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Abstract

This note extends the necessary conditions for the solvability

of a nonlinear H1-control problem obtained in previous work of

the authors to the case where the required energy function on the

state space is not assumed to be smooth. This leads to considera-

tion of viscosity subsolutions of the Hamilton-Jacobi equations as-

sociated with the nonlinear bounded real lemma andH1-control.

Introduction

The nonlinear H1 control problem (i.e. the problem of selecting a stabiliz-

ing state or measurement feedback subject to an L2-gain constraint for the

closed loop input-output map) recently has been intensively studied (see

[1, 2, 19, 14, 15, 21, 22, 23]). All these works involve the investigation of a

Hamilton-Jacobi type equation which is satis�ed by the storage or energy
function associated with the closed loop system if this function happens to

be smooth. However in general this storage function need not be smooth

and hence does not correspond to a solution of the Hamilton-Jacobi equa-

tion in the classical sense. M. Crandall and P.L. Lions [5] have discovered

a notion of weak, or so-called \viscosity" solution (or \subsolution") for a

Hamilton-Jacobi equation which has since been applied in various optimal

control and di�erential game contexts (see e.g. [20, 8]), including applica-

tions to systems governed by partial di�erential equations. Most of these
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problems are time-varying and �nite-horizon. The H1-problem in the

nonlinear context is just beginning to attract attention. While it is closely

related to older work in di�erential game theory, there are di�erences; the

H1 setting emphasizes the time-invariant, in�nite horizon context where

stability is a major issue. For example, in the H1-theory solutions of an

algebraic Riccati equation are uniquely determined by a stabilizing side

condition whereas in the time-varying �nite horizon context solutions of

a di�erential Riccati equation are uniquely speci�ed by an initial condi-

tion. Another major distinctive feature of H1 control is its emphasis is

on measurement feedback, a feature not treated in traditional di�erential

games. The recent book [1] treats the H1-control problem (including some

results for the measurement feedback problem) from the game theory point

of view; these authors use dynamic programming ideas for the smooth case

and convert to a Hamiltonian rather than viscosity solution formulation to

handle some nonsmooth cases. A recent treatment of the role of viscosity

solutions in both deterministic and stochastic control problems is [10].

The purpose of this paper is to extend one of the existing studies on

the nonlinear H1-control problem (speci�cally the necessity analysis of

the authors in [2] on the measurement feedback problem) to the case of

a nonsmooth storage function. In this paper we deal only with the L2-

gain condition in the formulation of the H1-control problem; the internal

stability side condition is a separate issue which under appropriate condi-

tions can be handled in the same way as in the smooth case (see [14, 15]).

As preparation and to keep the paper self-contained, we also develop the

ideas in detail for the state feedback problem. We invite others with more

expertise in nonsmooth analysis to improve these results in due time.

The �rst section of the paper discusses the role of a storage or energy

function for a 
-gain stable nonlinear system as originally set down in [24]

and [12]. We recall the recent result of James [18] that a storage function

for an �nite-gain stable system is necessarily a viscosity subsolution for a

related Hamilton-Jacobi equation and conversely. Here we add the result

that the available storage function under certain conditions is actually a

viscosity solution of the Hamilton-Jacobi equation. Related results are well

known in various control and di�erential game contexts and in fact were

a motivation for the introduction of viscosity solutions (see [20, 8, 11, 9]).

The second section obtains the existence of a nonnegative-valued viscos-

ity subsolution of an appropriate Hamilton-Jacobi equation as a necessary

condition for the existence of a solution of the H1-control state feedback

problem. The last section extends the analysis (to the extent possible) to

the measurement feedback case; there the role of viscosity subsolutions to

analogues of the two Riccati equations playing a prominent role in the well

known solution of the linear case (see [7]) is developed.

The authors would like to thank Mete Soner and William McEneaney of
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Carnegie-Mellon University for some helpful insight into viscosity solutions

and the referee for some useful remarks.

1 The Nonlinear Bounded Real Lemma

Consider a nonlinear input-output system (�) assumed to be a�ne with

respect to the input signal w

_x = A(x) +B(x)w

z = C(x) +D(x)w:
(1:1)

Here we take the state vector x(t) to have values in the state space X

which we take to beRN, the input vector w(t) has values in the input space

W = Rnw and the output vector z(t) to have values in the output space

Z = Rnz . We assume that A(x); B(x); C(x) and D(x) are continuously

di�erentiable matrix functions (i.e., are in the class C1) such that

A(0) = 0; C(0) = 0

(so 0 in RN is an equilibrium point if w is taken equal to 0). We assume

that the unique solution x(t) of the di�erential equation in (�) exists for all

time t > 0 for any initial condition x(0) and input w 2 Lnw
2;e (inputs w with

values in Rnw which are norm square-integrable on any �nite subinterval

of [0;1)).

