 � ` � k + 1,

j = 3; 4, x0; x1; : : : ; xk+1, y1; : : : ; yk; �
i
0g, Y

0
k = �fy1; : : : ; ykg. fGkg and

fYkg, k 2 IN, are the complete �ltrations generated by the completions of

G
0
k and Y0

k , respectively.

Remarks 2.2 The above conditions can be modi�ed. For example, the

parameters �i can be vector valued.

2.0.1 Measure change and estimation

Write


k = 
k(xk ; wk; �
i
k) = j detD(�4)j

�(yk)

�(wk)
;

and

�k =

kY
`=1


`:

A new probability measure P can be de�ned on
�

;
W
1

`=1 G`

�
by setting

the restriction to Gk of the Radon-Nikodym derivative dP=dP equal to �k.
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PARAMETER ESTIMATIONS

Lemma 2.3 Under P the random variables fy`g, ` 2 IN, are i:i:d: with
density function �.

Proof : For t 2 IRq the event fyk � tg = fyik � ti, i = 1; : : : ; qg. Then

P (yk � t j Gk) = E[I(yk � t) j Gk]

= E[�kI(yk � t) j Gk]=E[�k j Gk ]

= E[
kI(yk � t) j Gk]=E[
k j Gk]:

Now

E[
k j Gk] =

Z
IRq

j detD(�4k)j�(yk)dwk = 1

so

P (yk � t j Gk) =

Z
IRq

I(yk � t)j detD(�4k)j�(yk)dwk

=

Z t1

�1

: : :

Z tq

�1

�(yk)dyk:

This shows yk is P -independent of Gk and the result follows.

Remarks 2.4 Suppose we now start with a probability measure P on�

;
W
1

`=1 G`

�
such that under P :

1. fykg, k 2 IN, is a sequence of i:i:d: IRq valued random variables with

positive density function �,

2. f�ikg, k 2 IN, 1 � i � 4, are real variables satisfying �ik+1 = �i�ik +
�ik+1 where the f�ikg are sequences of i:i:d: random variables with

density functions �i,

3. fxkg, k 2 IN, is a sequence of IRd valued random variables satisfying

xk = A(�1k�1)xk�1 +B(�2k�1)vk

where the fvkg, k 2 IN, is a sequence of i:i:d: random variables with

density  .

Note in particular that under P the x` and y` are independent. We now

construct, by an inverse procedure, a probability measure P , such that un-
der P , fw`g, ` 2 IN, is a sequence of i:i:d: random variables with density �,
where wk := D(�4k)

�1(yk � C(�3k)xk).
To construct P from P write

�
k = �
k(xk ; yk; �
3
k; �

4
k) = j detD(�4k)j

�1 �(wk)

�(yk)
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and �k =
Qk

`=1 �
`. P is de�ned by putting the restriction to Gk of the

Radon-Nikodym derivative dP=dP equal to �k. The existence of P is a

consequence of Kolmogorov's theorem. (See Shiryaev [4]).

Lemma 2.5 Under P , fwkg, k 2 IN, is a sequence of i:i:d: random vari-

ables with density �.

Proof : For t 2 IRq the event fwk � tg = fwi
k � ti, i = 1; : : : ; qg. Then

P (wk � t j Gk) = E[I(wk � t) j Gk]

= E[�kI(wk � t) j Gk ]=E[�k j Gk]

= E[�
kI(wk � t) j Gk]=E[�
k j Gk]

and, as before, this is

= E[�
kI(wk � t) j Gk]

=

Z
IRq

I(wk � t)j detD(�4)j�1�(wk)dyk

=

Z t1

�1

: : :

Z tq

�1

�(w)dw:

The result follows.

2.0.2 Unnormalized estimates

A version of Bayes' theorem states that for a G-adapted sequence �k

E[�k j Yk ] =
E[�k�k j Yk]

E[�k j Yk]
: (3)

This identity indicates why the unnormalized, conditional expectation

E[�k�k j Yk] is investigated. Write qk(z; �), k 2 IN, for the unnormalized

conditional density such that

E
h
�kI(xk 2 dz)

4Y
i=1

I(�i 2 d�i) j Yk

i
= qk(z; �)dzd�

1d�2d�3d�4:

(The existence of qk is discussed in Remarks 2.7)

We now derive a recursive update for qk. The normalized conditional

density

pk(z; �)dzd�
1d�2d�3d�4 = E

h
I(xk 2 dz)

4Y
i=1

I(�i 2 d�i) j Yk

i
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is given by

pk(z; �) = qk(z; �)=

Z
IRd

Z
IR4

qk(�; �)d�d�
1d�2d�3d�4:

