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Versions of Sontag's Input to State Stability

Condition and Output Feedback Global

Stabilization�

J. Tsinias

Abstract

A new approach on the output feedback global stabilization prob-

lem for triangular nonlinear systems is presented. Our methodology

extends some ideas from our recent works (1993) and is quite dif-

ferent and less technical than these proposed by earlier works where

similar results are obtained in the presence of the \input to state

stability condition". The main su�cient conditions we propose are

versions of this condition.
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1 Introduction

We deal with the output feedback global stabilizability problem for single-

input systems of the form

_x = f(x; y1)

_yi = gi(x; y1; :::; yi) + yi+1 ; 1 � i � m (1.1)

ym+1 + u

x 2 <n ; y + (y1; :::; ym)0 2 <
m

where u and y are the input and the output of (1.1), respectively, 0 stands

for transpose, and we assume that the mappings f and gi are continuous

(C� ) vanishing at zero.

�Received November 24, 1993; received in �nal form March 7, 1994. Summary ap-

peared in Volume 6, Number 1, 1996.
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In the present paper we extend previous results on the same problem for

interconnected nonlinear systems (see [1-18] and references therein). Our

approach is di�erent from this employed in relative existing works (see for

instance [2,3,9,12]) and is based on some ideas from [17,18] as well as on

versions of the \input to state stability condition" (I.S.S.C.) concerning

the stability behavior of the subsystem

_x = f(x; y) with y as input (1.2)

In particular, the �rst version (Condition 2.1) is of Lyapunov type and as it

has been recently proved by Lin, Sontag and Wang is equivalent to I.S.S.C.

This condition implies that for the case m = 1 the corresponding (n+ 1)-

dimensional system (1.1) is globally asymptotically stabilizable at the origin

(G.A.S.) by output feedback which is continuous on <n+1 (Theorem 3.1).

The second version (Condition 2.2) is weaker than the I.S.S.C. and guar-

antees that (1.1) is G.A.S. by means of an output feedback which is smooth

on <n; provided that f and gi are C
1 and the matrix (@f=@x)(0; 0) is Hur-

witz (Theorem 3.2 and Corollary 3.4). Finally, a pair of stability conditions

much more weaker than I.S.S.C. as well as Conditions 2.2 are presented in

section 4 (Conditions 4.1 and 4.2). These conditions are applicable to global

stabilization of (1.1) provided that the mappings gi are bounded (Corollary

4.4). It should be noted that versions of the previous results have been

originally presented in the recent works [3] of Jiang, Praly and Teel and

[9] of Praly and Jiang. In particular, in [3] among other things it is shown

that (1.1) is G.A.S. by smooth output feedback provided that (@f=@x)(0; 0)

is Hurwitz and the subsystem (1.2) satis�es the I.S.S.C. Comparing with

[3,9] our approach is based to weaker assumptions and is less technical.

We also remark that our results can directly be extended for systems of

the form _x = f(x; y1); _yi = gi(x; y1; :::; yi) + yi+1hi(x; y1; :::; yi); 1 � i �

m; ym+1 := u; where hi are everywhere strictly positive C� mappings.

2 Versions of the \Input to State Stability Condition"

It will be useful to recall �rst the de�nition of the I.S.S.C. We say that

(1.2) satis�es the I.S.S.C. if it is complete, (namely, for every initial state

x0 and for any essentially bounded measurable control y there exists a

solution x(t; x0; y) of (1.2) starting from x0 at time t = 0; which is de�ned

for every t � 0) and there exist a function � : <+ ! <+ of class K ,

(namely � is continuous, strictly increasing vanishing at zero) and a C�

function � : <+�<+ ! <+ such that for each �xed t the function �(�; t) is

of class K; for each �xed s the function �(s; �) decreases to zero at in�nity

and further for any x0 , (essentially) bounded input y and for (almost) all

t the following holds:

jx(t; x0; y)j � �(jx0j; t) + �(kytk); (2.1)
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where yT (t) equals y(t) for 0 � t � T and is zero otherwise, and k � k; j � j

are the L1 and the usual Euclidean norm, respectively. (Note: Complete-

ness of (1.2) imposed by the previous de�nition does not consist an extra

assumption; in particular, it is very easy to see that (2.1) implies complete-

ness of (1.2)).

