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Abstract

In this paper we present a deterministic analysis of an online

scheme for learning very general classes of nonlinearly parametrized

decision regions. The only input required is a sequence ((xk; yk))k2Z+

of data samples, where yk = 1 if xk belongs to the decision region

of interest, and yk = �1 otherwise. Averaging results and Lyapunov

theory are used to prove the stability of the scheme. In the course of

this proof, conditions on both the parametrization and the sequence

of input examples arise which are su�cient to guarantee convergence

of the algorithm. A number of examples are presented, including the

problem of learning an intersection of half spaces using only data

samples.
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1 Introduction

The problem of designing adaptive pattern classi�ers has received a lot of
attention recently, particularly in the neural networks literature. Whilst
there are numerous examples of quite complex schemes that seem to work
on some examples, there are few theoretical analyses of the convergence
behaviour of these algorithms. Many of the algorithms that have been pro-
posed (such as the \back-propagation" algorithm for neural networks) are
gradient descent algorithms. To date there are still no theoretically com-
pelling reasons for studying neural network parametrizations of decision
regions over other schemes.

�Received May 7, 1993; received in �nal form September 7, 1993. Summary appeared

in Volume 6, Number 1, 1996.
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In this paper we provide a deterministic analysis of a gradient descent
scheme for general classes of decision regions. The algorithm and cor-
responding analysis presented in this paper parallel the related problem
of parameter estimation in nonlinear adaptive systems, though much ad-
ditional complication is introduced by the binary nature of classi�cation
data. The algorithm we present (in section 5) is applicable to any class
of decision boundaries which can be parametrized in a rather general non-
linear manner. The algorithm is a gradient descent based algorithm, cho-
sen because it's simplicity makes analysis using dynamical systems the-
ory possible. The analysis gives rise to conditions which guarantee that
the algorithm will converge. These conditions impose constraints on the
parametrization, and hence the decision regions, for which \learning" is
possible with this algorithm.

A simple linear classi�er (or perceptron) is one in which the two decision
regions (in x) are given by sgn (w � x � �), where w; x 2 R

n , and � 2
R. Gradient descent algorithms for such parametrized regions have been
analyzed in [15, 20, 21]. Non-linear classi�ers are more powerful (in a
representational sense) but learning algorithms for them are rather harder
to analyse. An old technique is to preprocess the inputs via a �xed non-
linearity (such as a power), and then perform linear classi�cation [14, 17,
22]. However, this is still a linearly parametrized scheme.

More recently, Kuan and Hornik and White [10], Finno� [5] and Leen
and Moody [12] have performed analyses similar to that presented in this
paper. The main di�erence is that we perform the analysis in a determinis-
tic way (using averaging theory for ordinary di�erential equations), wheras
they use stochastic methods due to Kushner [11] and others. On the other
hand, Sontag and Sussmann [19] use ordinary di�erential equations to give
a deterministic analysis of the back-propogation algorithm and Guo and
Gelfand [7] provide a quasi-linear analysis of a certain class of nonlinearly
parametrized classi�ers.

In deterministic analysis of a gradient descent based algorithm for learn-
ing nonlinearly parametrized classi�ers which is presented in this paper is
new in several respects.

� It is for very general classes of nonlinear classi�ers. The decision
boundaries are de�ned in terms of sgn f(a; x), where a is a parameter
vector, and f(�; �) is a continuous function with certain properties;

� It gives conditions on the input examples (persistence of excitation)
required for convergence to occur;

� It makes clear the value of a sigmoidal as opposed to a signum func-
tion in de�ning the classi�er.
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� It opens the way for a detailed noise and robustness analysis to be
performed.

The rest of the paper is organised as follows: Section 3 contains de�ni-
tions of online learning and approximate online learning, which formalise
the problem of adaptive pattern classi�cation. In section 4 the concept of a
parametrization for a class of decision regions is introduced. This provides
a very general setting in which to pose the problem of learning nonlinear
classi�ers. Section 5 introduces an algorithm which addresses the learning
problem whose properties are analysed in section 6. Section 6 contains our
main result (theorem 6.3), which is a proof that the algorithm under con-
sideration is indeed an (approximate) online learning algorithm. The proof
entails relating the algorithm to a nonlinear ordinary di�erential equation
(ODE) and showing that (under the technical conditions) the solution of
this ODE converges asymptotically to the parameters of the true decision
region. Two existing mathematical techniques (averaging [18] and Lya-
punov stability [16]) are used extensively in the proof. In section 7 the
technical conditions of our main result are discussed in some detail. Sec-
tion 8 contains details of how to learn intersections of half spaces. This
problem, addressed by certain neural networks, is acknowledged to be a
hard problem [1]. It is achieved here by parametrizing the (approximate)
intersection of two half spaces in a smooth manner. Section 9 concludes.

2 Notation and Known Results

In this section we list a number of the notations and results used in the
rest of the paper.

For any vector x, kxk denotes the in�nity norm, and for any matrix y,
kyk denotes the induced matrix in�nity norm.

Let x and y be m�m matrices. x is less than or equal to y (x � y) if
y � x is positive semi{de�nite.

For any set U of Rn ,
o

U denotes the interior of U and @U denotes the
boundary of U . The diameter of U is given by diam U := supx;y2U kx�yk.

For any function f(a; x) : A � X ! R, where A � R
m and X � R

n ,
@f

@a
denotes the gradient of f with respect to the �rst argument, and @2f

@a2

denotes the Hessian matrix, of f with respect to the �rst argument.

De�nition 2.1 Let X � R
n . A sequence (xk)k2Z+ of elements of X is a

covering of X if, for any measurable function f : X ! R,

lim
K!1

1

K

K�1X
k=0

f(xk) =
1

6X

Z
X

f(x)dx; (2.1)

where 6X :=
R
X
dx is the volume of X.
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A covering in a deterministic framework is equivalent to a uniform distri-
bution in a stochastic framework.

De�nition 2.2 Given a set A, P is a generic property of A if the subset

of A which exhibits property P is open and dense in A.

De�nition 2.3 Let U � R
n be open and V� � R

n be open for all � > 0.
We say that the sets V� converge to U as � ! 0 (lim�!0 V� = U) if

\�!0V� = U and for some �0 > 0, V�2 � V�1 whenever �2 < �1 � �0.

De�nition 2.4 A function h : R+ ! R is called an order function if h(")
is continuous and sign de�nite in (0; "0] for some "0 > 0, and if lim"#0 h(")
exists.

De�nition 2.5 Let h(") and l(") be order functions. Then the notations

O"(l(")), o"(l(")) and 
"(l(")) are de�ned by

1. h(") = O"(l(")) if there exists a constant K such that jh(")j � Kl(")
on some nonempty set (0; "1], some "1 > 0.

2. h(") = o"(l(")) if lim"#0
h(")

l(")
= 0.

3. h(") = 
"(l(")) if there exists a constant K such that jh(")j > Kl(")
on some nonempty set (0; "1], some "1 > 0.

Consider the initial value problem

_a = F (a(t); x(t)) ; a(0) = a0 (2.2)

for t � 0; a; a0 2 A � R
m ; x 2 X � R

n . Suppose that a � a� is a solution
of the equation.

De�nition 2.6 The solution a � a� of (2.2) is uniformly exponentially
stable in N � A if there exists constants k � 1; � > 0 such that for all

t0 � 0 and all a(t0) 2 N ,

ka(t)� a�k � kka(t0)� a�ke��(t�t0) 8t � t0: (2.3)

De�nition 2.7 The solution a � a� of the initial value problem (2.2) is

uniformly asymptotically stable in N � A if:

1. it is uniformly stable:
for all " > 0 there exists a � > 0 such that for all t0 � 0,

ka(t0)� a�k � � ) ka(t)� a�k < " 8t � t0: (2.4)
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2. it is uniformly attractive in N :

for all � > 0 and " > 0, there exists � > 0 such that for all t0 � 0
and a(t0) 2 N ,

ka(t0)� a�k < � ) ka(t)� a�k < " 8t � t0 + �: (2.5)

N is the basin of attraction of a�. If N = A in either of these de�nitions,
the stability is global. Uniform exponential stability of a solution in N

implies uniform asymptotic stability of that solution in N .
In section 6, we make use of a result by Kreisselmeier [9], and a result

from averaging in dynamical systems [18], both of which we state here
without proof:

Lemma 2.8 (Kreisselmeier) Let p(t) 2 Rn be governed by

_p(t) = �G(t)z(t)z>(t)p(t); (2.6)

where, for all t � 0, G(t) is a symmetric, positive de�nite matrix and

z(t) 2 Rn . If there exist constants �; �, and T such that

0 < �I �
1

T

Z t0+T

t0

z(t)z>(t)dt � �I 8t0 � 0 (2.7)

then the solution p(t) � 0 of (2.6) is uniformly globally exponentially stable.