We are interested in studying such systems (�) having L2-gain at most


 (for some prescribed 
 > 0); by this we mean that the output z associated

with any input w 2 Lnw
2;e satis�esZ T

0

kz(t)k2dt � 
2
Z T

0

kw(t)k2dt (1:2)

for all T < 1 if we take x(0) = 0. As developed in [24, 12], a state space

mechanism for the validity of (1.2) is the existence of an energy or storage

function ' : X ! R+ = fr 2 R : r � 0g with '(0) = 0 such that the

energy balance inequality

'(x(t2))� '(x(t1)) �

Z t2

t1

f
2kw(t)k2 � kz(t)k2gdt (EB)

holds over all paths (w(t); x(t); z(t)) of the system �. Indeed, when spe-

cializing (EB) to t1 = 0 with x(0) = 0, then the fact that 0 � '(x(t)) and

0 = e(0) = '(x(0)) in (EB) gives

0 � '(x(T ))

�

Z T

0

f
2kw(t)k2 � kz(t)k2gdt
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from which (1.2) follows.

Conversely, if the system � has L2-gain at most 
 and if the system is

completely reachable in the sense that there exists a control input to drive

the state vector x(t) from x(0) = 0 to any prescribed state x(T ) = x0
in �nite time T , then (see [12]) storage functions exists; two such are the

required storage function 'r given by

'r(x) = inf
w2L

nw

2e
;t0�t1

x(t0)=0;x(t1)=x

Z t1

t0

(
2w(t)Tw(t)� z(t)T z(t))dt (1:3)

and the available storage function 'a given by

'a(x) = � inf
w2L

nw

2e
;t2�t1

x(t1)=x

Z t2

t1

(
2w(t)Tw(t) � z(t)T z(t))dt: (1:4)

Moreover, any other storage function ' must satisfy

'a(x) � '(x) � 'r(x):

While it is well known that storage functions need not be smooth even

if the original data of the system (1.1) is smooth, the following simple argu-

ment guarantees continuity under a controllability hypothesis. As a matter

of notation let us denote by x(t) = x(t; t0;x0; w) and z(t) = z(t; t0;x0; w)

the solution of (1.1) with initial condition x(t0) = x0 and input w(t) over

the interval [t0; t]. Let us say that the dynamical system (1.1) is locally
uniformly controllable if , for each x1 in RN there exists a � > 0 and a

continuous function � : [0; �) ! R+ with �(0) = 0 such that, for any

any state x2 in RN with kx2 � x1k < �, there exists �nite times t1 < t2
and an L2 input signal w de�ned over the time interval [t1; t2] such that

x(t2; t1;x1; w) = x2 and

kwkLnw
2

([t1;t2]) � �(kx2 � x1k):

Proposition 1.1. Assume that the system (1.1) is locally uniformly con-

trollable and that ' : RN ! R+ is a storage function for (1.1). Then ' is

continuous.

Proof: Suppose that ' has a discontinuity at x0 2 RN. Then there is a

sequence of states xn with limn!1 xn = x0 such that j'(xn)�'(x0)j � �

for some � > 0. By choosing a subsequence if necessary we may sup-

pose that '(xn) � '(x0) has a �xed sign. As a �rst case suppose that

'(xn)�'(x0) � � for all n. Use the local uniform controllability hypothe-

sis to choose, for all n su�ciently large, a control wn on an interval [t0; tn]
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with x(tn; t0;x0; wn) = xn and kwnkLnw
2

([t0;tn]) � �(kxn � x0k) where

� : [0; �) ! R+ is continuous with �(0) = 0. In particular, we see that

kwnkLnw
2

([t0;tn]) tends to zero as n tends to in�nity. On the other hand the

energy balance inequality (EB) and the construction of the sequence fxng

gives
0 < � � '(xn)� '(x0)

�

Z tn

t0

[kwn(t)k
2 � kzn(t)k

2]dt

� kwnkLnw
2

([0;tn])

which leads us to a contradiction. The case where '(x0) � '(xn) � � can

be handled in a similar way by choosing a control wn on intervals [tn; t0]

(tn < t0) with w(t0; tn;xn; wn) = x0.

We henceforth will consider only continuous storage functions '. If '

is a smooth storage function, then the energy balance inequality (EB) can

be written in in�nitesimal form

r'(x) � [A(x) +B(x)] + (C(x) +D(x)w)T (C(x) +D(x)w) � 
2wTw � 0:

As this is required to hold for all w 2 W we get that ' is a solution of an

in�nitesimal form of the energy balance inequality, namely the Hamilton-

Jacobi inequality

H(x;r'(x)) � 0 (EB0)

where

H(x; p) = max
w
fpT [A(x) +B(x)w]

+ [C(x) +D(x)w]T [C(x) +D(x)w] � 
2wTwg:
(1:5)

If �(x) := 
2I � D(x)TD(x) is (strictly) positive de�nite for all x, then

H(x; p) can be written explicitly as

H(x; p) =p[A(x) +B(x)�(x)�1D(x)TC(x)] +
1

4
pTB(x)�(x)�1B(x)T p

+ C(x)T [I +D(x)�(x)�1D(x)T ]C(x)

but this representation is not essential for the analysis to follow.

However it can easily happen that a storage function ' is not smooth.

Nevertheless, as was shown in [18], any such storage function ' satis�es

the in�nitesimal inequality (EB0) in the generalized viscosity sense intro-

duced by Crandall and Lions (see [5, 6, 3, L, 4]). The result from [18] is

stated more generally where more general supply rates and not necessarily

5



J.A. BALL AND J.W. HELTON

continuous storage functions are allowed; we formulate the result only for

the situation considered here.