Theorem 2.6 For k 2 IN

qk+1(z; �) =RR
�1(yk+1; z; �; �; �) (B(�

2)�1(z �A(�1)�))qk(�; �)d�d�
(4)

where

�1(yk+1; z; �; �; �) =

j detD(�4)j�1�(D(�4)�1(yk+1 � C(�3)z))�

j detB(�2)j�1
4Y

i=1

�i(�i � �i�i)�(yk+1)
�1

Proof : Suppose f : IRd
� IR4

! IR is any Borel test function. Then

E[f(xk+1; �
1
k+1; �

2
k+1; �

3
k+1; �

4
k+1)�k+1 j Yk+1]

=

Z
IRd

Z
IR4

f(z; �1; �2; �3; �4)qk+1(z; �
1; �2; �3; �4)dzd�1d�2d�3d�4

= E
�
f(A(�1k)xk +B(�2k)vk+1; �

i�ik + �ik+1)�kj detD(�
4
k+1)j

�1

�(D(�4k+1)
�1(yk+1 � C(�3k+1)xk+1)) j Yk+1

�
�(yk+1)

�1:

Substituting for the remaining xk+1 and �
i
k+1 this is

= E
h Z Z Z

f(A(�1k)xk +B(�2k)w;�
i�ik + �i)�kj detD(�

4�4k + �4)j�1

�(D(�4�4k + �4)�1(yk+1 � C(�3�3k + �3)(A(�1k)xk +B(�2k)w))

 (w)�1(�1)�2(�2)�3(�3)�4(�4)dwd�1d�2d�3d�4 j Yk+1

i
�(yk+1)

�1:

The y` are independent, so this is

=

Z Z Z Z
f(A(�1)z +B(�2)w;�i�i + �i)j detD(�4�4 + �4)j�1

�(D(�4�4 + �4))�1(yk+1 � C(�3�3 + �3)(A(�1)z +B(�2)w))

 (w)

4Y
i=1

�i(�i)qk(z; �
1; �2; �3; �4)

dzdwd�1d�2d�3d�4d�1d�2d�3d�4�(yk+1)
�1:

Write � = A(�1)z +B(�2)w and �i = �i�i + �i, 1 � i � 4.
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Then dzdw
Q4

i=1(d�
id�i) = j detB(�2)j�1dzd�

Q4

i=1(d�
id�i), and the

above integral equals

Z Z Z Z
f(�; �)j detD(�4)j�1�(D(�4)�1(yk+1 � C(�3)�))

 (B(�2)�1(� �A(�1)z))j detB(�2)j�1

4Y
i=1

�i(�i � �i�i)qk(z; �
1; �2; �3; �4)dzd�

4Y
i=1

(d�id�1)�(yk+1)
�1:

This identity holds for all Borel test functions f , so the result follows:

qk+1(z; �
1; �2; �3; �4) = j detD(�4)j�1�(D(�4)�1(yk+1 � C(�3)z))Z Z
 (B(�2)�1(z �A(�1)�))j detB(�2)j�1

4Y
i=1

�i(�i � �i�i)qk(�; �
1; �2; �3; �4)d�d�1d�2d�3d�4�(yk+1)

�1:

Remarks 2.7 Suppose �(z) is the density of x0, and �0(�
1; �2; �3; �4)

is the density of (�10 ; �
2
0; �

3
0; �

4
0). Then q0(z; �

1; �2; �3; �4) = �(z)�0(�) and
updated estimates are obtained by substituting in (4).

Even if the prior estimates for x0 or �
i
0, 1 � i � 4, are delta functions,

the proof of Theorem 2.6 gives a function for q1(z; �). In fact, if �(z) =
�(x0) and �0(�) = �(�10 ; �

2
0 ; �

3
0; �

4
0) then we see

q1(z; �) = j detD(�4)j�1�(D(�4)�1(y1 � C(�3)z))�

 (B(�20)
�1(z �A(�10)x0))

j detB(�20)j
�1

4Y
i=`

�i(�i � �i�
i
0);

and further updates follow from (4).