Theorem 2.9 (Eckhaus/Sanchez { Palencia) Let A � R
m , X � R

n , and

let F (a; x) with F : A � X ! A be Lipschitz continuous in a on A, and

continuous in a and x on A�X. Assume x(s) : R+ ! X is such that

F 0(a) := lim
T!1

1

T

Z T

0

F (a; x(s))ds (2.8)

exists, and

�(�) = sup
t0

sup
T2[0; 1

�
)

sup
a2A

�����F 0(a)� �

Z t0+T

t0

F (a; x(s))ds

����� (2.9)

exists and is an o�(1) function. Consider the initial value problems

_a = �F (a(t); x(t)) ; a(0) = a0; (2.10)

(2.11)

and

_aav = �F 0(aav(t)) ; aav(0) = a0 (2.12)
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Suppose a = a� is an asymptotically stable critical point in the linear ap-

proximation about a� to (2.12) with domain of attraction A0 � A and F 0

is continuously di�erentiable in A. If a0 2 A0, then

ka(t)� aav(t)k = o�(1) 0 � t <1: (2.13)

Note that the assumption 2.9 has been forgotten in [18].

3 Online Learning

In this section the online learning problem is discussed and a formal de�ni-
tion is given. On the basis of this de�nition it is shown (in section 6) that
the algorithm we present in section 5 is indeed an (approximate) online
learning algorithm (under certain conditions).

We con�ne our attention to two class classi�ers of points in some sample

space X � R
n . It is assumed that there is an (unknown) subset � � X ,

called the decision region, and points in X are classi�ed according to their
inclusion (or otherwise) in X . The classi�cation is described by a binary
valued function y : X ! f�1; 1g called the discriminant function for �.
The discriminant function satis�es

y(x) :=

�
+1 if x 2 �
�1 otherwise

(3.1)

The object of learning is eventual correct classi�cation of all points in X ,
that is, identi�cation of the correct discriminant function. To this end, the
learner receives a sequence ((xk; yk))k2Z+ of data samples, where xk 2 X

and yk = y(xk). The learning is e�ected by choosing an estimate dis-
criminant function, �k, which is updated if the received data samples are
misclassi�ed by the current estimate. The learning is said to be online if
an estimate discriminant function is calculated as each new data sample
is received using only the present information, i.e. the present data sam-
ple, (xk; yk), and the information stored in a state variable, ak. Online
learning algorithms require �nite memory, since at any iteration the only
information stored is the (�xed size) state variable.

De�nition 3.1 Let � � X � R
n and let ((xk ; yk))k2Z+, be a sequence of

data samples, where (xk) is a covering of X, yk = y(xk), and y is de�ned

by (3.1). An online learning algorithm for � is an algorithm for choosing

functions �k : X ! f�1; 1g, (k 2 Z+) so that the following hold:

1. �k(x) = 	(ak; x), for some function 	, where ak is a state variable

satisfying ak+1 = �(xk ; yk; ak), for some function �.
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2. limk!1 �k(�) � y(�)

At each iteration

�k := fx 2 X j�k(x) = 1g = fx 2 X j	(ak; x) = 1g (3.2)

is an estimate of the decision region. The second condition says that the
estimate decision regions converge to the true decision region, in which case
all points are correctly classi�ed. Many algorithms using a �xed stepsize
do not exhibit this property. Frequently, points su�ciently far from the
decision boundary are eventually correctly classi�ed, but points on or near
the decision boundary may not be. The estimate decision boundary gets
close to the true decision boundary, but then jiggles around inde�nitely in
a small neighbourhood of the true decision boundary. If the neighbour-
hood V� where correct classi�cation is never guaranteed disappears as the
stepsize goes to zero, we call the algorithm an approximate online learning
algorithm.

De�nition 3.2 Let � � X � R
n and let ((xk ; yk))k2Z+, be a sequence

of data samples, where where (xk) is a covering of X, yk = y(xk), and y

is de�ned by 3.1. An approximate online learning algorithm for �, with
stepsize � 2 R

+nf0g, is an algorithm for choosing functions �k;� : X !
f�1; 1g, (k 2 Z+) so that the following hold:

1. �k;�(xk) = 	�(ak;�; xk), for some function 	�, where ak;� is a state

variable satisfying ak+1;� = ��(xk; yk; ak;�), for some function ��.

2. For each � > 0,there exists an integer K� � 0 and a neighbourhood

V� of @�, V� � X such that for all k � K�,

�k;�(x) = y(x) 8x 2 XnV�: (3.3)

3. The neighbourhoods V� are such that

lim
�!0

V� = @�: (3.4)

The perceptron algorithm [15] is an example of an approximate on-
line learning algorithm for decision regions which are half spaces (linear
classi�ers). In the following, we present an approximate online learning
algorithm for more general classes of decision regions.

At any time k, the current value of the state variable determines the
current estimate of the decision region, so it may appear more natural
to focus on the choice of the state variables. However, online learning is
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described as choosing discriminant functions rather than state variables
because there are some subtle but important points which can be missed
when the emphasis is placed on the state variables. We are primarily inter-
ested in correct classi�cation, and hence convergence of the discriminant
function. There may arise situations where (1) convergence of the state
variables does not imply convergence of the discriminant functions; (2) no
value of the state variable gives the true discriminant function, in which
case it is meaningless to talk of convergence of the state variables, though
the algorithm may still be an online learning algorithm; or (3) many values
of the state variable give the true discriminant function, in which case there
are many possible points which the state variables are allowed to converge
to. In the following, the �rst situation is excluded by our de�nition of a
parametrization as a smooth and locally bounded function. The second is
excluded for purposes of analysis, and the third is ignored in section 6.1
but discussed in section 6.2.

4 The Parametrization

According to the de�nition of learning given in the last section, some struc-
ture is imposed on the estimate decision regions by the choice of the func-
tion 	(�; �). In order to ensure that convergence of the algorithm is possible,
we now impose similar structure on the true decision region �. In partic-
ular, we assume that � belongs to a known class, C, of decision regions,
and that there is a parameter space A and some epimorphism (surjective
homomorphism) A ! C; a 7! �(a). Any parameter a 2 A identi�es a
unique decision region �(a) 2 C. Moreover, we assume that there exists a
continuous, nonlinear, real-valued function f called a parametrization of C
(de�ned below). The parametrization is de�ned on A�X , and is positive
for all points in the sample space which are inside the decision region �(a),
and negative at all other points. Then if we choose 	(�; �) = sgn (f(�; �)),
the parameter values can be identi�ed with the state variables in de�nitions
3.1 and 3.2, and the estimate decision regions will be �k = �(ak).

In applying this to a practical learning problem, two problems are en-
countered. The �rst is in choosing C, which amounts to assuming some
knowledge about the decision region to be learnt. We do not address this
problem here. The second is in choosing f , the parametrization for C. This
is also di�cult, as there may be many ways of parametrizing a class of deci-
sion regions, and not all of them will satisfy the conditions for convergence
which we derive in section 6. In section 7, we discuss a number of di�erent
parametrizations for a single class of decision regions (half spaces) in the
light of the conditions for convergence.

De�nition 4.1 A parametrization of C is a function A�X ! R; (a; x) 7!
f(a; x), which satis�es

8
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1. For all a 2 A

f(a; x)

8><
>:

> 0 if x 2
o

�(a)
= 0 if x 2 @�(a)
< 0 if x 62 �(a)

(4.1)

2. (smoothness) f(a; x) is continuous in a and twice continuously dif-

ferentiable with respect to a on A�X.

3. (local boundedness) f , @f

@a
and @2f

@a2
are bounded in a compact domain,

and f is Lipschitz continuous in x on a compact domain. An upper

bound of these functions exists:

For all a 2 A, kak � d, and all x 2 X, kxk; kyk � r,

jf(a; x)j � B0(d; r) <1 (4.2)




 @f@a
����
(a;x)






 � B1(d; r) <1 (4.3)






 @
2f

@a2

����
(a;x)






 � B2(d; r) <1 (4.4)

jf(a; x)� f(a; y)j � L(d; r)kx� yk: (4.5)

Example Let C be the class of all circles in R
2 . Elements in C can

be identi�ed by specifying two centre coordinates and a radius. Thus the
parameter space for this C is A := R

2 � (0;1). The function

f(a; x) = a(3)� (a(1)� x(1))2 � (a(2)� x(2))2 (4.6)

is a parametrization for C: using (4.1) and (4.6) it can be seen that for
a = (a(1); a(2); a(3)) 2 A, sgn (f(a; x)) de�nes a circular decision region in
R
2 .