To state the result we �rst recall the notion of viscosity solution. If '

is a continuous function de�ned on an open set O in RN with values in R

and x0 2 O, the superdi�erential of ' at x0 is the set, denoted by D
+'(x0),

of all p0 2 RN such that

lim sup
x!x0

('(x) � '(x0)� pT
0
(x � x0))kx� x0k

�1 � 0 (1:6)

Similarly the subdi�erential of ' at x0 is the set, denoted by D�'(x0), of

all p0 2 RN such that

lim inf
x!x0

('(x) � '(x0)� pT
0
(x� x0))kx� x0k

�1 � 0:

We say that the function ' is a viscosity subsolution of

H(x;r'(x)) = 0 (1:7)

in O if

H(x; p) � 0 for all x 2 O and for all p 2 D+'(x): (1:8)

Similarly ' is a viscosity supersolution of (1.7) if

H(x; p) � 0 (1:9)

for all x 2 O and all p 2 D�'(x). If ' is both a viscosity subsolution and

a viscosity supersolution, we say that ' is a viscosity solution.

Theorem 1.2 (see [18]). Suppose that ' : RN ! R+ is continuous.

Then ' is a storage function for the system (1.1) if and only if ' is a

viscosity supersolution of

�H(x;r'(x)) = 0

where H is given by (1.5).

Remark 1.1. By reversing the direction of time in the proof of Theorem

3.1 from [18], one can also show that ' : RN ! R+ is a storage function

for the system (1.1) if and only if ' is a viscosity subsolution of

H(x;r'(x)) = 0

with H as in (1.5). Thus, in this context at least, the inequality

H(x; p) � 0

6
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holding for all p 2 D+'(x) for each x is equivalent to the same inequality

holding for all p 2 D�'(x) for each x.

The extremal storage functions 'r and 'a are rather special. We shall

show that under certain conditions 'a is a viscosity solution of

�H(x; 'a(x);r'a(x)) = 0

and that 'r is a viscosity solution of

H(x; 'r(x);r'r(x)) = 0:

The following properties of 'a and 'r provide motivation for the hypotheses

to follow.

Proposition 1.3. For any t0 < t1 < t2,

sup
w2L

nw

2
([t1;t2])

f'a(x(t2))� 'a(x0)�

Z t2

t1

(
2w(t)Tw(t) � z(t)T z(t))dtg = 0:

(1:10)

If the system is reachable, then

sup
w2L

nw

2
([t0;t1])

f'r(x0)� 'r(x(t0)) +

Z t1

t0

(
2w(t)Tw(t) � z(t)T z(t))dtg = 0:

(1:11)

Here our convention is

x(t) = x(t; t1;x0; w); z(t) = z(t; t1;x0; w): (1:12)

Proof: We prove only (1.10); equation (1.11) follows analogously. To

condense notation, set

q(x;w) = 
2wTw � [C(x) +D(x)w]T [C(x) +D(x)w]:

Then by de�nition

�'a(x0) �

Z tf

t1

q(x(t); w(t))dt

=

Z t2

t1

q(x(t); w(t))dt +

Z tf

t2

q(x(t); w(t))dt

(1:13)

7
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for all w 2 Lnw
2
([t1; tf ]) where t0 < t1 < tf and where x(t) and z(t) are as

in (1.12). Taking the in�mum over w 2 Lnw
2
(t2; tf ) in the second term on

the right hand side in (1.13) gives

�'a(x0) �

Z t2

t1

q(x(t); w(t))dt � 'a(x(t2):

This gives (1.10) with � in place of =.

To get the reverse inequality, let � > 0. Then by de�nition there is a

w� 2 L
nw
2
(t1; tf ) so that

'1(x0) + � >

Z tf

t1

q(x�(t); w�(t))dt

=

Z t2

t1

q(x�(t); w�(t))dt +

Z tf

t2

q(x�(t); w�(t))dt

�

Z t2

t1

q(x�(t); w�(t))dt � 'a(x�(t2)):

From this the reverse inequality in (1.10) follows easily.

In order to prove that 'a is a viscosity solution of �H(x;r'a(x)) = 0

we need a slight strengthening of (1.10), namely:

(H1) Given x0 2 Rn and t1 < t2 with t2 � t1 su�ciently small there is a
bounded set Bx0 � Rnw such that

sup
w2L

nw

2
([t1;t2])

w(t)2Bx0
8t

f'a(x(t2))� 'a(x0)

�

Z t2

t1

(
2w(t)Tw(t) � z(t)T z(t))dtg = 0

where x(t) and z(t) are given by (1.12).

Similarly, to prove that 'r is a viscosity solution of H(x;r'(x)) = 0 we

shall need the following strengthening of (1.11):

(H2) Given x0 2 Rn and t0 < t1 with t1� t0 su�ciently small, there is a
bounded set Bx0 � Rnw so that

sup
w2L

nw

2
([t0;t1])

w(t)2Bx0
8t

f'r(x0)� 'r(x(t0))

�

Z t1

t0

(
2w(t)Tw(t) � z(t)T z(t))dtg = 0

where x(t) and z(t) are given by (1.12).
We are now ready to state the following result.
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Theorem 1.4. Assume that the system � in (1.1) has �nite gain at most


 and is uniformly controllable, so 'a and 'r are both well-de�ned and

continuous storage functions for �. Then:

(i) 'a is a viscosity solution of �H(x;r'(x)) = 0 if (H1) is satis�ed.