If there are no dynamics in one of the parameters, so that �i = 1 and

�i is the delta mass at 0 giving �ik = �ik�1, k 2 IN, then care must be taken

with the choice of a prior distribution for �i. In fact, if �0(�)
i is the prior

distribution, the above procedure gives an unnormalized conditional den-

sity q�k(z; �
j ; j 6= i) for each possible value of �, and qk(z; �

1; �2; �3; �4) =

q�
i

k (z; �j ; j 6= i)�0(�
i).
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3 The ARMAX Model

We now indicate how the general ARMAX model can be treated. Suppose

fv`g, ` 2 IN, is a sequence of (real) i:i:d: random variables with density  .
Write

�1 = (a1; : : : ; ar1) 2 IRr1

�2 = (w1; : : : ; wr2) 2 IRr2

�3 = (c1; : : : ; cr3) 2 IRr3 ; cr3 6= 0; (5)

for the unknown coe�cient vectors, or parameters. An ARMAX system

fy`g with exogenous inputs fu`g, ` 2 IN, is then given by equations of the

form

yk+1 + a1yk + : : :+ ar1yk+1�r1

= w1uk + : : :+ wr2uk+1�r2 + c1vk + : : :+ cr3vk+1�r3 + vk+1: (6)

Write xk for the column vector

(yk; : : : ; yk�r1 ; uk; : : : ; uk�r2 ; vk; : : : ; vk�r3)
0

2 IRr1+r2+r3 :

Suppose A(�) is the (r1+r2+r3)�(r1+r2+r3) matrix having (��
1; �2; �3)

for its �rst row and 1 on the subdiagonal, with zeros elsewhere on other

rows, except the (r1 + 1) and (r1 + r2 + 1) rows which are 0 2 IRr1+r2+r3 .

B will denote the unit column vector in IRr1+r2+r3 having one in the (r1)
position and zeros elsewhere. C will denote the column vector in IRr1+r2+r3

having 1 in the �rst and (r1 + r2 + 1) position and zeros elsewhere. The

values of the u` are known exogenously; for example, if the variables u` are
control variables uk will depend on the values of y1; : : : ; yk. System (6) can

then be written:

xk+1 = A(�)xk +Buk+1 + Cvk+1 (7)

yk+1 = h�; xki+ vk+1: (8)

Here � = (��1; �2; �3) and h ; i denotes the scalar product in IRr1+r2+r3 .

Representation (7), (8) is not a minimal representation; see for example

Anderson and Moore [1]. However, it su�ces for our discussion. Notice

the same noise term vk+1 appears in (8) and (7). This is circumvented by

substituting in (7) to obtain

xk+1 = (A(�)� C 
 �)xk +Buk+1 + Cyk+1 (9)

together with

yk+1 = h�; xki+ vk+1: (10)

7
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Write Y0
k = �fy1; : : : ; ykg and fY`g, ` 2 IN, for the corresponding com-

plete �ltration. Write xk for the column vector (vk; : : : ; vk�r3)
0

2 IRr3 so

that x0k = (yk; : : :, yk�r1 , uk; : : : ; uk�r2 , x
0), and, given Yk, the xk are

the unknown components of xk . Let �k = yk + h�1; (yk; : : : ; yk�r1)
0

i �

h�2; (uk; : : : ; uk�r2)
0

i and write �k for the vector �kC where

C = (1; 0; : : : ; 0)0 2 IRr3 . Then with �(�3) equal to the r3 � r3 matrix

�(�3) =

0
BBBBB@

�c1 �c2 : : : �cr3
1 0 : : : 0

0 1 : : : 0
...

...
...

0 0 : : : 1 0

1
CCCCCA

we have xk+1 = �(�3)xk+�k+1. Recall the model is chosen so that cr3 6= 0;

then

�(�3)�1 =

0
BBBBB@

0 1 0 : : : 0

0 0 1 : : : 0
...

...
... : : :

0 0 0 : : : 0 1

�
1
cr3

�
c1
cr3

�
c2
cr3

: : : �
cr3�1

cr3

1
CCCCCA

Given Yk we wish to determine the unnormalized conditional density of

xk and �. Again, we suppose the processes are de�ned on (
;F ;P) under
which fy`g, ` 2 IN, is a sequence of i:i:d: random variables with strictly

positive densities �. P is de�ned by putting the restriction of dP
dP

to Gk

equal to �k. Here �k =
Qk

`=1 �
` where �
` = �(y`+1 � h�; x`i)=�(y`+1).
Write qk(�; �) for the unnormalized conditional density such that

E[I(xk 2 d�)I(� 2 d�)�k j Yk] = qk(�; �)d�d�:

Consider, therefore, any Borel test functions f : IRr3 ! IR and

g : IRr1+r2+r3 ! IR. Write �yk = (yk; : : : ; yk�r1)
0 and uk = (uk; : : : ; uk�r2)

0.

