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Abstract

We consider the stabilization problem for three dimensional ho-

mogeneous polynomial systems, and derive an intrinsic su�cient con-

dition for stablizability. We show that this condition is satis�ed by

an open set in the space of homogeneous systems of a �xed degree.
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1 Introduction

Asymptotic stabilization of nonlinear control systems has been a subject
of active research over the past several years. The major motivating factor
has been the realization that existing theories on control systems analysis
and design are inadequate for solving modern day problems in robotics,
advanced aircraft, smart structures, and a variety of complex nonlinear
systems. In order to solve these complicated problems, more and more
advanced mathematical tools have begun to be employed, thus leading way
to the development of a rich theory of nonlinear control systems analysis.

One of the classes of nonlinear systems that display a structure, po-
tentially rich enough to enable a full understanding of the stabilizability
aspects, is that of homogeneous polynomial systems. These have the gen-
eral structure,

_x = f(x) +

mX

i=1

biui;

x 2 <n ; ui 2 <; bi 2 <
n; (1.1)
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where f is a vector �eld, which, when written using the standard coordi-
nates of <n, has the property that all entries are homogeneous polynomials
of some degree p > 0. The case when p = 1 is the linear case, which has
been completely understood for well over three decades. The �rst nontriv-
ial class of such systems arises when m = 1; n = 3, and p = 2, i.e. three
dimensional, quadratic, homogeneous systems. The stabilizability of this
class was considered and resolved for a generic subset in [6]. Here we ad-
dress the case m = 1; n = 3, and p � 2. We consider a system of the
form,

_x = f(x) + bu; x 2 <3; b 2 <3; u 2 <; (1.2)

where f(x) is a homogeneous polynomial vector �eld, and b is a constant
vector �eld. The problem considered here is under what conditions on f and
b can one construct a positively homogeneous feedback function u = �(x)
of degree p which will asymptotically stabilize (1.2).

In addition to the rich mathematical structure that motivates the prob-
lem, one can consider this as a stabilization problem for systems with a pth

order singularity at an equilibrium. Vector �elds f and b are the pth order
and the zeroth order jets of the state and the input vector �elds. We will
illustrate this aspect by considering an example of a system undergoing
Hopf/Hopf/Stationary bifurcation.

2 Preliminaries on Stabilization of Three-Dimensional

Homogeneous Systems

In this section we consider a system,

_z = F (x) + bu; x 2 <3; b 2 <3; u 2 <; (2.1)

where F is a homogeneous vector �eld of some degree p > 0. Here, we
use the term homogeneity to indicate homogeneity along positive rays i.e.
F (�(x)) = �p(F (x)) for all x 2 <n, for all � > 0. Here we review some
important concepts that will play a key role in the analysis of our problem
in the subsequent chapters.

First, we will assume without any loss of generality, that b = [0; 0; 1]T .
This can be ensured via a linear coordinate transformation in <3. Now, we
can write (2.1) in the form,

_x = f(x; y)

_y = u (2.2)

where, x 2 <2; y 2 <; u 2 <; and f is positively homogeneous of degree p.
Pioneering work by Coleman (see [1] ) has shown that the most promising
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method of analyzing such systems is to �rst focus on the radial projection of
(2.2) onto the unit sphere in <3. This has the advantage of cutting down
the dimensionality of the state-space from three to two, and well-known
theorems due to Poincare and Bendixon, etc. give a complete description
of the phase-portrait of a dynamical system living on the two-dimensional
sphere.

Coleman's theorem states that asymptotic stability of a positively ho-
mogeneous three dimensional dynamical system on <3 is determined com-
pletely by the stability properties of the restriction of the system to the
cases generated by equilibria and periodic orbits of the projected system
to the unit sphere. Let us �rst focus on equilibria. The set of points on
S2 that could be rendered equilibria of the projected dynamics of (2.2) via
feedback are exactly those at which [f(x; y)T ; 0]T is parallel to the [xT ; 0]T

direction. Stability on cones generated by such equilibria is determined in
a rather straight-forward manner: stable if and only if f(x; y) and x point
in the opposite directions, and unstable if and only if they point in same
direction.