(ii) 'r(x) is a viscosity solution of H(x;r'(x)) = 0 if (H2) is satis�ed.

Proof: We prove assertion (i) only. Assertion (ii) follows in the same way

by running the system in backwards time.

We have already observed that 'a is a storage function for the system

� (1.1). Hence, by Theorem 1.2 we know that 'a is a viscosity superso-

lution of �H(x;r'(x)) = 0. It remains to show that 'a(x) is a viscosity

subsolution of �H(x;r'(x)) = 0 if hypothesis (H1) holds.

As a matter of notation throughout the proof, set

q(x;w) = 
2wTw � [C(x) +D(x)w]T [C(x) +D(x)w]:

Suppose that 'a(x) is not a viscosity subsolution of �H = 0. Then there

is an x0 2 Rn, a p 2 D+'(x0) and an � > 0 so that

pT [A(x0) +B(x0)w] � q(x0; w) � �� < 0 (1:14)

for all w 2 Rnw . By an equivalent characterization of the super gradient

(see e.g. [3] or [4]) there is smooth function  : RN ! R so that (i)

 (x0) = 'a(x0), (ii) r (x0) = p and (iii) 'a(y)� (y) � 0 for all y 2 RN.

Then (1.14) becomes

r (x0)
T [A(x0) +B(x0)w] � q(x0; w) � �� < 0 (1:15)

for all w 2 Rnw . By assumption the expression on the left side of (1.15) is

uniformly continuous. Hence there is a � > 0 so that

r (x(t))T [A(x(t)) +B(x(t))] � q(x(t); w(t)) � �
�

2
(1:16)

for t1 � t � t1 + � for any w 2 Lnw
2
([t1; t1 + �]) as long as w(t) 2 Bx0 ,

where Bx0 is as in (H1). Integrating (1.16) from t1 to t1 + � gives us

 (x(t1 + �))�  (x0)�

Z t1+�

t1

q(x(t); w(t))dt � �
�

2
�: (1:17)

for all w 2 Lnw
2
([t1; t1 + �]) with w(t) 2 Bx0 for all t.

On the other hand, if we take � su�ciently small, the hypothesis (H1)

combined with the known relations

 (x0) = 'a(x0);  (x) � 'a(x) for all x

9
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gives us

sup
w2L

nw

2
([t1;t1+�])

w2Bx0
8t

f (x(t1))�  (x0)�

Z t1+�

t1

q(x(t); w(t))dtg � 0;

a direct contradiction to (1.17). It follows that 'a(x) is a viscosity solution

of �H(x;r'(x)) = 0 as claimed.

Remark 1.2. The proof of Theorem 1.4 is a modi�cation of the proof of

Theorem 4.1 in [8]. There it is proved that upper and lower value functions

for a di�erential game are viscosity solutions of associated (time-varying)

upper and lower (respectively) Hamilton-Jacobi-Isaacs equations. Also it

is assumed that both players use controls in a bounded set (the analogue

of our hypotheses (H1) and (H2)). We also remark that the smooth case of

Theorem 1.4 is obtained in [16] but with a somewhat di�erent hypothesis.

2 The H1 Control State Feedback Problem

In this section we consider the nonlinear H1-control state feedback prob-

lem. For simplicity we consider only plants which are a�ne in the input

variables. Thus we assume that we are given a plant P : (w; u) ! z

described by state space equations

_x = A(x) +B1(x)w +B2(x)u

z = C1(x) +D12(x)u:
(2:1)

Here w is a reference or disturbance signal with values in Rnw , u is the

control signal with values in Rnu , z is the error signal with values in Rnz

and x is the state vector assumed to have values in Rn. We assume that

A;B1; B2; C1; D12 are continuously di�erentiable matrix functions on Rn

of appropriate sizes such that A(0) = 0; C1(0) = 0 (so 0 in Rn is an

equilibrium point when w(t) and u(t) are taken equal to 0). In order

that certain explicit formulas make sense it is convenient to assume that

x ! e1(x) := D12(x)
TD12(x) is uniformly positive de�nite and uniformly

bounded on Rn, but the general analysis goes through without this as-

sumption. The problem of interest here (the nonlinear L2-gain problem

with state feedback) is to design a state feedback u = c(x) (where we take

c(0) = 0) so that the resulting closed loop system Pc : w ! z given by

_x = A(x) +B2(x)c(x) +B1(x)w

z = C1(x) +D12(x)c(x)
(2:2)

is well-posed (i.e. there exists a unique solution x(t) of the �rst of equations
(2.2) for all t > 0 for any initial value x(0)) and has L2-gain at most 
 (for

10
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some prespeci�ed tolerance level 
). This is the nonlinear H1-control state

feedback problem, apart from the stability side constraint with which we

do not deal in this paper (see the Introduction).