The same arguments to those used in Section 4 lead us to consider

E[f(xk+1)g(�)�k+1 j Yk+1]

=

Z Z
f(�)g(�)qk+1(�; �)d�d�

= E
h
f(�(�3)xk + �k+1)g(�)�k�

�
yk+1 + h�1; �yki

�h�2; uki � h�3; xki
�
j Yk+1

i
�(yk+1)

�1

=

Z Z
f(�(�3)z + �k+1)g(�)�

�
yk+1 + h�1; �yki

�h�2; uki � h�3; zi
�
qk(z; �)dzd��(yk+1)

�1: (11)
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Write

� = �(�3)z +
�
yk+1 + h�1; �yki � h�2; uki

�
C:

Then

z = �(�3)�1
�
� � (yk+1 + h�1; �yki � h�2; uki)C

�
and

dzd� = dzd�1d�2d�3 = �(�3)d�d�:

Substituting in (11) we have

Z Z
f(�)g(�)qk+1(�; �)d�d� =

Z Z
f(�)g(�)�

�
yk+1 + h�1; �yki � h�2; uki

�


�3;�(�3)�1

�
� � (yk+1 + h�1; �yki � h�2; uki)C

��
�(yk+1)

�1

qk
�
�(�3)�1(� � (yk+1 + h�1; �yki � h�2; uki)C

�
; �
�
�(�3)�1d�d�

We, therefore, have the following remarkable result for updating the un-

normalized, conditional density of xk and �, given Yk:

Theorem 3.1

qk+1(�; �) = �2(yk+1; �yk; uk; �; �)
qk(�(�

3)�1(� � (yk+1 + h�1; �yki � h�2; uki)C); �):
(12)

where

�2(yk+1; �yk; uk; �; �) =
�(�1)

�(yk+1)
�(�3)�1

and

�1 = yk+1 + h�1; �yki � h�2; uki

�h�3;�(�3)�1(� � (yk+1 + h�1; �yki � h�2; uki)Ci

Remark 3.2 This does not involve any integration.

If �0(�) is the prior density of x0 and �0(�) that for � then q0(�; �) =
�0(�)�0(�). The prior density must re
ect information known about x0
and �, and not be just a guess. Because no dynamics or noise enter the

parameters � the estimation problem can be treated as though � is �xed,
followed by an averaging over � using the density �0(�).

4 A Markov Chain Observed in Coloured Noise

In this section we extend the above results to observations with coloured

noise. We suppose the signal model parameters depend on some param-

eter � which takes values in a measure space (�; �; u). The value of � is

9
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unknown, and we suppose it is constant. Then for 1 � i; j � N , write F0
k

for the �-�eld generated by X0; X1; : : : ; Xk and � and fFkg; k 2 IN, for the

�ltration generated by F0
k .

aij(�) = P (Xk+1 = ei j Xk = ej)

= P (X1 = ei j X0 = ej):

Write A(�) for the N �N matrix (aij(�)), 1 � i; j � N . Then

Xk+1 = A(�)Xk + Vk+1 (13)

where E[Vk+1 j Fk] = 0.

We suppose the chain X is not observed directly; rather there is an

observation process fy`g, ` 2 IN, which for simplicity we suppose is real

valued. The process y has the form

yk+1 = c(�;Xk+1) + d1(�)wk + : : :+ dr(�)wk+1�r + wk+1: (14)

Here fwkg, k 2 IN, is a sequence of i:i:d: random variables with nonzero

density function �. (The extension to time varying densities �k is immedi-
ate.) Suppose dr(�) 6= 0.

c(�;Xk) is a function, depending on a parameter �, and the state Xk.

Because Xk is always one of the unit vectors ei the function c(�; :) is de-
termined by a vector

c(�) =
�
c1(�); c2(�); : : : ; cN(�)

�

and

c(�;Xk) = hc(�); Xki;

where h ; i denotes the inner product in Euclidean space.

On (
;F ; P ) our observation process, therefore, has the form

yk+1 = c(�;Xk+1) + d1(�)wk + : : :+ dr(�)wn�r + wk+1: (15)

Write xk+1 = (wk+1; wk; : : : ; wn�r+1)
0

2 IRr, D = (1; 0; : : : ; 0)0 2 IRr,

�(�) =

0
BB@

�d1(�) �d2(�) : : : �dr(�)
1 0 : : : 0

0 1 : : : 0

0 0 � � 1 0

1
CCA

Then

xk+1 = �(�)xk +D(yk+1 � hc(�); Xk+1i)

and

yk+1 = hc(�); Xk+1i+ hd(�); xki+ wk+1:

10
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The unobserved components are, therefore, Xk+1, xk, �.
Again, because dr(�) 6= 0

�(�)�1 = d�1r (�)

0
BBBBB@

0 dr(�) 0 : : : 00

0 0 dr(�) : : : 0
...

...
...

...