Remark 4.1 Note that in the example both A and X are unbounded.
Compactness (and hence boundedness) of A and X is assumed in the fol-
lowing to prove convergence of algorithm 5.1. Boundedness of X is a nat-
ural property of practical applications, but often boundedness of A is not.
Remark 6.2 discusses the consequences of requiring that A is bounded.
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Remark 4.2 We have de�ned an approximate online learning algorithm
as one which eventually classi�es all of the points in X correctly, (i.e. one
whose discriminant function converges to the true discriminant function),
except in some neighbourhood of the boundary of the true decision re-
gion, and that this neighbourhood converges to the true decision boundary
in the limit � ! 0. This is what is desired in practice. For decision
regions described by a known parametrization, there exists at least one pa-
rameter a� which identi�es the true decision region. The smoothness and
local boundedness properties of the the parametrization mean that this
convergence will be guaranteed if the estimate parameters asymptotically
approach some neighbourhood of the parameters of the true decision re-
gion, and that, in the limit � ! 0, this neighbourhood contains only the
parameters of the true decision region. In section 6 we use this in showing
that our algorithm is a learning algorithm.

Note that the map a 7! �(a) is only assumed to be an epimorphism, so
there may be more than one point in A which maps to �(a). That is why
we refer to the \parameters of the true decision region", rather than the
\true parameters".

5 The Algorithm as a Perturbation Problem

In this section we present the algorithm we shall analyse. We discuss the
heuristic behaviour of the algorithm, and show that it is a perturbation of
a gradient descent algorithm.

Let ((xk ; yk))k2Z+ be a sequence of data samples for some unknown
decision region �. Let � = �(a�) be a member of a class C of decision
regions with parametrization f and parameter space A. De�ne

g"(a; x) :=
2

�
arctan

�
f(a; x)

"

�
: (5.1)

The algorithm we propose is as follows:

Algorithm 5.1

Step 0: Choose the stepsize : � 2 R+nf0g.
Choose a boundary sensitivity parameter: " 2 R+nf0g.
Choose an initial parameter value: a0;� 2 A.

Step 1: Commencing at k = 0, iterate the recursion below:

ak+1;� = ak;� � �
@f

@a

����
(ak;�;xk)

(g"(ak;�; xk)� yk) : (5.2)
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The function

�k;�(x) :=

�
sgn (f(ak;�; x)) if f(ak;�; x) 6= 0
1 if f(ak;�; x) = 0

(5.3)

is the estimate discriminant function and �(ak;�) is the estimate decision

region at time k. The notation �̂k;� := �(ak;�) is used in the following.
The purpose of this paper is to prove the following proposition (stated

only informally here).

Proposition 5.2 Assume A, X are compact and f : A � X ! R is a

parametrization for a class C of decision regions. If the parametrization

and the sequence (xk) of sample points satisfy appropriate persistence of

excitation and uniqueness of parametrization conditions, � and " are suf-

�ciently small, and a0 is appropriately chosen, then algorithm 5.1 is an

approximate online learning algorithm for any decision region in C.

This proposition is stated formally in theorems 6.3 and 6.4.

Remark 5.1 Observe that lim"#0
2
�
arctan

�
z
"

�
= sgn (z). Thus in the

limit, the term (g"(ak;�; xk)� yk) in (5.2) is zero if xk is correctly classi�ed
by the estimate discriminant function, but �2 otherwise. We call this the
misclassi�cation error. In the limit, the parameters update only if the
misclassi�cation error is nonzero. So, for sample points xk not contained
in @�̂k;� the algorithm makes an update at the time step k only if xk
is misclassi�ed by �k;�. If xk is in �n�̂k;�, the parametrization moves a
distance 2� times the magnitude of the gradient in the direction of steepest
ascent of f in parameter space, so that �̂k;� \grows". If xk is contained in

�̂k;�n� the parametrization moves in the direction of steepest descent, so

that �̂k;� \shrinks". Test points in @�̂k;� cause updates of half this size,

with �̂k;� growing if xk 2 �, and shrinking otherwise.

Remark 5.2 For non{zero ", and any z, let

�"(z) := sgn (z)�
2

�
arctan

�z
"

�
: (5.4)

Then there exist order functions �(") = o"(1), and �(") = o"(1) such that,
for each ",

j�"(z)j � �(") 8jzj � �(")
j�"(z)j < 1 8jzj < �("):

Speci�cally, if " < 1
4
then

j�"(z)j � "
1
2 8jzj � "

1
2

j�"(z)j < 1 8jzj < "
1
2 :

11
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Because f is a Lipschitz continuous function of x, there exists an open
neighbourhood, U";a, of @�a for which

jf(a; x)j < "
1
2 8x 2 U";a: (5.5)

Recalling that f(a; x) = 0 i� x 2 @�(a), it can be seen that lim"!0 U";a =
@�(a).

At each iteration of equation 5.2 a neighbourhood U";ak;� satisfying (5.5)
can be found. For sample points outside this neighbourhood the algorithm
behaves, to order ", as described above. For points inside the neighbour-
hood, the algorithm makes updates in the same direction as above, but
the update size is smaller. Thus test points close to the boundary of �̂k;�

region are given less weighting. This increases robustness of the algorithm
in the presence of measurement noise in the sample points.

The function 2
�
arctan( z

"
) is a sigmoidal squashing function. Other func-

tions such as tanh( z
"
) exhibit similar behaviour. We have chosen to use the

arctan squashing function in this paper because its derivative is rational in
z and ", so the bounds on a compact domain are elegant.

Remark 5.3 It has been assumed that the target decision region belongs
to C. Thus there exists some a� 2 A such that

yk = sgn (f(a�; xk)) (5.6)

= g"(a
�; xk) + �"(f(a

�; xk)) (5.7)

for all (xk; yk). Writing �"(f(a
�; xk)) =: �k;", the discrete time equation

(5.2) can thus be written as a perturbation problem:

ak+1 = ak � �
@f

@a

����
(ak;xk)

(g"(ak; xk)� g"(a
�; xk)) + �

@f

@a

����
(ak;xk)

�k;" (5.8)

The subscript � on the estimated parameter value ak has been dropped to
streamline notation. The value of ak is nonetheless dependent on �.

If f is a parametrization of some class C of decision regions then for
any " > 0, the \squashed" function, g, is also a parametrization for C.
Comparing equations 4.2 to 4.5 with (5.1), the following bounds arise:

For all a 2 A, kak � d, and x 2 Rn , kxk; kyk � r,

jg"(a; x)j < 1 (5.9)




 @g"@a

����
(a;x)






 �
2

�

B1(d; r)

"
(5.10)






 @
2g"

@a2

����
(a;x)






 �
2

�

 
3
3
2B1(d; r)

2

23"2
+
B2(d; r)

"

!
(5.11)

jg"(a; x) � g"(a; y)j �
2

�

L(d; r)

"
kx� yk: (5.12)

12



PARAMETRIZED DECISION REGIONS

Equation 5.11 uses the fact that z
("2+z2)2

� 33=2

24"3
.

As in remark 5.2, for any value of " there exists a neighbourhood U";a�

of @�, the boundary of the decision region to be learned. If xk 62 U";a� ,

�k;" = O"("
1
2 ). If xk 2 U";a� , �k;" = O"(1). However if the input sequence,

(xk), is a covering of X then the average (over k) of the �nal terms is

O"("
1
2 ), as shown below.

Let IY : X ! f0; 1g be the indicator function for the set Y � X

(i.e. IY (x) = 1 if x 2 Y and 0 otherwise). Then
R
X
IY (x)dx is the volume

of Y (when it is de�ned). Referring to equation 5.5, the volume of U";a is

O"("
1
2 ), since f is Lipschitz continuous in x in a compact domain . Thus,

if (xk) is a covering of X ,

lim
K!1

1

K

K�1X
k=0

j�k;"j � lim
K!1

1

K

K�1X
k=0

IU";a�(xk) + "
1
2 lim
K!1

1

K

K�1X
k=0

IXnU";a�(xk)

�
6U";a�

6X
+ "

1
2
6XnU";a�

6X

= O"("
1
2 ): (5.13)

Thus, if a and x are con�ned to compact subsets of A and X respec-
tively, then the sum of the perturbation terms in (5.8) over all iterations

is bounded above by �B1(d; r)O"("
1
2 ). In the initial stages of the following

analysis, the perturbation term in equation 5.8 is omitted. It is reintro-
duced in the �nal stage (A.28).