Following [6] we de�ne these crucial sets as follows: For arbitrary � 2 <
let Â� = f(x; y) 2 <n+1jf(x; y) = �xg. Let A� = Â� \ S2. Let,

A+ = [�>0A�;

A
�

= [�<0A�;

A+0 = A+ [ A0

A
<

= [�2<A� : (2.3)

Let,


 = f� : S1 ! S2 � poles j � is a C1 embedding; and

� is transversal to the meridiansg

The following lemmas were proved in [6]. Some results closely related
to these can be found in [4] and [5].

Lemma 2.1 (6) Suppose that the degree of homogeneity of (2.2) is not

less than two. If there is � 2 
 such that � \ A+0 = ; and � \ A
�
6= ;,

then the system is asymptotically stabilizable by C1 positively homogeneous

feedback.

Lemma 2.2 [6] Suppose that there exists a continuous curve � : [0; 1] !
S2 such that,

(i) �(0) = north pole,

(ii) �(1) = south pole,

(iii) � � A+0.

Then the system (2.2) does not admit a continuous positively homoge-

neous asymptotically stabilizing feedback function.
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In this paper we will use these two lemmas in order to analyze the
asymptotic stabilization problem for homogeneous cubic systems in three
dimensions.

3 Stabilization of Homogeneous Systems

Here we will consider the system,

_x1 = f1(x; y) =

p+1X

j=1

a1;j(x)y
p+1�j

_x2 = f2(x; y) =

p+1X

j=1

a2;j(x)y
p+1�j

_y = u; (3.1)

where x = (x1; x2) 2 <2; y; u 2 <; f1 and f2 are homogeneous degree p
polynomials. We will denote (f1; f2) by f:

In general, the primary motivation for studying the stabilizability of
higher order systems arises due to the need to solve stabilization problems
for systems undergoing bifurcation. Typically, the symmetries of the sys-
tem dictate the number of critical modes, and within such limitations it
is only necessary to study systems with low codimension. In view of this
aspect we will impose certain genericity hypothesis on f , primarily among
them (a1;1; a2;1) 6= 0: Following [6] we will �rst carry out some simpli�ca-
tions in the structure.

The structure of our system is,

_x1 = a1;1y
p + a1;2(x)y

p�1 + � � � + a1;p+1(x)

_x2 = a2;1y
p + a2;2(x)y

p�1 + � � � + a2;p+1(x)

_y = u: (3.2)

and without loss of generality we will assume that a1;1 6= 0. Let us �rst
rede�ne x1 by dividing the original x1 by a1;1, and x2 by x2 � (

a2;1

a1;1
)x1

in order to set a1;1 = 1 and a2;1 = 0: Now, A
<
(see section 2 for the

de�nition) is computed as,

�(x; y) = x2y
3 + (x2a1;2(x) � x2a2;2(x))y

2

+ � � � + [x1a1;p+1(x) � x2a2;p+1(x)] = 0:

�(x; y) = 0 is a homogeneous polynomial of degree p+ 1. We will be
concerned with the structure of its zeroes in <P 2. We will treat it as a pth

order polynomial in y with coe�cients which are polynomials in x.
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We will be concerned with the real branches of �(x; y) = 0, since this
set is precisely A

<
. From the expression for �(x), it follows that a branch

of �(x; y) = 0 can go to in�nity only if x2 goes to zero, i.e. asymptotes
occur only on the x2 = 0 axis.

Our results will only be applicable for the case in which these branches
do not meet each other, and the restriction of the projection on the x-plane
to each branch is a di�eomorphism. This is precisely the situation in which
�(x; y) = 0 has no multiple solutions at any x, which in turn is equivalent
to saying that the discriminant of �(x; y) is de�nite.

3.1 Case of systems of degree three

For the sake of illustration we will �rst consider the case p = 3. This case
already illustrates the primary ideas and concepts in the analysis carried
out here. These ideas will be generalized to the case of degree p systems
in the next subsection.

Lemma 3.1 (see e.g. [9] ) Consider a cubic polynomial equation with real

coe�cients, z3 + cz + d = 0: Its discriminant is 4c3+27d2. It will have
one or three real zeroes depending upon whether its discriminant is greater

or less than zero.