To analyze the L2-gain property, we apply the analysis of the previous

section and seek a storage function ' : Rn ! R+ with '(0) = 0 which

satis�es the energy balance inequality (EB) for the closed loop system.

We therefore formulate the '-dissipative state feedback problem

(' � DISSFBK) : given a system as in (2.1), �nd a state feedback law
u = c(x) and a continuous nonnegative real-valued storage function ' :

Rn ! R+ so that the energy balance inequality

'(x(t2))� '(x(t1)) �

Z t2

t1

f
2kw(t)k2 � kz(t)k2gdt

holds on all paths (x(t); w(t); z(t)) of the closed loop system (2.2).

Note that if u = c�(x) is a solution of the L2-gain state feedback

problem as posed above, then the results of [12] imply the existence of

a nonnegative, possibly extended real valued, not necessarily smooth stor-

age function ' satisfying (EB) which has �nite values on reachable states.

Conversely, if (u = c�(x); ') is a solution of (' � DISSFBK) such that

the associated closed loop system ((2.1) with u = c�(x) is well-posed, then

u = c�(x) provides a solution of the L2-gain state feedback problem. Pre-

vious works on the nonlinear H1-control state feedback problem [1, 21,

22] assume that there exist a smooth solution of (EB). We point out also

that in [21] it is shown that there exists a solution of (EB) which is smooth

at least in a neighborhood of the origin if the linearized problem is in the

strictly suboptimal case. In any case, the ('�DISSFBK) problem (with

' only assumed to be semicontinuous) appears to be a reasonable next step

towards consideration of the general H1 problem.

A consequence of Theorem 1.2 is that, under certain circumstances, the

integral form of the ('�DISSFBK) can be translated to an in�nitesimal

form; the following result summarizes the situation.

Theorem 2.1. If the pair (c�; ') (where ' : Rn ! R+ is continuous with

'(0) = 0 and c� : Rn ! Rnu is continuously di�erentiable) solves the

('�DISSFBK) problem, then ' is a viscosity supersolution of

�Hc�(x)(x;r'(x)) = 0 (2:3)

where

Hc(x; p) = max
w
fpT [A(x) +B1(x)w +B2(x)c]

+ [C1(x) +D12(x)c]
T [C1(x) +D12(x)c]� wTwg;

11
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or equivalently,

Hc(x; p) =p
T [A(x) +B2(x)c+

1

4
B1(x)B1(x)

T p]

+ [C1(x) +D12(x)c]
T [C1(x) +D12(x)c]:

(2:4)

In particular

min
c

max
p2D�'(x)

Hc(x; p) � 0: (2:5)

Conversely, if the continuous function ' : Rn ! R+ and C1 function

c� : R
n ! Rnu are such that

max
p2D�'(x)

Hc�(x)(x; p) � 0;

then (u = c�(x); ') is a solution of the ('�DISSFBK) problem.

Proof: Simply apply Theorem 1.2 to the closed loop system associated

with the L2-gain state-feedback problem.

Remark 2.1. In the case where ' is smooth, (D�'(x) = fr'(x)g is a

singleton), (2.5) can be solved explicitly for c�(x)|

c�(x) = �e1(x)
�1[

1

2
B2(x)

Tr'(x) +D12(x)
TC1(x)]

where we assume that e1(x) = D12(x)
TD12(x) is uniformly invertible|

from which (2.5) assumes the form

Hc�(x)(x;r'(x)) = r'(x)T [A(x) �B2(x)e1(x)
�1D12(x)

TC1(x)]

+
1

4
r'(x)T [B1(x)B1(x)

T �B2(x)e1(x)
�1B2(x)

T ]r'(x)

+ C1(x)
T [I �D12(x)e1(x)

�1D12(x)
T ]C1(x) � 0:

This agrees with the solution of the H1-control state feedback problem for

the nonlinear case as presented elsewhere (see [22]) and specializes to the

inequality version of the X-Riccati equation in [7] in the linear case (with
1

2
r'(x) = Xx).

Remark 2.2. Note that Hc(x; p) is quadratic in p with positive semide�-

nite Hessian. Hence the maximum over p 2 D�'(x) necessarily is attained

at a boundary point of D�'(x).

Remark 2.3. Note that if (2.5) holds for some continuous ', then a natural

candidate for c� so that (c�; ') solves (2.3) is any function x! c�(x) such

that

max
p2D�'(x)

Hc�(x)(x; p) = min
c

max
p2D�'(x)

Hc(x; p): (2:6)
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Unfortunately, there may be no solution c� of (2.6) which is smooth.