Remark 5.4 Ignoring the perturbation, the misclassi�cation error at
time k is (g"(ak; xk) � g"(a

�; xk)). In the course of the analysis, we relate
the behaviour of algorithm 5.1 to the behaviour of

a0k+1 = a0k � �
@f

@a

����
(a0
k
;xk)

(g"(a
0
k; xk)� g"(a

�; xk)); (5.14)

which is a stepwise gradient descent of the cost function

J"(a)= lim
K!1

1

K

K�1X
k=0

h
f(a; xk)(g"(a; xk)� g"(a

�; xk))�
"
�
ln
�
1+ f(a;xk)

2

"2

�i
:

(5.15)
Using bounds (4.2) and (5.9), it is clear that the cost function is bounded
above and below on any compact domain: If kxkk � r for all k 2 Z+ then
for all a 2 A such that kak � d,

2B0(d; r) �
"

�
ln

�
1 +

B0(d; r)
2

"2

�
� J"(a) � 2B0(d; r): (5.16)
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In the limit "! 0

J0(a) = lim
K!1

1

K

K�1X
k=0

�
jf(a; xk)j � f(a; xk)sgn (f(a

�; xk))
�
; (5.17)

which is nonnegative, since each term in the sum equals either 2jf(a; xk)j or
0. If all points are correctly classi�ed by the estimate decision region �(a)
(a is a true parameter value), then J0(a) = 0, otherwise J0(a) > 0. Thus
J0 attains its global minimum at the true parameter value and nowhere
else. By continuity, this is also true for J" for su�ciently small ".

Remark 5.5 From remarks 5.3 and 5.2 it can be seen that, for non{
zero � and ", the algorithm will never stop updating. Even if the estimate
decision region equals the true decision region, i.e. ak = a�, g"(a

�; xk) 6= yk
for any value of xk. The erroneous updates will rarely be large, since the
value of g"(a

�; xk)� y(k) is only signi�cant if xk 2 U";a� , and for small ",
U";a� is small. However for any values of " and ak, some small updates will
always be made.

This erroneous updating can be avoided by using sgn (f(ak; xk)) instead
of g"(ak; xk) in (5.2). This gives an algorithm which behaves similarly,
though it is not robust to noise in the sample points around the decision
boundary. However, the update term is then discontinuous in ak, so it is
more di�cult to apply dynamical systems analysis to prove convergence of
the algorithm. The nonlinearity cannot be regarded as a perturbation in
the way that yk was, because the neighbourhood U";ak where �(f(ak; xk)) =
O"(1) is not �xed with respect to k.

This particular problem does not appear in standard parameter esti-
mation algorithms, where the data sequence is (xk ; f(a

�; xk)) rather than
(xk ; yk). In that case introduction of the sigmoidal squashing function is
unnecessary.

6 Analysis of the Convergence Properties of the Algo-

rithm

6.1 Unique true parameter

Assume that a unique parameter a� 2 A identi�es the true decision region.
An important case of this is when the mapping a 7! �(a) is an isomorphism,
so there is a unique parameter value identifying any decision region in
C. This is the case for circles parametrized as in (4.6), and also for the
half spaces we consider in section 7. However it is not the case for many
interesting classes of decision regions, such as the intersections of halfspaces
considered in section 8. In section 6.2 we relax this assumption.

14
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In order to show convergence of algorithm 5.1 (in the sense of de�nition
3.2), we �rst investigate the stability properties of a related continuous time
ordinary di�erential equation (ODE) using averaging and other techniques
of dynamical systems analysis. We then show how this ODE relates to the
di�erence equation 5.2, in order to derive conditions which guarantee that
the estimate parameters derived by algorithm 5.1 asymptotically enter and
remain in an o�(1) neighbourhood of the true parameters, and thus that
algorithm 5.1 is an approximate online learning algorithm.

Consider the ODE

_a(t) = ��
@f

@a

����
(a(t);x(t))

(g(a(t); x(t)) � g(a�; x(t))) : (6.1)

Simple inspection reveals that a(t) � a� is a solution of (6.1) for any
function g. The following theorem gives conditions which guarantee that
this solution is globally uniformly asymptotically stable.

Theorem 6.1 Let A � R
m and X � R

n , X compact. Consider the initial

value problem (6:1); a(0) = a0 2 A, where � 2 R+nf0g, t 2 R+ , x:R+ ! X

is some known function, f is smooth and locally bounded and g is de�ned

by (5.1). If f(�; �) and x(�) are such that:

A1. There exist positive constants �; �, and T such that

0 < �I �
1

T

Z t0+T

t0

@f

@a

����
(a�;x(t))

 
@f

@a

����
(a�;x(t))

!>
dt � �I 8t0 � 0; (6.2)

A2. For all a 2 A, the limit

~J(a) := lim
T!1

1

T

Z T

0

"
f(a; x(s))(g"(a; x(s)) � g"(a

�; x(s)))

�
"

�
ln

�
1 +

f(a; x(s))2

"2

�#
ds (6.3)

exists;

A3. The bound

sup
t0

sup
T2[0; 1

�
)

sup
a2A

����� ~J(a)� �

Z t0+T

t0

"
f(a; x(s))(g"(a; x(s)) � g"(a

�; x(s)))

�
"

�
ln

�
1 +

f(a; x(s))2

"2

�#
ds

����� (6.4)

exists and is an o�(1) function;
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A4.

@ ~J

@a

�����
a

= 0 only if a = a�; (6.5)

then for the given x(�), if � is su�ciently small, the solution a(t) = a� of

equation 6.1 is globally uniformly asymptotically stable.

Proof: Using the Taylor series expansions of g and @f
@a

about a�, (6.1)
can be locally approximated by

_al = ��
@f

@a

����
(a�;xk)

 
@g"

@a

����
(a�;xk)

!>
(al � a�) ; al(0) = a0: (6.6)

The scalar quantity

@g"

@f

����
(a�;xk)

=
"

"2 + f(a�; xk)2
(6.7)

is always positive because f is locally bounded. Thus lemma 2.8 and as-
sumption A1 ensure that the solution al � a� of (6.6) is uniformly globally
exponentially stable for any value of � 2 R+nf0g.

The Poincar�e-Lyapunov theorem [18] then indicates that the solution
a � a� of (6.1) is uniformly exponentially stable in some neighbourhood N
of a�. In the appendix (lemma A.1) we show that diamN = 
�(1).

Equation 6.1 can be written

_a = �
�

2

@

@a

"
f(a(t); x(t))(g"(a(t); x(t)) � g"(a

�; x(t)))

�
"

�
ln

�
1 +

f(a(t); x(t))2

"2

�#
; a(0) = a0: (6.8)

Averaging this equation over t yields

_aav = �
�

2

@ ~J

@a

�����
aav

; aav(0) = a0 (6.9)

where ~J(a) is de�ned by (6.3). Existence of ~J is guaranteed by assumption
A2.

Equation 6.9 is a gradient equation with unique critical point a� (as-
sumption A4). Thus a� is the uniformly globally asymptotically stable
solution of (6.9) [8]. Thus any trajectory that is a solution of (6.9) eventu-
ally becomes arbitrarily close to a�.
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Theorem 2.9 tells us that a = aav + o�(1), so any trajectory which is a
solution of (6.1) will come within o�(1) of a

�. But this means that, for �
su�ciently small, any trajectory eventually enters N . Once the trajectory
enters N , it is exponentially attracted to a�, so the solution a � a� of (6.1)
is uniformly globally asymptotically stable.

Theorem 6.1 relies on the assumption that the average function ~J has
a unique critical point. Because a� is always a critical point, this assump-
tion implies that the surface described by ~J has one global minimum, no
non-global local minima, no saddle points or local maxima, and (6.9) has
no attractors at in�nity. If we choose x(t) := xk for all t 2 [k; k + 1) then
~J is the cost function J" de�ned in (5.15). So assumption A4 refers to the
topology of the level sets of the cost surface. This becomes assumption
B2 of our main result|theorem 6.3. Assumption A1 is a persistence of
excitation condition. It becomes assumption B1 of theorem 6.3, and is dis-
cussed further in section 7. Assumption A2 says that the average function
~J exists, and A3 is a requirement of smooth convergence to the average.
Both A2 and A3 are satis�ed under the assumptions of theorem 6.3.

In order to draw the connection between the di�erence equation (5.2)
and the ODE (6.1), we �rst ignore the perturbation term in (5.8). So we
consider the sequence a0k generated by the di�erence equation 5.14. Linear
interpolation of a0k over unit time steps yields

�a(t) := a0k + (a0k+1 � a0k)(t� k) 8t 2 [k; k + 1): (6.10)

The function �a : R+ ! R
m is continuous and piecewise linear, and satis�es

�a(k) = a0k. Substituting from (5.14) and di�erentiating shows that a(t) is
the solution of the ODE

_�a(t) = ��
@f

@a

����
(a0
k
;xk)

(g"(a
0
k; xk)� g"(a

�; xk)) 8t 2 [k; k + 1); (6.11)

where x(t) := xk for all t 2 [k; k + 1). This ODE resembles (6.1), but it is
de�ned discontinuously in time. The solutions of (6.11) and (6.1) can be
related according to the following theorem.