In our problem (p = 3), in order to gain some understanding of the
structure of the zeroes of �(x; y), let us �rst put � into the standard form
in the lemma by rede�ning y by [y + (x2a1;2(x) � x1a2;2(x))=(3x2)] to
get A

<
as the zero set of x2[y

3 + p(x)y + q(x)], where

c(x) = (x2a1;3 � x1a2;3)=x2 � 1=3x22(x2a1;2 � x1a2;2)
2;

d(x) = (x2a1;4 � x1a2;4)=x2 (3.3)

� ((x2a1;2 � x1a2;2)(x2a1;3 � x1a2;3))=(3x
2
2)

+ (2=27x32)(x2a1;2 � x1a2;2)
3:

Let us rewrite c(x) and d(x) as,

c(x) = �c(x)=x22;

d(x) = �d(x)=(x2)
3;

where �c(x) and �d(x) are homogeneous polynomials of degrees four and six

respectively. Now, the discriminant of �̂(x; y) is

�(x) = 4(c(x))3 + 27(d(x))3

= [4(�c(x))3 + 27( �d(x))2]=x62:
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After simpli�cation it can be observed that for a generic set of coe�-
cients, x22 can be factored out from 4(�c(x))3 + 27( �d(x))2. Hence we can
write,

�(x) = r(x)=x42

where r(x) is a tenth degree polynomial and x2 isn't a factor of r(x) for
generic values of ai;j ; i = 1; 2; j = 1; � � � ; 4. In this paper our focus is on
the case in which there aren't any multiple zeroes of �(x; y) = 0, which is
the same as r(x) is de�nite.

The obvious question we need to ask at this juncture is whether there
are any cubic systems for which r(x) is de�nite. The answer is a�rmative.
Let us consider the system,

_x1 = y3 � 2x2y
2 � (x21 + x22)y + 2(2x21x2 + x32)

_x2 = 2x1y
2 � 2x31

_y = u: (3.4)

For this system, �(x; y) = [x2y� 2(x21+x22)][y
2� (x21+x22)]. Therefore,

the zeroes of � are, 2(x21 + x22)=x2,
p
(x21 + x22) and �

p
(x21 + x22). Clearly,

these branches don't meet each other or cross themselves. Therefore, this
corresponds to a cubic system for which r(x) is de�nite. Indeed, it can
be veri�ed that r(x) is equal to �4(3x2 + 4y2)2(x2 + y2)3 which is clearly
negative de�nite.

Since the de�niteness of r(x) depends algebraically on the coe�cients
ai;j we conclude that there is a nonempty open subset of the space of cubic
systems for which r(x) is de�nite.

Our main theorem, which is stated in the next section, states that when
r(x) is de�nite the system is asymptotically stabilizable. The proof of this
theorem can be given without any additional complexities in the general
case of degree p systems. Therefore, we will conclude the discussion of
cubic systems here.

3.2 Case of systems of degree p

Now we return to the general situation of homogeneous systems of degree
p. In this case we can write the discriminant in the form,

�(x) = r(x)=xn2 (3.5)

where, r(x) is a polynomial which does not admit x2 as a factor for generic
values of coe�cients ai;j , and n is a positive integer which depends only
on p. We can modify the example 3.4 by multiplying �(x; y) by a positive
de�nite homogeneous degree p � 3 polynomial q(x; y) if p is odd, or by
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yq(x; y), where q(x; y) is a positive de�nite polynomial of degree p � 4 if
p is even in order to produce an example of a degree p systems in which
the real branches of �(x; y) = 0 don't meet each other, and each projects
di�eomorphically onto its image in the x-plane. Therefore, we conclude
that for a given degree of homogeneity p � 3 the space of systems for
which r(x) is de�nite is a nonempty open subset. Our main theorem states
that whenever r(x) is de�nite, the system is stabilizable.

Theorem 3.1 Consider the homogeneous polynomial system of degree p
given in (3.2). Let r(x) be as in (3.5). Suppose that r(x) is de�nite. Then,
the system is stabilizable.

Proof: From our hypotheses branches of solutions of �(x; y) = 0 will be
distinct, and each will project to its image in the x-plane di�eomorphically.
Let us focus on the x2 � 0 half of the cylinder kxk2 = 1. Let us number
the branches of � = 0 as B1; � � � ; Bk according to the decreasing order of
their y coordinates.