The previous condition has been used by several authors in order to

face the global stabilizability problem (see for instance [2,3,9,11]). We now

propose two versions of the I.S.S.C.

Condition 2.1 There exist a positive de�nite, uniformly unbounded

(p.d.u.u.) C1 function V : <n ! <+ and a function 
 : <+ ! <+ of

class K
1

(namely, 
 2 K and 
(s)! +1 as s! +1) such that

DV (x)f(x; y) < 0; 8jyj � 
(jxj); x 6= 0 (2.2)

(DV denotes the derivative of V ).

It is important to note that Condition 2.1 is equivalent to the \Lyapunov

description" of the I.S.S.C. (see equation (36) in [11] or condition (3) and

Lemma 1 of the recent work [2] of Freeman; Kokotovic). To be more

speci�c, if (2.2) holds then following the same arguments with those given

in [10, Section VI] we can determine a p.d.u.u. C1 map V̂ : <n ! <+ and

a function � : <+ ! <+ of class K
1

such that

DV̂ (x)f(x; y) � ��(jxj); 8jyj � 
(jxj):

The latter, according to the proof of Theorem 1 in [10], implies I.S.S.C.

Conversely, as we have mentioned in the introduction, it has been recently

proved by Sontag and Wang in [14] that I.S.S.C. implies Condition 2.1

provided that f is at least C1. This is a consequence of a general converse

Lyapunov theorem proved by Lin, Sontag and Wang in [7] concerning the

set stability of control systems with inputs taking values on a compact set.

Since I.S.S.C. is stronger than \bounded input bounded state" (B.I.B.S.)

and also \converging input converging state" (C.I.C.S.) properties (see [12]

for de�nitions) it follows that Condition 2.1 implies B.I.B.S., C.I.C.S. and

completeness of (1.2).

The following condition is weaker than I.S.S.C.

Condition 2.2 There exists a function 
 : <+ ! <+ of class K
1

such

that

(a) for every initial state x0 and input y such that x(t; x0; y) exists for all

t � 0 and satis�es

jy(t)j � 
(jx(t; x0; y)j) (2.3)

it follows that
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x(t; x0; y)! 0 as t! +1 (2.4a)

and since 
 is C� vanishing at zero

y(t)! 0; as t! +1 ; (2.4b)

(b) for every initial state x0 , input y and time T such that (2.3) is satis�ed

on [0; T ) it follows that limt!T jx(t; x0; y)j < +1 and, since 
 is of

class K
1

, limt!T jy(t)j < +1.

Condition 2.2 says essentially the following: for each vector (x0; y0)

belonging to the region M := f(x; y) 2 <n+1 : jyj � 
(jxj)g and for every

input y the trajectory (x(t; x0; y); y(t)) either leaves Mnf0g after some

�nite time, or stays in M for all t; approaching zero as t! +1.

Example Consider the system _x1 = g(x1); _x2 = �x2+y; (x1; x2) 2 <
k�<

and assume that 0 2 <k is a global attractor with respect to _x1 = g(x1).

Then we can easily justify that this system satis�es Condition 2.2 with


(s) = 1
2
s1=2 , although it may fails to be input to state stable or even

B.I.B.S. Note that I.S.S.C. is satis�ed under the extra assumption that

0 2 <k is globally asymptotically stable with respect to _x1 = g(x1).

The following Propositions 2.3-2.6 summarize some interesting proper-

ties of Condition 2.2. In particular, in Propositions 2.3 and 2.4 some rather

strict but useful Lyapunovlike descriptions of Condition 2.2 are provided

and in Proposition 2.5 it is shown that I.S.S.C. implies Condition 2.2. This

in conjunction with the previous example guarantees that Condition 2.2 is

weaker than I.S.S.C.