3 The H1-Control Measurement Feedback Problem

In this section we consider a plant P as in Section 2 but augmented by an

additional output signal y with values in Rny which serves as a measure-

ment signal. We assume that the plant P : (w; u) ! (z; y) is described by

state space equations of the form

_x = A(x) +B1(x)w +B2(x)u;

z = C1(x) +D12(x)u;

y = C2(x) +D21(x)w:

(3:1)

In addition to the assumptions on A(x); B1(x); B2(x); C1(x); D12(x) as in

Section 2, we assume that C2 and D21 are continuously di�erentiable ma-

trix functions of appropriate sizes with C2(0) = 0. The L2-gain measure-

ment feedback problem which we consider here is to construct a dynamic

compensator K : y ! u given in terms of a state space realization of the

form
_� = a(�) + b(�)y

u = c(�)
(3:2)

(where � takes values in the compensator state space Rn0 , a, b and c are

smooth (continuously di�erentiable) functions with a(0) = 0; c(0) = 0) so

that the resulting closed loop system (3.1) and (3.2) is well-posed and has
L2-gain at most 
 for some prespeci�ed tolerance level 
. By the discussion
in Section 1, the L2-gain condition is satis�ed once we �nd an energy (or

storage) function ' = '(x; �) : Rn � Rn0 ! R+ such that the energy

balance inequality

'(x(t2); �(t2))� '(x(t1); �(t1))

�

Z t2

t1

f
2kw(t)k2 � kz(t)k2gdt
(EB)

is satis�ed over all trajectories (x(t); �(t); w(t); z(t)) of the closed loop sys-

tem. In general there is no a priori reason why such a ' need be smooth.

Here we focus on what we call the '-dissipative measurement feedback

problem:

(' �DISMFBK): given a plant P as in (3.1), �nd a compensator K =

(a; b; c) as in (3.2) and a continuous ' : Rn �Rn0 ! R+ so that (EB) is
satis�ed for the closed loop system (3.1) - (3.2).

13
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We remark that in [2] the smooth version of this problem (where ' was

required to be smooth) was called simply the '-dissipative feedback (' �

DISFBK) problem.

Application of Theorem 1.2 to the ('�DISMFBK) problem leads im-

mediately to the following in�nitesimal version of the dissipation inequality

(EB).

Theorem 3.1. Suppose the collection (a�; b�; c�; ') is a solution of the

('�DISMFBK) problem, where ' : Rn ! R+ is continuous and where

a�; b�; c� are all of class C
1. Then ' is a viscosity supersolution of

�Ha�(�);b�(�);c�(�)(x;rx'(x; �);r�'(x; �)) = 0 (3:4)

where

Ha;b;c(x; pz ; p�) : =

max
w
fpTx [A(x) +B1(x)w +B2(x)c]

+ pT� [a+ bC2(x) + bD21(x)w]

+ [C1(x) +D12(x)c]
T [C1(x) +D12(x)c] � wTwg

or equivalently,

Ha;b;c(x; pz ; p�) = pTx [A(x) + B2(x)c+
1

4
B1(x)B1(x)

T px]

+ pT� [a+ bC2(x) +
1

4
be2(x)b

T p� +
1

2
bD21(x)B1(x)

T px]

+ [C1(x) +D12(x)c]
T [C1(x) +D12(x)c]

(3:5)

where e2(x) = D21(x)D21(x)
T . In particular,

max
�

min
a;b;c

max
x

max
(px;p�)2D�'(x;�)

Ha;b;c(x; px; p�) � 0: (3:6)

Conversely, if the continuous function ' : Rn�Rn0 ! R+ with '(0; 0) = 0

and the C1 functions a�(�); b�(�); c�(�) are such that

max
(px;p�)2D+'(x;�)

Ha�(�);b�(�);c�(�)(x; px; p�) � 0 (3:7)

for all (x; �), then (a�; b�; c�; ') is a solution of the (' � DISMFBK)

problem.

In the rest of this section we work with the in�nitesimal version of

the (' � DISMFBK) problem, namely: �nd a nonnegative continuous
function ' on Rn �Rn0 with '(0; 0) = 0 such that (3.6) holds, where H
is given by (3.5).

As a �rst reduction, we present the following necessary condition for

the existence of a solution to the in�nitesimal ('�DISMFBK) problem.
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Proposition 3.2. A necessary condition for the function ' to be a solution

to the in�nitesimal ('�DISMFBK) problem is

inf
a;b;c

max
(px;p�)2D�'(x;�)

Ha;b;c(x; px; p�) � 0 (3:8)

for all x and �.

Proof: By de�nition a solution ' of the in�nitesimal (' �DISMFBK)

problem satis�es (3.6). For each �xed �, interchange of the order of max

and min gives the inequality

sup
x

inf
a;b;c

max
(px;p�)

Ha;b;c(x; px; p�)

� min
a;b;c

max
x

max
(px;p�)

Ha;b;c(x; px; p�)

from which (3.8) follows.

As we shall see (as was done in [2]), the key step in analyzing this

condition further is the introduction of the subset Z' of Rn�Rn0 de�ned

by

Z' = f(x; �) : (px; 0) 2 D
�'(x; �) for some px 2 Rng (3:9)

SinceD�'(x; �) is a closed and convex subset ofRn�Rn0 , the complement

Zc
' of Z' in Rn �Rn0 has the characterization

Zc
' = f(x; �) : there exists a nonzero vector a 2 Rn0

so that aT p� � �� < 0 for some � > 0 for all p� 2 D
�

� '(x; �)g
(3:10)

We then have the following result.