Theorem 6.2 Let A � R
m , X � R

n . Assume � : A � X ! R
m is

bounded and Lipschitz continuous in the �rst argument:

k�(a; x)k � B 8a 2 A; x 2 X (6.12)

k�(a; x)��(b; x)k � Lka� bk 8a; b 2 A; x 2 X: (6.13)

Consider the initial value problems

_�a(t) = ���(�a(k); xk) 8t 2 [k; k + 1) ; �a(0) = a0 (6.14)

_a(t) = ���(a(t); xk) 8t 2 [k; k + 1) ; a(0) = a0 (6.15)
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for some sequence (xk) of points in X. If there exist constants K � 1; � > 0
such that

ka(t)� a�k � Ke�
��
2
tka0 � a�k 8t � 0 (6.16)

for some a� 2 A, then

lim
k!1

k�a(k)� a�k �
4�K

4L
�
+1LB

�
: (6.17)

Proof: See appendix.

Combining theorems 6.1 and 6.2, and reintroducing the perturbation term,
we are able to state the main result of this paper.

Theorem 6.3 Assume A � R
m and X � R

n , are compact. Let f : A �
X ! R be a parametrization of a class C = f�(a) � X ja 2 Ag of decision

regions. If

B1. There exist positive constants � and K such that

0 < �I �
1

K

k0+K�1X
k=k0

@f

@a

����
(a�;xk)

 
@f

@a

����
(a�;xk)

!>
8k0 2 Z

+ (6.18)

B2.
@J"

@a

����
a

= 0 only if a = a�; (6.19)

where J" is de�ned by (5.15) using (5.1)

and �; " are su�ciently small, then algorithm 5.1 is an approximate online

learning algorithm for any decision region in C.

Proof: See appendix.

Remark 6.1 For an online learning algorithm it is su�cient to have
convergence of the algorithm when the data points (xk) cover X . In this
case B1 and B2 impose restrictions on the nature of the parametrization
alone. However more general fxkg can be considered, in which case B1

and B2 impose joint restrictions on the combination of data points and
parametrization under which the algorithm will converge. These assump-
tions are discussed further in section 7.
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Remark 6.2 Theorem 6.3 assumes that A is compact. In practice, it
often occurs that a parametrization that can be de�ned on a subset of Rm

is most logically de�ned on a non-compact subset of Rm , or on the whole
of Rm . Recall that the natural choice of A in the example of circles in R2

was A = R
2 � (0;1). Even when C is restricted to circles in R

2 which
intersect some compact set X � R

2 , A must be unbounded in order to
correctly parametrize all of the elements of C.

The assumption that A is compact is used in calculating bounds on
the update size along the trajectories. This suggests that an alternative
su�cient condition is that the solutions of (6.1) and (5.14) remain in some
compact subset of A. Naturally this alternative condition is harder to test
in general, but it follows naturally in theorem 6.3 from the assumptions
that J" has a unique critical point and � is \su�ciently" small.

The algorithm can be modi�ed so that the estimated parameters are
restricted to any convex compact set Ac � A, a� 2 Ac. This technique is
well known to be compatible with gradient type algorithms, and is com-
monly used in adaptive control [6]. The restriction is performed by or-
thogonal projection of ak to the boundary of Ac whenever it leaves Ac.
Letting âk denote the result of this projection, convexity of Ac implies that
kâk�a

�k � kak�a
�k. Thus convergence of this modi�ed algorithm follows

easily from the above analysis.

6.2 Multiple true parameters

In this section the analysis of the previous section is generalized to include
the possibility that multiple parameter values describe the true decision
region. That is, the mapping a 7! �(a) is an not an isomorphism but is still
an epimorphism. However we still require that these \correct" parameter
values be isolated from each other. Multiplicities of this type arise from
non-uniqueness in the parametrization, such as the obvious symmetry in
the example of an intersection of half spaces which is given in the next
section.

Assume there is some countable set of isolated points a�i, i belonging
to some index set I , for which identify the true decision region. We denote
the true decision region by �(a�), where a� = a�i for any i 2 I . Now
y(�) = sgn (f(a�; �)), so for any x 2 X , f(a�i; x) has the same sign for
all i 2 I . We impose the stricter condition that f(a�i; x) has the same
magnitude for all i 2 I . Then g"(a

�i; �) � g"(a
�; �), so J" has a global

minimum at a�i for any i 2 I , if " is su�ciently small.
Now equation 6.9 is a gradient equation with isolated global minima, so

each a�i is a uniformly asymptotically stable solution of (6.9). Associated
with each a�i, is a basin of attraction, A0i � A. If there are no nonglobal
local minima of J", and no attractors for (6.9) at the boundary of A, then

19



K.L. BLACKMORE, R.C. WILLIAMSON, I.M.Y. MAREELS

[i2IA
0i is open and dense in A. So for generic a0 2 A, the solution of

(6.9) is attracted to one of the a�i. The non-generic case occurs when
a0 2 [i2I@A

0i, i.e. a0 is on the boundary of one of the basins of attraction.
In this case a(t) remains in [i2I@A

0i for all t. However the estimate pa-
rameters may leave the boundary, because the di�erence equation (5.2) is
a perturbation of (6.9). Thus the estimate parameters may converge even
though a0 2 [i2I@A

0i.
If the persistence of excitation condition A1 holds for each a�i, then

theorem 6.1 holds, so each a�i is a uniformly asymptotically stable solution
of (6.1). The averaging theorem (2.9) can be applied within each of the
domains of attraction, provided the solution of (6.1) remains within the
domain of attraction. Also, the linearization (6.11) can be e�ected at each
of the a�i, since g"(a

�i; �) � g"(a
�; �). From lemma A.1, it can be seen that

the solution a � a�i of (6.1) is uniformly exponentially stable within some
neighbourhood N i of a�i, and diamN i = 
�(1). Thus if a0 2 A0i, the
solution of (6.1) is either uniformly attracted to a�i or it leaves A0i. For
any value of �, neighbourhoods �i

� � @A0i can be constructed such that

�i
� ! A0i as �! 0 and a�i is uniformly asymptotically stable in �i

�.

Theorem 6.2 can then be applied within each of the sets �i
�. This

assumes that a0k remains in �i
� for all k. For a given input sequence (xk),

we can construct new neighbourhoods �i� � �i
� such that �

i
� ! �i

� ! A0i

as � ! 0, and if a0 2 �i� then a0k remains in �i
� for all k � 0. Now the

di�erence between ak and a0k is bounded as k ! 1 and is o�(1), so if the
initial estimate a0 is su�ciently far inside the basin of attraction of the
true parameter, the estimate parameters asymptotically enter and remain
in a neighbourhood of the parameters of the true decision region.

In theorem 6.3, there is only one true parameter, and it's basin of
attraction is the whole parameter space. If there is a countable number
of isolate global minima, there will be a countable number of (pairwise
disjoint) basins of attraction within the parameter space. For generic a0 2
A, and any input sequence (xk), there is a stepsize � su�ciently small that
the estimate parameters \converge" to one of the true parameters. This is
summarised in the following theorem:

Theorem 6.4 Assume A � R
m and X � R

n , are compact. Let f : A �
X ! R be a parametrization of a class C = f�(a) � X ja 2 Ag of decision

regions. If

C1. There is a countable set of isolated points a�i, i in some index set I,

for which f(a�i; �) � f(a�; �).
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C2. For each i, there exist positive constants �i and Ki such that

0 < �iI �
1

Ki

k0+K
i�1X

k=k0

@f

@a

����
(a�i;xk)

 
@f

@a

����
(a�i;xk)

!>
8k0 2 Z

+ (6.20)

then there exist basins of attraction �i� � A such that

R1. �i� are open for all i 2 I

R2. �i� are pairwise disjoint, i.e. for all i; j 2 I, i 6= j, �i� \ �j� = ;

R3. a�i 2 �i� for all i 2 I

R4. If
@J"

@a

����
a

= 0 (6.21)

and a 6= a�i for any i 2 I, where J" is de�ned by (5.15) using (5.1),

then a 62 �i� for all i 2 I.

R5. If a0 2 �i� for some i 2 I and �; " are su�ciently small, then algo-

rithm 5.1 is an approximate online learning algorithm for any deci-

sion region in C.

If, in addition,

C3. Local minima of J" occur only at the points a�i.

C4. None of the solutions of (6.9) cross the boundary of A.

then

R6. lim�!0 [i2I�
i
� is dense in A.

Remark 6.3 Assumptions C3 and C4 are important, because without
them there is no knowledge of the size of the set of suitable initial estimates.
With these assumptions, we know that this set is (asymptotically as �! 0)
dense in the parameter space. So for almost any initial condition, the
stepsize can be chosen small enough that the algorithm will converge (in
the sense of de�nition 3.2).