Without loss of generality we will assume that a2;2 > 0: Observe that
B1 has the asymptotic description near the x2 = 0 axis given by,

y = a12;2
(x1)

2

x2
;

where
a12;2 = (@=@x1)a2;2(x):

It then follows that if p is odd, points on B1 near the (x1; y)-plane are
in A+. Similarly, if p is even, points on B1 near the negative x1 axis will
be in A

�
. These assertions follow from the asymptotic description for the

_x1 equation, which is merely _x1 = yp. These conclusions hold for all
branches Bi which are asymptotic to the y axis.

Let Bn be the lowermost branch which is asymptotic to the y1 axis. For
the sake of simplicity we will drop the subscript n and denote it by B. Let
us denote its antipodal image by C. From the ensuing discussion it follows
that there is always a point z on B [ C which is in A

�
. Fix z henceforth.

By our de�nition of n; Bi; i > n are all �nite branches which project
di�eomorphically onto the the circle kxk = 1. Let L be a positive real
number such that jyj < L at all points on Bi; i > n, and greater than the
magnitude of the y coordinate of z.

Let us parametrize the cylinder kxk = 1 using the cylindrical polar
coordinate (�; y) (� = 0 at (1; 0)). y coordinates of points on Bi will be
smooth functions of �, denoted here by y = �i(�).

Let z = (�0; �n(�0)); (�0 2 (0; �)): Let � : [0; 2�]=f0; 2�g ! (0; 1]
be a smooth function such that that �(�) = 1 i� � = �0. Now de�ne a
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continuous curve � : [0; 2�]! cylinder,

�(�) = �(�)�n(�) + (1� �(�))�n+1(�); if �n(�) < L

= �(�)L + (1� �(�))�n+1(�); otherwise:

It is clear that � meets � = 0 only at z, and since z belongs to
A
�
, the hypothesis of Lemma 2.1 are satis�ed. Therefore we conclude the

stabilizability of the system.
Therefore, it follows that one can �nd a curve � : S1 ! S2 satisfying the

hypothesis of Lemma 1 by merely ensuring that it meets the �(x; y) = 0
curve at a point with negative x2 coordinate near the (x; y) - plane, and
by ensuring that � stays away from the �(x; y) = 0 curve elsewhere. This
concludes the proof of the theorem.

Remark 3.1 Observe that the only criterion used in the proof of the the-
orem is that the lowermost in�nite branch stays above all �nite branches
in the x1 > 0 half plane and it projects onto its image in the kxk = 1 circle
di�eomorphically. Therefore, the theorem will be applicable under a wider
range of hypotheses. However, it would be hard to verify these conditions
without resorting to graphical means �rst.

However, it is still worthwhile to point out that certain popular ex-
amples satisfy these generalized hypothesis. Among them is the case of
generalized integrator chains in the odd degree case. To be speci�c we
consider the case p = 3.

Example 3.1

_x1 = y3

_x2 = x31

_y = u:

This example is commonly known as the cubed integrator chain of
length three. Stabilizability of this system was discussed in [7], and shown
that this system is stabilizable by using homogeneous polynomial cubic
feedback of degree three. The techniques employed were highly special-
ized, and would not generalize to cover an open subset of systems.

For this system, �(x; y) = x2y
3 � (x1)

4 = 0: Therefore, A
<
consists

of the curve, y = ( (x1)
4

x2
)
1

3 . Recall that a point on A
<
belongs to A

�
if

and only if < x; f(x) > < 0. On

A
<
; < x; f(x) > = x1y

3 + x31x2 =
(x1)

5

x2
+ (x1)

3x2:

Therefore, A
�

= f(x1; x2; (
(x1)

4

x2
)
1

3 )j (x1)
5

x2
+ (x1)

3x2 < 0g.
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Note that in this example the � = 0 curve has multiplicity three at all
points. However, this curve projects di�eomorphically onto its image in
the x-plane. Therefore, this system is stabilizable.

Observe that the discriminant for this example is,

�(x) = 27[
(�x1)

4

x2
]3 = �27

(x1)
8

(x2)2
:

Therefore, r(x) = (x1)
10x22, which is only positive semide�nite, and hence

the strict hypotheses of the theorem aren't applicable.

Example 3.2 In this example we consider a two parameter perturbation
of the cubed integrator chain considered above. As far as we are aware
no existing technique is applicable to determine the stabilizability of this
family.