Proposition 3.3. Assume that D�'(x; �) is a bounded set whenever

(x; �) =2 Z'. If (x; �) =2 Z' then

inf
a;b;c

max
(px;p�)2D�'(x;�)

Ha;b;c(x; px; p�) = �1: (3:11)

Hence a necessary condition for the in�nitesimal ('�DISMFBK) problem

to have a solution is that

sup
(x;�)2Z'

inf
a;b;c

max
(px;p�)2D�'(x;�)

Ha;b;c(x; px; p�) � 0: (3:12)

Remark 3.1. As in the state feedback case (see Remark 2.2 after Theorem

2.1) the maximum over (px; p�) 2 D�'(x; �) in (3.12) necessarily occurs
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on the boundary of D�'(x; �) since Ha;b;c(x; px; p�) is quadratic in (px; p�)

with positive semide�nite Hessian.

Remark 3.2. The hypothesis that D�'(x; �) is bounded is imposed for

convenience in the proof. The result is probably true more generally. In

any case in many circumstances viscosity solutions ' of Hamilton-Jacobi

equations are Lipschitz, in which case this boundedness hypothesis is au-

tomatically satis�ed (see [10]).

Proof: We work with the necessary condition (3.8) given by Proposition

3.2. First note that

inf
a

max
(px;p�)2D�'(x;�)

pT� a =

�
�1 if (x; �) =2 Z'
0 if (x; �) 2 Z'.

(3:13)

Indeed, if (x; �) =2 Z', then by (3.10) there is always a choice of a so that

max
(px;p�)2D�'(x;�)

pT� a < 0:

By rescaling a we can arrange the quantity max
p2D�'(x;�)

pT� a to be as small

as we like. This proves (3.13) in case (x; �) =2 Z'. If (x; �) 2 Z' then for

any a the choice p� = 0 achieves pT� a = 0 and therefore

max
(px;p�)2D�'(x;�)

pT� a � 0:

But the choice a = 0 always achieves

max
(px;p�)2D�'(x;�)

pT� aja=0 = 0

Thus (3.13) follows in case (x; �) 2 Z' as well.

Next we argue that

inf
a;b;c

max
(px;p�)2D�'(x;�)

ha;b(x; px; p�) =

�
�1 if (x; �) =2 Z'
0 if (x; �) 2 Z'.

(3:14)

where

ha;b(x; px; p�) =

pT� [a+ bC2(x) +
1

4
be2(x)b

T p� +
1

2
bD21(x)B1(x)

T px]:
(3:15)

Indeed, if (x; �) =2 Z' again by using the assumption that D�'(x; �) is

bounded and (3.10), we can choose a and then rescale a (with b; c �xed) to

make the quantity

max
(px;p�)2D�'(x;�)

ha;b(x; px; p�)
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as small as we like, and (3.14) follows in case (x; �) =2 Z'. The case (x; �) 2

Z' in (3.14) follows in the same way as for (3.13).

Finally note from (3.5) and (3.15) that

Ha;b;c(x; px; p�) = pTx [A(x) +B2(x)c+
1

4
B1(x)B1(x)

T px]

+ ha;b(x; px; p�)

+ [C1(x) +D12(x)c]
T [C1(x) +D12(x)c]:

(3:16)

In (3.16), if (x; �) =2 Z' then by appropriate choice of a while holding b and c

�xed, we can make the second term of (3.16) approach �1 uniformly with

respect to (px; p�) 2 D�' (x; �) while the �rst term is uniformly bounded

with respect to (px; p�) (by the assumed boundedness of D�'(x; �)) and

the last term is �xed. The assertion of Proposition 3.2 now follows.

We next obtain the analogues of the X- and Y -Riccati equations ap-

pearing in the linear theory (see [7]) as necessary conditions for solutions

of the in�nitesimal (' �DISMFBK) problem to exist.

Theorem 3.4. Assume that '(x; �) is a continuous function such that

D�'(x; �) is a bounded set whenever (x; �) =2 Z' (where Z' is given by

(3.9)). Then necessary conditions for ' to be a solution to the in�nitesimal

(' - DISMFBK) problem are:

(i)

min
c

max
(px;0)2D�'(x;�)

Hc(x; px) � 0 (3:17)

for all (x; �) 2 Z', where Hc(x; p) is the Hamiltonian for the (' �

DISSFBK) problem given by (2.4) and Z' is given by (3.9)

(ii)

infeb max
px2D

�

1
'(x;0)

Keb(x; px) � 0 (3:18)

for all x in Rn, where Keb(x; px) is given by

Keb(x; px) = pTx [A(x) +
1

4
B1(x)B1(x)

T px]

+eb[C2(x) +
1

2
D21(x)B1(x)

T px] +
1

4
ebe2(x)ebT + C1(x)

TC1(x):

Remark 3.3. In the smooth case where D�'(x; �) = fr'(x; �)g, as in

Remark 2.1 (3.17) takes the explicit form

rx'(x; �)
T [A(x) �B2(x)e1(x)

�1D12(x)
TC1(x)]

+
1

4
rx'(x; �)

T [B1(x)B1(x)
T �B2(x)e1(x)B2(x)

T ]rx'(x; �)

+ C1(x)
T [I �D12(x)e1(x)

�1D12(x)
T ]C1(x) � 0
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for all (x; �) 2 Z'. If we assume that Z' has the form Z' = f(x; �(x)) :

x 2 Rng of a graph space over the �rst coordinate space and specialize to

the linear case, we pick up the inequality version of the X-Riccati equation

from [7] (with 1

2
rx'(x; �(x)) = Xx).