Remark 6.4 As mentioned in remark 6.2, it is often desirable to choose
A = R

m for the parameter space. In this case C4 says there are no at-
tractors at in�nity for equation 6.9. In fact assumptions C3 and C4 imply
that for generic a0 and su�ciently small �, the solutions of (5.14) and (6.1)
remain contained in a compact subset of A if a0 is chosen from a compact
subset of A. So again the assumption that A is compact can be ignored in
practical applications.
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7 Assumptions of the Theory

In this section we illustrate the various assumptions of theorems 6.3 pri-
marily by application to the class of linear classi�ers. The learning algo-
rithm we have developed can be applied to a much wider range of smoothly
parametrized decision regions than is presented here. One such example is
discussed in the following section. In this section, unless otherwise stated,
we assume that X � R

2 , and C consists of half spaces which contain the
origin, and whose intersection with X is not empty.

7.1 Relationship with perceptron algorithm

The algorithm we have developed can be applied successfully to the class of
linear classi�ers by lettingX � R

n , A � R
n , and f(a; x) = a>x+1. Letting

X = R
n and A = R

n , C is the set of all half-spaces in X which contain the
origin, and the decision boundary for any element in C is a hyperplane with
normal a and o�set from the origin by 1

kak
. The proof of convergence of

the algorithm relies on the assumption that A is compact, so for any choice
of A there is a non-zero minimum absolute o�set of the decision boundary
from the origin. If we wish to be able to learn half spaces whose boundaries
pass through the origin, or half spaces which do not contain the origin, we
must either use a di�erent parametrization, or perform a translation of
the coordinates in X , so that the origin becomes a regular point. This
rather trivial application highlights the similarities between the algorithm
we have presented and the classical perceptron learning procedure [15]. For

any a 2 A, @f

@a

���
(a;x)

= x, so the algorithm update becomes

ak+1 = ak � �xk

�
2

�
arctan

�
a>x+ 1

"

�
� yk

�
: (7.1)

In the limit "! 0, this reduces to the perceptron learning rule:

ak+1 = ak +

�
2�xkyk if xk is misclassi�ed by �(ak)
0 otherwise

(7.2)

7.2 Assumption C1

Assumption C1 deals only with the nature of the parametrization f . It
prevents overparametrization, such as having a number of components in
the parameter vector whose value doesn't a�ect the choice of �, or letting
the parameter value corresponding to � be unique only up to multiplication
by a scalar. For example, let A � R

3 , and parametrize the half spaces in
R
2 by either

f(a; x) = a(1)x(1) + a(2)x(2) + 1 (7.3)
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or

f(a; x) = a(1)x(1) + a(2)x(2) + a(3): (7.4)

Both of these choices of f give smooth locally bounded parametrizations of
C. In the �rst case, the third component of the parameter vector is ignored
completely, and in the second case f(a; x) � f(ca; x) for any c 2 R, c 6= 0.
For both there is a whole line in A for which f(a; x) � f(a�; x). Simulations
in both of these cases show that the algorithm still \learns" successfully,
though there is a problem of noise accumulation once the parameters have
converged to the correct line. Nevertheless, it is our belief that assumption
C1 is not necessary. In the future it would be desirable to ascertain how far
this assumption can be generalised, by �nding a corresponding necessary
condition.

7.3 Assumptions B1 and C2

Assumptions B1 and C2 are generalizations of the persistence of excitation
condition that is commonly imposed in problems of adaptive control [6].
The sum

k0+K�1X
k=k0

@f

@a

����
(a�;xk)

 
@f

@a

����
(a�;xk)

!>
(7.5)

parallels the information matrix in the adaptive control context. Assump-
tion B1 says that for some constants �;K,

�kak2 �
1

K

k0+K�1X
k=k0

 
a>

@f

@a

����
(a�;xk)

!2

(7.6)

for all a 2 Rm . This is satis�ed if (and only if) for someK, anyK successive

vectors @f
@a

���
(a�;xk)

, k = k0 : : : k0 +K � 1, span X .

If a linear parametrization is used, B1 is satis�ed if and only if any K

successive sample points span X . For example, let A � R
2 , and let f be

de�ned by (7.3). If xk(1) = 0 for all k then no updates of a(1) will be
made.

If a nonlinear parametrization is used, the condition is more compli-
cated. Assumption B1 may be violated due to an inappropriate choice
of parametrization, such as having one component of the parameter vec-
tor appearing raised to an even power. For example let A � R

2 and
f(a; x) = a(1)2x(1) + a(2)x(2) + 1. Then (a(1); a(2)) and (�a(1); a(2))
both describe the same decision region. If we now choose a� = (0; 1)> then

the �rst component of @f

@a

���
(a�;xk)

is zero for any xk.
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If the persistence of excitation condition is not satis�ed the algorithm
will learn to correctly classify points in the subset of X which is spanned

by the vectors @f
@a

���
(a�;xk)

.

7.4 Assumptions B2, C3 and C4

Assumptions B2, C3 and C4 deal with the topology of the level sets of the
cost surface de�ned by J". Assumption B2 is violated if there exists some
a 2 A such that

lim
K!1

1

K

K�1X
k=0

@f

@a

����
(a;xk)

(g"(a; xk)� g"(a
�; xk)) = 0 (7.7)

and a 6= a�. This can occur if all of the terms in the sum equal zero, or if
only a �nite number of the terms in the sum are nonzero.

For example, let A � R
2 , and let f be de�ned by (7.3). Choose the

sample points so that xk(1) =
1
2
xk(2) for all k. Then for any �1; �2; �3 2 R,

f((�1; �2); x) = f((�3; �2 +
�1��3

2
; x) if x = xk for some k, but not for all

x 2 X . Thus for any parameter satisfying a = (�; a�(2) + a�(1)��

2
), where

� 2 R, (7.7) holds, but a 6= a�, so B2 is violated. Again, the algorithm will
learn to correctly classify points in the space spanned by the sample points,
but not points in the rest of X . Whilst the \persistence of excitation"
condition B1 is not violated in this case, the sample points (xk) still do not
hold su�cient information that the algorithm can be guaranteed to learn
the decision region correctly.

Assumption B2 can also be violated when the terms in the sum (7.7)
are nonzero but the sum is still zero. This may, for instance, occur when
the sample points cycle through a �nite set of j points chosen so that

jX
k=0

@f

@a

����
(a;xk)

(g"(a; xk)� g"(a
�; xk)) = 0: (7.8)

We have as yet been unable to �nd such an example. Examples of this type
are non-generic, however there is no reason to believe that such examples
do not exist. Similar comments can be made about assumption C3 and
C4 in the multiple solutions case. For a more thorough discussion of these
assumptions see [3]. In particular, we show there that B2 is satis�ed for
linear classi�ers.

7.5 Smooth locally bounded parametrization

Another basic assumption of this paper has been to assume that the
parametrization to be used is smooth and locally bounded. However the
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algorithm has also been successfully applied in situations where this is not
true. One such example is that of the (approximate) union of two circles.
Choosing X � R

2 and A � R
6 , the parametrization used was

f(a; x) =
a(3)

(a(1)� x(1))2 + (a(2)� x(2))2

+
a(6)

(a(4)� x(1))2 + (a(5)� x(2))2
� 1: (7.9)

This parametrization is unbounded at the points x = (a(1); a(2)) and x =
(a(5); a(6)), and so is not locally bounded. Nevertheless, for uniformly
distributed (xk), the algorithm successfully learnt regions described by this
parametrization in a number of experiments. This is because, for each a,
the points where the parametrization is unbounded are isolated points in
X , so the sample points will almost surely not coincide exactly with one
of these isolated points. It appears that the assumption of smooth local
boundedness can be relaxed somewhat, however we are unsure what would
be the most useful (generally applicable) relaxation, or how to incorporate
such a relaxation into the analysis.

8 Example|Intersections of Half Spaces

An interesting problem arising in the neural network literature is that of
learning an intersection of half spaces. Whilst one can learn an intersection
of half spaces using both examples (data samples) and queries [2], until
recently no other online scheme had been developed which can solve this
problem using only examples [4].

Let X � R
n , A � R

2n , and denote elements of A by a = (n1; n2), where
n1; n2 2 Rn are the normals to the boundaries of the two half spaces. Then
de�ne

fp((n
1; n2); x) = 1� e�p(n

1>x+1) � e�p(n
2>x+1): (8.10)

For p > 0, the region �((n1; n2)) de�ned by fp((n
1; n2); x) > 0 is contained

in the intersection of the half spaces n1>x + 1 > 0 and n2>x + 1 > 0 and
as p ! 1, @�(n1;n2) approaches the boundary of this intersection. This
parametrization is constructed from the parametrization of a half space
used in the previous section. It inherits the limitations of that parametriza-
tion, in that only those intersections of half spaces which contain the origin
can be described by (8.10), and for a particular choice of A there is a
nonzero minimum distance between the decision boundary and the origin
in X . Figure 1 gives an example of the boundary fp(a; x) = 0 approaching
the boundary of the intersection of two half spaces as p!1.