_x1 = y3 � �x32

_x2 = x31 + �yx22

_y = u

where, � and � are positive constants. We wish to �nd out the range of
parameter values for which this system is stabilizable.

Here

�(x1; x2) = x2y
3 � �x1x

2
2y � (�x42 + x41):

Therefore, the discriminant is,

�(x1; x2) = [27�3x52x
3
1 + (�x42 + x41)

2]=x22:

Now r(x1; x2) = x22[27�
3x52x

3
1 + (�x42+x41)

2]: (Recall that we are only
interested in the x2 > 0 half of the circle x21+ x22 = 1.) By using Holder's
inequality it can be readily established that r is positive de�nite, and hence
the system is stabilizable, for the range 5(27�3)8=5=(8(43=8)) < 2�.

Example 3.3 Here we consider a system with a Z2 symmetry undergoing
Hopf/Hopf/Stationary bifurcation. Such mode interactions occur in sys-
tems governed by partial di�erential equations (see e.g. [3]). Z2 symmetries
occur in nature frequently as left-right re
ectional symmetries. The case of
Hopf/Stationary bifurcation can be handled along similar lines, and can be
reduced to a problem of stabilizing a two dimensional homogeneous system.

When a system is near a bifurcation point the linear part is weak (even
though it may still be non-critical). Therefore, it makes sense to attempt to
stabilize an equilibrium point of the system using higher order terms. For
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example, when a system is near a Hopf bifurcation point one may assume
that the linear part has eigenvalues on the imaginary axis, and attempt to
solve the stabilization problem using feedback to modify this linear part
and quadratic, cubic and higher order terms. Normal form theory can be
used to \uncouple" the linear part and the next higher order part enabling
independent control of the two parts. It is this aspect we wish to explore
here.

Let us consider a system,

_x = Ax + g(x) + bu; (3.6)

where, A has two pairs of imaginary eigenvalues and one zero eigenvalue.
The two imaginary eigenvalues are assumed to be rationally independent.
Here g(x) contains higher order terms. We assume that the system admits
a Z2 symmetry. This dictates that there are no even order terms in g(x).

Using the normal form theory of Poincare-Birko� (see e.g. [3]) we can
use a coordinate transformation to simplify the structure of the cubic terms.
After writing the two rotational modes in polar coordinates (r1; �1) and
(r2; �2), we can write down the system of equations in the form,

_z = c1;1r
2
1z + c1;2r

2
2z + c1;3z

3 + hot+ (b1 + hot)u

_r1 = c2;1r
3
1 + c2;2r1z

2 + c2;3r1r
2
2 + hot+ (b2 + hot)u

_r2 = c3;1r
3
2 + c3;2r2z

2 + c3;3r2r
2
1 + hot+ (b3 + hot)u

_�1 = !1 +O(jr; zj2) + (b4 + hot)u

_�2 = !2 +O(jr; zj2) + (b5 + hot)u:

Observe that �1 and �2 do not enter into the right-hand side of the
equations at least up to order 3. Our objective here is to use feedback to
stabilize the third order jet of the system.

It is clear that if we only use feedback that depends on (z; r1; r2) to
stabilize the 3-jet of the �rst three equations, then that would stabilize
the 3-jet of the overall system. Hence the overall problem reduces to that
of stabilizing a homogeneous cubic system with a particular structure for
which the theory developed in the previous section could be applied. As
an example, the case,

_z = z3 + hot+ (1 + hot)u

_r1 = 5r31 + hot+ (3 + hot)u

_r2 = 7r32 + hot+ (2 + hot)u;

where, hot denote terms which are of order four and higher, results in a
positive de�nite r(x), and hence corresponds to a stabilizable system.
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4 Concluding Remarks

Here we addressed the problem of asymptotically stabilizing homogeneous
systems. We used Coleman's theorem as a guide. We derived a certain
intrinsic polynomial that is closely linked with the stabilization problem,
and show that the system is stabilizable if this polynomial is positive or
negative de�nite.

There are still several unanswered questions regarding the stabilizability
of homogeneous cubic systems. Primarily among them is whether this class
is generically stabilizable whenever the degree is odd? If this isn't the case,
is it possible to derive necessary and su�cient conditions for stabilizability
of systems belonging to an appropriately chosen generic subset?
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