Proposition 2.3

(i) Suppose that there exist a pair of positive de�nite C1 functions V1; V2 :

<n ! <+; V2 being uniformly unbounded, functions � 2 K and


 2 K
1

, and � : <+ ! <+ being everywhere strictly positive and

continuous with Z +1

0

d r

�(r)
= +1 (2.5)

and a positive constant R such that

DV1(x)f(x; y) < ��(jxj); 8 jyj � 
(jxj); x 6= 0 (2.6a)

DV2(x)f(x; y) � �(V2(x)); 8 jyj � 
(jxj); jxj � R (2.6b)

Then Condition 2.2 is satis�ed with the same characteristic function


;
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(ii) it turns out that Condition 2.1 implies Condition 2.2 (with the same

characteristic function 
).

Proof (Outline): We show that (2.6b) plus (2.5) implies property (b)

of Condition 2.2. (Its proof consists a slight generalization of a well known

result due to Wintner [19]). Suppose on the contrary that there exist an

x0 , input y and time T such that the solution x(t; x0; y) of (1.2) exists

and satis�es (2.3) on [0; T ); whereas lim jx(t; x0; y)j ! 1 as t ! T . Then

there would exist a pair of sequences ftvg and f�vg; (v = 1; 2; : : :) with

T > tv > �v , tv ! T such that jx(t; x0; y)j � jx(�v ; x0; y)j = R for

t 2 [tv ; �v] and jx(tv ; x0; y)j ! +1 as tv ! T . Then by (2.5),(2.6) and the

fact that V2 is p.d.u.u. on <
n we get

+1 = lim
tv!T

Z V2(x(tv;x0;y))

V2(x(�v;x0;y))

dr

�(r)
< T

a contradiction, hence property (b) of Condition 2.2 is satis�ed. The latter

in conjunction with (2.6a) implies property (a) of Condition 2.2 (The proof

of this statement follows by using standard Lyapunov based arguments

based on property (b) of Condition 2.2 and the fact that � 2 K). Finally,

note that if Condition 2.1 is satis�ed then obviously (2.6a) and (2.6b) hold

with V1 = V2 = V being uniformly unbounded, � = 1; R = 0 and the same


.

A much more strong Lyapunov like description of Condition 2.2 is given

by the following proposition.

Proposition 2.4 Assume that there exist a pair of positive de�nite C1

functions V1; V2 : <
n ! <+; V2 being uniformly unbounded on <n; a func-

tion 
 2 K
1

and a constant R � 0 such that

DV1(x)f(x; y) < 0; 8 jyj � 
(jxj); x 6= 0 (2.7a)

DV2(x)f(x; y) � 0; 8jyj � 
(jxj); jxj � R: (2.7b)

Then the system (1.2) satis�es Condition 2.2 as well as B.I.B.S. and

C.I.C.S. properties. Obviously, Condition 2.1 implies both (2.7a) and (2.7b)

with V1 = V2 = V; R = 0 and the same 
.

Proof: We only show that (2.7b) implies B.I.B.S. The rest part of the

proof follows easily and it is left to the reader. First, note that (2.7b)

is a special case of (2.6b) hence implies property (b) of Condition 2.2.

Consider now any initial x0 and bounded input y. We show that the

solution x(�; x0; y) is bounded. We distinguish three cases. The �rst is

jy(t)j � 
(jx(t; x0; y)j) for all t after some �nite time. Then the desired con-

clusion follows by taking into account (2.7b) and the fact that V2 is p.d.u.u.
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on <n: Suppose next that there exist sequences ftvg; f�vg; fsvg with 0 <

tv � �v � sv < tv+1 and tv ! +1 such that jy(t)j � 
(jx(t; x0; y)j) for

t 2 [tv ; sv]; jy(t)j � 
(jx(t; x0; y)j) for t 2 [sv; tv+1] and jx(�v ; x0; y)j =

maxfjx(t; x0; y)j; t 2 [tv; sv]g and assume on the contrary that

limjx(�v ; x0; y)j = +1:

By (2.7b) and the fact that V2 is p.d.u.u. on <
n we get

limV2(x(tv ; x0; y)) � limV2(x(�v ; x0; y)) = +1

and so limjx(tv ; x0; y)j ! +1: On the other hand jy(tv)j = 
(jx(tv ; x0; y)j)

and since 
 2 K
1

it follows that limjy(tv)j = +1; a contradiction. The

third case is jy(t)j � 
(jx(t; x0; y)j) for all t after some �nite time. Then

the desired conclusion follows directly from the boundedness of the input y.