Presuming the true decision region is �((n�1; n
�
2)) for some n

�
1; n

�
2 2 R

n ,
assumption C1 of theorem 6.3 is satis�ed by the parametrization fp. In
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Figure 1: Example illustrating the di�erence between the intersection of
two half planes and the solution of fp((n

1; n2); x) = 0. The normals to the
half planes are n1 = (�1; 1) and n2 = (1; 1), and p ranges from 1 to 8 in
steps of 1.
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particular, fp((n1; n2); �) � fp((n2; n1); �), so there are two critical points of
the averaged equation. Assumption C2 will be satis�ed for generic input se-
quences (xk). In [3] it is shown that C4 is satis�ed for this parametrization,
and some further discussion of C3 is given.

Figures 2 to 5 show the results of two di�erent applications of the al-
gorithm to (8.10) when n = 2. In both cases the �nal estimate is a good
approximation of the true decision region. In the �rst case the estimate
parameters remain within one basin of attraction for all iterations. In the
second case the estimate parameters jump from one basin to the other.
Note that if the initial parameter estimate is chosen so that n1 = n2, both
of the normals will update the same way, so the estimate parameters will
not converge successfully but rather remain on the boundary between the
two basins of attraction.

We have also successfully applied the algorithm to the obvious gener-
alisation of the intersection on m half spaces in n dimensions. Again, the
algorithm performs well in practice. We have tried the following cases:

m = 2 n = 4
m = 3 n = 2
m = 3 n = 3
m = 5 n = 3
m = 5 n = 5
m = 10 n = 10:

A basic assumption of this paper is that the true decision region can
be correctly parametrized by f(a�; �) for some a� 2 A. In the case of
intersecting half spaces, there is a unique decision region in C closest to
the true decision region. The estimated parameters will asymptotically
enter and remain in an open neighbourhood containing the parameters of
the \best" decision region. However even in the limit � ! 0, and " ! 0,
the parameters will not converge exactly to the best parameter value since
the estimate decision region can not exactly match the true decision region.
Instead, the parameters will continue to move around in the neighbourhood
of the best value. Nevertheless, p can be chosen so that the region in which
the parameters jiggle is as small as required.

9 Conclusions

In this paper we have presented an algorithm for learning nonlinearly
parametrized decision regions in an online fashion. The algorithm was de-
�ned in such a manner as to make an analysis of it's convergence properties
possible. We have shown that, under certain conditions on the parametriza-
tion and the sequence of test points used in learning, the algorithm is an
online learning algorithm. Standard techniques from averaging theory and
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Figure 2: The evolution of the parameters when the algorithm was applied
to (8.1). The parameters moved very quickly away from their initial values,
then slowly converged toward the target. The true parameter vector was
a� = (1; 2; 3;�1) and the initial and �nal estimates were a0 = (�1; 0; 0;�1)
and a12000 = (1:02; 2:03; 3:04;�1:12) respectively. The quantities �, " and
p were 0:01, 0:00001 and 3 respectively. The sample points were indepen-
dently uniformly distributed over the square [�2; 2]� [�2; 2].
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Figure 3: The target decision region and the �nal estimate for the problem
described in �gure 2.

Lyapunov stability were used to establish convergence of the algorithm.
We have illustrated the power of the algorithm by applying it to the previ-
ously unsolved problem of learning an intersection of halfspaces using only
examples.

A number of open questions arise from this work. Among them are:

� Are there conditions on the input sequence (xk) which will force con-
vergence of the estimate parameter values even when there are mul-
tiple critical points of the cost function J?

� It was mentioned in section 7 that the algorithm appears to be appli-
cable even when the parametrization is not locally bounded. Possibly
the smoothness condition can also be relaxed somewhat. It would be
interesting to gain some theoretical insight into this relaxation.

� It was mentioned in section 8 that assumption C1 appears not to be
necessary. We would like to �nd a corresponding necessary condition.

� Various stochastic aspects of the problem can be investigated. For
instance: \How much" does highly correlated (xk) slow down con-
vergence of the algorithm? \How robust" is the algorithm to model
mismatch and classi�cation error?
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Figure 4: The evolution of the parameters when the algorithm was ap-
plied to (8.1). The parameters jumped between the two basins of at-
traction after about 7000 iterations. The true parameter vector was
a� = (2; 4; 4; 2) and the initial and �nal estimates were a0 = (3; 3; 3:01; 3:01)
and a12000 = (2:43; 4:53; 5:08; 2:82) respectively. The quantities �, " and
p were 0:025, 0:00001 and 3 respectively. The sample points were inde-
pendently uniformly distributed over the square [�2; 2]� [�2; 2]. For this
value of � the update size is large, so it is di�cult to read a true plot of the
evolution of the estimate parameters. For this reason, the average value
over the previous 100 iterations has been plotted after each 100th iteration.
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y0
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Figure 5: The target decision region and the �nal estimate for the problem
described in �gure 4.

� By investigating the topological properties of the parametrizations,
can an understanding of the types of decision regions which can be
learned can be gained?
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Appendix

We make use of the Gronwall lemma [18], which we state here without
proof:

Speci�c Gronwall Lemma Suppose that for t0 � t � t0 + T there are

constants �1 > 0; �2 � 0; �3 � 0 such that a continuous function �(t)
satis�es

�(t) � �2(t� t0) + �1

Z t

t0

�(s)ds + �3 (A.1)
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and �(t) � 0 for t0 � t � t0 + T . Then

�(t) �

�
�2

�1
+ �3

�
e�1(t�t0) �

�2

�1
(A.2)

for t0 � t � t0 + T .

Let

g� := g(a�; x(t))

@f

@a
:=

@f

@a

����
(a(t);x(t))

@f

@a

�

:=
@f

@a

����
(a�;x(t))

@g

@a

�

:=
@g

@a

����
(a�;x(t))

:

Lemma A.1 Let A � R
m , X � R

n , X bounded, let f : A �X ! (�1; 1)

be smooth and locally bounded, and let g(�; �) = 2
�
arctan

�
f(�;�)

"

�
for some

" > 0. Consider the initial value problems

_a(t) = ��
@f

@a
(g(a(t); x(t)) � g�) ; a(t0) = at0 ; t � t0 (A.3)

_b(t) = ��
@f

@a

��@g
@a

��>
(b(t)� a�) ; b(t0) = at0 ; t � t0 (A.4)

for some t0 � 0. If the solution b � a� of (A.4) is uniformly globally asymp-

totically stable, then the solution a � a� of (A.3) is uniformly exponentially

stable in some neighbourhood N of a�. Moreover, diamN = 
�(1).

Proof: Let the bounds on f be given by (4.2) to (4.5). Then the bounds
on g are given by (5.9) to (5.12). Combining (A.3) and (A.4) we have

_a(t)� _b(t) = ��
@f

@a

��@g
@a

��>
(a(t) � b(t)) + h(a(t)); (A.5)

where

h(a(t)) := ��
@f

@a
(g(a(t); x(t)) � g�) + �

@f

@a

��@g
@a

��>
(a(t)� a�); (A.6)

It follows that

kh(a(t))k =






��@f@a (g(a(t); x(t)) � g�) + �
@f

@a

�
@g

@a

��>
(a(t)� a�)
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��
@f

@a

�
@g

@a

��>
(a(t)� a�) + �

@f

@a

��@g
@a

��>
(a(t)� a�)







� � sup

x2X

a2D






 @f@a
����
(a;x)












g(a(t); x(t)) � g� �

�
@g

@a

��>
(a(t)� a�)







+�





@f@a � @f

@a

�



 sup
x2X





@g@a
�



 ka(t)� a�k 8a 2 D:

Thus, by the intermediate value theorem

kh(a)k � 2�C(d1; R)ka� a�k2 8a 2 D1; (A.7)

where R := supx2X kxk, D1 := fa 2 Aj ka� a�k � d1g, and

C(d; r) = sup
ka�a�k<d

kxk<r






 @f@a
����
(a;x)






 sup
ka�a�k<d

kxk<r






 @
2g

@a2

����
(a;x)







+ sup

ka�a�k<d

kxk<r






 @g@a
����
(a;x)






 sup
ka�a�k<d

kxk<r






 @
2f

@a2

����
(a;x)







�

2

�

 
3
3
2B1(d+ ka�k; r)3

23"2
+
2B1(d+ ka�k; r)B2(d+ ka�k; r)

"

!