As for condition (3.18), in the case where ' is smooth, we have

Keb(x;rx'(x; 0)) = rx'(x; 0)
T [A(x) +

1

4
B1(x)B1(x)

Trx'(x; 0)]

+eb[C2(x) +
1

2
D21(x)B1(x)

Trx'(x; 0)] +
1

4
ebe2(x)ebT :

As this expression is quadratic in eb, the minimum over eb can be calculated

explicitly if we assume that e2(x) is invertible. In this case, the critical

value of eb is given by

eb� = �2[C2(x)
T +

1

2
rx'(x; 0)

TB1(x)D21(x)
T ]

and condition (3.18) becomes

mineb Keb(x;rx'(x; 0)) =Keb�(x;rx'(x; 0))

=rx'(x; 0)
T [A(x) �B1(x)D21(x)

T e2(x)
�1C2(x)]

+ C1(x)
TC1(x)� C2(x)

T e2(x)
�1C2(x)

+
1

4
rT
x'(x; 0)

T [B1(x)B1(x)
T

�B1(x)D21(x)
T e2(x)

�1D21(x)B1(x)
T ]rx'(x; 0)

�0:

In the linear case, this condition specializes to the inequality version of the

Riccati equation for Y �1 in the solution presented in [7] (with 1

2
rx'(x; 0) =

Y �1x).

Proof of Theorem 3.4: To prove (i), note that

Ha;b;c(x; px; 0) = Hc(x; px)

where Ha;b;c(x; px; p�) is the Hamiltonian for the ('�DISMFBK) prob-

lem given by (3.5) while Hc(x; p) in general is the Hamiltonian for the

(' � DISSFBK) problem given by (2.4). Moreover we have the trivial

inequality

inf
a;b;c

max
(px;0)2D�'(x;�)

Ha;b;c(x; px; 0) � inf
a;b;c

max
(px;p�)2D�'(x;�)

Ha;b;c(x; px; p�)

18
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whenever (x; �) 2 Z'. >From the necessity of condition (3.8), we see that

(3.17) is necessary for the existence of a solution of the in�nitesimal (' �

DISMFBK) problem as asserted. To prove (ii), simply restrict (x; �) to

(x; 0) in (3.8).

Remark 3.4. As an example, consider the case where the storage func-

tion ' is piecewise smooth, i.e., the discontinuities of its �rst order deriva-

tives all occur on a hypersurface and have simple jumps. As the sim-

plest such scenario, write x 2 Rn as x = (x1; � � � ; xn) and suppose that

' is continuously di�erentiable in (x2; � � � ; xn; �) for each �xed x1 and

that, for each �xed (x2; � � � ; xn; �), the derivative of ' with respect to

x1 is continuous except for possibly a simple jump discontinuity at the

point x10 = x10(x2; � � � ; xn; �). Then for each (x; �) 2 Z', the set fpx :

(px; 0) 2 D
�'(x; �)g is a singleton if (x; �) does not have the form (x; �) =

(x10(x2; � � � ; xn; �); x2; � � � ; xn; �) and has the form of an interval

f(1� s)px�(x; �) + spx+(x; �)g

otherwise, where px�(x; �) and px+(x; �) are the one-sided gradients of

' computed from either side of the hypersurface x1 = x10(x2; � � � ; xn; �).

Since (as in Remark 2.2) the maximum in (3.17) necessarily is attained on

the boundary of the set D�'(x; �), (3.17) assumes the form

min
c

max fHc(x; px�(x; �)); Hc(x; px+(x; �))g:

The minimizing c can be computed explicitly as

c�(x; �) = �e2(x)
�1[B2(x)

TX(x; �) +D12(x)C1(x)]

where

X(x; �) =
1

2
px+(x; �) if Hc�+(x; px+(x; �)) � Hc��(x; px�(x; �))

=
1

2
px�(x; �); otherwise

where

c�+(x; �) =� e2(x)
�1[

1

2
B2(x)

T px+(x; �) +D12(x)C1(x)]

c��(x; �) =� e2(x)
�1[

1

2
B2(x)

T px�(x; �) +D12(x)C1(x)]:

If Z' can be expressed as a graph space Z' = f(x(�); �) : � 2 Rn0g over

the second coordinate space, then a natural candidate (however possibly

not smooth) for the compensator output map then is cK�(�) = c�(x(�); �).
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Remark 3.5. An interesting open question concerns the Separation Prin-

ciple proved in [2]. It says that in the smooth case, if (3.4) holds with

equality and certain other nondegeneracy conditions hold, then the com-

pensator dynamics aK(�) necessarily has the form aK(�) = aK�(�) where

aK�(�) = A(�) +B1(�)B1(�)
TX(�) +B2(�)cK�(�)

� bK(�)[C2(�) +D21(�)B1(�)
TX(�)]

where the input map bK(�) for the compensator still remains to be found

and cK�(�) is as in Remark 3.4. Extensions of these results to the non-

smooth case requires further understanding of the calculus of generalized

gradients.
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