0 0 0 : : : dr(�)
�1 �d1(�) �d2(�) : : : �dr�1(�)

1
CCCCCA

Suppose f and h are arbitrary real-valued test functions. The same argu-

ments again lead us to consider

E[f(xk+1)h(�)hXk+1; eii�k+1 j Yk+1] =

Z Z
f(�)h(u)qik+1(�; u)d�d�(u);

(16)

where qik+1(�; u) is the unnormalized conditional density such that

E[hXk+1; eiiI(� 2 d�)I(xk+1 2 dz)�k+1 j Yk+1]

= qik+1(z; �)dzd�

Then (16) equals

E
h
f
�
�(�)xk +D

�
yk+1 � ci(�)

��
h(�)

hA(�)Xk + Vk+1; eii�k

�(yk+1 � ci(�) � hd(�); xki)

�(yk+1)
j Yk+1

i

= �(yk+1)
�1

Z Z NX
j=1

n
f
�
�(u)z +D(yk+1 � ci(u))h(u)

aij(u)�(yk+1 � ci(u)� hd(u); zi
�
qik(z; u)

o
dzd�(u) (17)

Write

� = �(u)z +D(yk+1 � ci(u))

so

z = �(u)�1
�
� �D(yk+1 � ci(u))

	
and

dzd�(u) = �(u)�1d�d�(u):

The functions f and h are arbitrary so from the equality of (16) and (17)

we have the following result:

Theorem 4.1 Write

�(yk+1; u; �) = �(yk+1)
�1�

�
yk+1�ci(u)�hd(u);�(u)

�1(��D(yk+1�ci(u)))i;

11
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then for 1 � i � N

qik+1(�; u) = �(yk+1; u; �)PN

j=1 aij(u)q
j
k

�
�(u)�1(� �D(yk+1 � ci(u)); u

�
:

(18)

5 A Mixed Case

In this section we consider the situation where a Markov chain in
uences a

linear system which, in turn, is observed linearly in noise. The parameters

of the model are supposed unknown. Again a recursive expression is ob-

tained for the unnormalized density of the state and parameters given the

observations.

Again, without loss of generality the state space of the Markov chain

X is taken to be the set of unit vectors fe1; : : : ; eNg. Then from equation

(13)

Xk+1 = A(�)Xk + Vk+1; k 2 IN:

The state of the linear system is given by a process xk , k 2 IN, taking

values in IRd, and its dynamics are described by the equation

xk+1 = F (�)xk +G(�)Xk + vk+1:

Here vk, k 2 IN, is a sequence of independent random variables with den-

sities  k.
The observation process has the form

yk+1 = C(�)xk + wk+1:

The wk are independent random variables having strictly positive densi-

ties �k.
In summary, we have the model

Xk+1 = A(�)Xk + Vk+1;
xk+1 = F (�)xk +G(�)Xk + vk+1;
yk+1 = C(�)xk + wk+1; k 2 IN:

(19)

The parameter � takes values in some measure space (�; �; u). Again
write qik(z; �) for the unnormalized joint conditional density of xk and �,
given that Xk = ei such that

qik(z; �)dzd� = E[hXk; eiiI(xk 2 dz)I(� 2 d�)�k j Yk ]:

For suitable test functions f and h arguments as before lead us to consider

E[hXk+1; eiif(xk+1)h(�)�k+1 j Yk+1]

12
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=

Z Z
f(�)h(u)qik+1(�; u)d�d�(u)

= E[hA(�)Xk + Vk+1; eiif(F (�)xk +G(�)Xk + wk+1)

h(�)�k�k+1(yk+1 � C(�)xk)=�k+1(yk+1) j Yk]

= �k+1(yk+1)
�1

NX
j=1

Z Z
aij(u)f(F (u)z +G(u)(ej + w)

h(u)�k+1(yk+1 � C(u)z) k+1(w)q
j
k(z; u)dzd�(u)dw:

Substituting � = F (u)z +G(u)ej + w, z = z, u = u, this is

= �k+1(yk+1)
�1

NX
j=1

Z Z Z
aij(u)f(�)h(u)�k+1(yk+1 � C(u)z)

 k+1(� � F (u)z +G(u)ej)q
i
k(z; u)dzd�(u)d�:

This identity holds for all test functions f and h, so we have the following
result:

Theorem 5.1 Write  k+1(�; u; z) =  k+1(� � F (u)z +G(u)ej), then

qik+1(�; u) = �k+1(yk+1)
�1R PN

j=1faij(u)�k+1(yk+1 � C(u)z) k+1(�; u; z)q
j
k(z; u)gdz

(20)
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