(A.8)

according to equations 4.3, 4.4, 5.10 and 5.11.
Let � be the solution of the fundamental matrix equation

_� = ��
@f

@a

��@g
@a

��>
� ; �(t0) = I: (A.9)

Global uniform asymptotic stability of a� in (A.4) then implies that there
exist constants c � 1; � > 0 such that

k�(t; t0)k � ce���(t�t0) 8t � t0 (A.10)

and

kb(t)� a�k � ckat0 � a�ke���(t�t0) 8t � t0: (A.11)

Variation of constants for (A.5) gives

ka� bk =

Z t

t0

�(t; s)h(a(s))ds: (A.12)
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Choose d1 > 0. We now assume that

kat0 � a�k �
d1

2
: (A.13)

Thus there exists a constant t1 > t0 such that

ka(t)� a�k � d1 8t 2 [t0; t1]: (A.14)

Combining (A.7), (A.10) and (A.12) gives

ka(t)� b(t)k � 2�cC(d1; R)

Z t

t0

ka(s)� b(s)k2e���(t�s)ds

+4�cC(d1; R)

Z t

t0

ka(s)� b(s)kkb(s)� a�ke���(t�s)ds

+2�cC(d1; R)

Z t

t0

kb(s)� a�k2e���(t�s)ds 8t 2 [t0; t1]:

Equation A.11 then implies

ka(t)� b(t)k � 2�cC(d1; R)

Z t

t0

ka(s)� b(s)k(ka(s)� b(s)ke���(t�s))ds

+4�c2C(d1; R)kat0 � a�ke���(t�t0)
Z t

t0

ka(s)� b(s)kds

+
2c3C(d1; R)

�
kat0 � a�k2e���(t�2t0)

Z t

t0

e���sds 8t 2 [t0; t1]:

Because a(t0) = b(t0), there exists a constant t2 > t0 such that

ka� bk �
�

4cC(d1; R)
8t 2 [t0; t2]: (A.15)

Let t̂ = minft1; t2g. Then

ka(t)� b(t)k �
��

2

Z t

t0

ka(s)� b(s)ke���(t�s)ds

+��ckat0 � a�ke���(t�t0)(t� t0)

+
2c3C(d1; R)

�
kat0 � a�k2e���(t�t0) 8t 2 [t0; t̂]:

Applying Gronwall's lemma, this becomes

ka(t)� b(t)k �
�
2c3C(d1;R)

�
kat0 � a�k2 + 2ckat0 � a�k

�
e�

��

2
(t�t0)

�2ckat0 � a�ke���(t�t0) 8t 2 [t0; t̂]: (A.16)
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Choosing kat0 � a�k � d0 := min
n
d1
2
; �
10c2C(d1;R)

o
, (A.16) implies that

ka(t)� b(t)k <
�

4cC(d1; R)
8t 2 [t0; t̂]: (A.17)

It follows that t̂ may be replaced by 1 in (A.16).
Combining (A.11) with (A.16), we have

ka(t)�a�k �

�
2c3C(d1; R)

�
kat0�a

�k2 + 2ckat0�a
�k

�
e�

��

2
(t�t0)

�ckat0 � a�ke���(t�t0) 8t � t0: (A.18)

Recall that the only restriction on the choice of d1 is that a(t) is assumed
to satisfy ka(t)�a�k � d1. Because the positive terms of (A.16) and (A.18)
are the same, the upper bound (A.17) applies to ka(t)� a�k. Thus d1 can

be replaced d̂1, the solution of

d̂1 :=
�

4cC(d̂1; R)
: (A.19)

This equation has a solution because � and c are positive constants, and C

is a positive, non-decreasing function of d1. Now d̂0 = min
n
d̂1
2
; 2d̂1
5c

o
= 2d̂1

5c
,

since c � 1. Using this value of d̂0 to eliminate the squared kat0�a�k term
and ignoring the negative term in (A.18) gives

ka(t)� a�k �
11c

5
kat0 � a�ke�

��
2
(t�t0) 8t � t0 (A.20)

for any trajectory originating in D0 := fa 2 Aj ka� a�k � d̂0g. The region
N of exponential attraction of a(t) to a� containsD0, so diamN = 
�(1).

Proof of theorem 6.2 Let

V (a0) := sup
t�0

�
ka(t)� a�ke

��

4
t
�
; (A.21)

where a(t) is the solution at time t of (6.15). Then V :A! R is a Lyapunov
function [16]. Furthermore, V (a) satis�es

1. ka� a�k � V (a) � Kka� a�k 8a 2 A

2. jV (a)� V (b)j � K
4L
�
+1ka� bk 8a; b 2 A

3. _V(6:15)(a) � � ��

4
V (a) 8a 2 A;
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where the notation _V(6:15)(a) indicates the time derivative of V (a) when a

is a solution of (6.15). Derivation of these properties can be found in the
appendix to Mareels and Hill [13].

The time derivative of V , for a a solution of (6.14), is

_V(6:14)(�a(t)) = lim sup
h#0

V (�a(t)� �h�(�a(k); xk))� V (�a(t))

h

where k = btc

= lim sup
h#0

V (�a(t)� �h�(�a(t); xk))� V (�a(t))

h

+ lim sup
h#0

V (�a(t)� �h�(�a(k); xk))� V (�a(t)� �h�(�a(t); xk))

h

� �
��

4
V (�a(t)) + �K

4L
�
+1k�(�a(t); xk)��(�a(k); xk)k

using properties 2 and 3 of V (a). Thus

_V(6:14)(�a(t)) � �
��

4
V (�a(t)) + �K

4L
�
+1Lk�a(t)� �a(k)k

� �
��

4
V (�a(t)) + �2K

4L
�
+1LB; (A.22)

where we have used the bounds (6.12), (6.13) and the de�nition of �a. The
second term in the bound (A.22) is independent of t. Property 1 of V and
variation of constants on equation A.22 gives

k�a(k + 1)� a�k � V (�a(k + 1))

� V (a0)e
� ��

4
(k+1) + �2K

4L
�
+1LB

Z k+1

0

e�
��
4
(k+1�t)dt

�Kka0 � a�ke�
��

4
(k+1) +

4�

�
K

4L
�
+1LB(1� e�

��

4
(k+1))

Thus the long term behaviour of the solution to (6.14) is governed by
(6.17).

Proof of theorem 6.3 Using theorem 6.1, it is shown that the solution of
(6.1) approaches a�. We then use theorem 6.2 to show that the estimated
parameters asymptotically enter and remain in a neighbourhood of a�, and
that the radius of this neighbourhood is o�(1). Following remark 4.2, this
indicates that the algorithm is an approximate online learning algorithm.

Let x(t) := xk 8t 2 [k; k + 1). Assumption B1 gives the lower bound
called for in assumption A1 of theorem 6.1. The upper bound on this sum
exists because both @f

@a
and @g"

@a
are bounded on A�X . Also, �1 < g < 1
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and f is bounded on A�X so assumption A2 is satis�ed, as is assumption
A3. Assumption B2 is identical to A4, so theorem 6.1 can be applied
to equation 6.1. Thus the solution a � a� of (6.1) is uniformly globally
asymptotically stable.

For any " > 0, setting

�(a; x) :=
@f

@a

����
(a;x)

(g"(a; x) � g"(a
�; x)) (A.23)

allows application of theorem 6.2 to equations 6.11 and 6.1. Thus we have

lim
k!1

ka0(k)� a�k �
4�LBK

4L
�
+1

�
; (A.24)

where constants are determined as follows:
Let d = supA kak and R = supX kxk. Then equations 4.3, 4.4 and 5.9

to 5.12 show that B = 2B1(d;R) and L = 2B2(d;R) +
2
�

B1(d;R)
2

"
.

Existence of K and � in (6.16) is guaranteed for su�ciently small � by
the uniform asymptotic stability of a�. Expressions for these constants can
be derived as follows from expressions in the proof of lemma A.1:

Let
d̂0 :=

�

10c2C( 5cd̂0
2
; R)

; (A.25)

where C is de�ned in (A.8). The constants c and � depend on the matrix

@f

@a

�
�
@g"
@a

�
�>

only and are chosen as in equation A.10.

Choose T so that kb(T ) � a�k � d̂0 for all a0 2 A. Existence of T is
guaranteed because A is bounded. Using equation A.20 it can be seen that
kb(t)� a�k satis�es the inequality

kb(t)� a�k � Ke�
��

2
tka0 � a�k 8t � 0; (A.26)

where

K =
11c

5
e
��
2
T sup
a02A

�
1

ka0 � a�k
sup

0�t�T

kb(t)� a�k

�
: (A.27)

Comparing equations 5.8 and 5.14, we have that,

lim sup
k!1

kak � a�k � ka0k � a�k+ �B1(d;R) lim
k!1

k�1X
j=0

j�k;"j

�
4�LBK

4L
�
+1

�
+ �O"("

1
2 );

where (5.13) has been used.
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Thus for each �, the estimated parameter vector produced by the al-
gorithm asymptotically approaches and remains in a neighbourhood of the
parameters of the true decision region. Furthermore,

lim sup
k!1

kak � a�k � o�(1); (A.28)

so the neighbourhood that the estimate parameters converge to converges
to contain only the true parameter vector. By remark 4.2, the result fol-
lows.
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