Hence B.I.B.S. property is satis�ed. Similarly we can establish that (2.7a)

implies C.I.C.S.

Proposition 2.5 If the system (1.2) satis�es the I.S.S.C. then it also

satis�es Condition 2.2 with 
 being any real function of class K
1

such

that

(� � 
)(s) < �s; 8 s > 0 (2.8)

where � is the function de�ned in (2.1) and � being a positive constant with

� < 1.

Proof: The proof can be followed by using Proposition 2.4 and the equiv-

alence of Condition 2.1 with I.S.S.C., which as we have already mentioned

was established in [14]. For reasons of completeness a simple proof, which

follows directly from the de�nition of the I.S.S.C., is presented here. Con-

sider any function 
 of classK
1

which satis�es (2.1) and let an initial state

x0 , input y and time T � +1 such that x(t; x0; y) exists and (2.3) holds

on [0; T ). We claim that limjx(t; x0; y)j < +1 as t ! T . Indeed, by (2.1)

it follows

jx(t; x0; y)j � �(jx0j; t) + (� � 
)(kx(�; x0; y)tk) (2.9)

for all t 2 [0; T ). Suppose on the contrary that limjx(t; x0; y)j = +1 as t!

T . Then there would exist a sequence ftvg with t 2 [0; T ) and tv ! T such

that jx(t; x0; y)j � jx(tv ; x0; y)tv j for all t � tv: This implies kx(�; x0; y)tvk =

jx(tv ; x0; y)j and so by (2.8) and (2.9) we get (1 � �)limjx(tv ; x0; y)j �

lim�(jx0j; tv) < +1 as tv ! T; a contradiction. Therefore property (b)

of Condition 2.2 is satis�ed. We now establish property (a) of Condition

2.2, namely we show that (2.4) is ful�lled for any x0 and input y satisfying

(2.3). Suppose on the contrary that limjx(t; x0; y)j = � > 0 as t ! +1.

The analysis given above implies that � < +1. It turns out that for every

� > 0 there exists a T = T (�) > 0 such that

jx(t; x0; y)j < �+ � for all t � T: (2.10)
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Let x̂0 = x(T; x0; y) and ŷ(t) = y(t + T ). By (2.1), (2.8) and (2.10) it

follows that

jx(t; x̂0; ŷ)j � �(jx̂0j; t) + �(kŷtk)

� �(jx̂0j; t) + (� � 
)(kx(�; x̂0; ŷt)k)

� �(jx̂0j; t) + (� � 
)(�+ �); 8 t � 0:

therefore � = limjx(t; x0; y)j < lim�(jx̂0j; t)+(� �
)(�+ �) = (� �
)(�+ �).

Since the latter holds for every � > 0 we conclude that � � (� �
)(�); � 6= 0

which contradicts (2.8), hence property (a) of Condition 2.2 is ful�lled.

We conclude this section by the following proposition that we shall need

in the next section. (Analogous result is provided in [3] in the presence of

the I.S.S.C.).

Proposition 2.6 Suppose that f is C1 near zero and there exists a C1

Lyapunov function � of the origin with respect to _x = f(x; 0) such that

inffD�(x)f(x; 0)=jxjjD�(x)j; x 6= 0 near zerog < 0: (2.11)

Then, if (1.2) satis�es Condition 2.2, there exist a smooth function 
̂ :

<+ ! <+ of class K
1

and positive constants c and � such that 
̂(s) = cs

for s 2 [0; �]; 
̂(s) � 
(s) otherwise and further Condition 2.2 is sat-

is�ed with 
̂ instead of 
. In particular, (2.11) holds if we assume that

(@f=@x)(0; 0) is Hurwitz.

Proof: Since f is C1 is written f(x; y) = f(x; 0) + (@f=@y)(x; ŷ)y for

x; y and appropriate ŷ near zero, hence by (2.11) we can �nd a constant

c > 0 such that D�(x)f(x; y) < 0 for all jyj � cjxj; x near zero. This

implies the existence of a neighborhood N of 0 2 <n such that the solution

x(t; x0; y) is de�ned for all t � 0 and is contained in N approaching zero

as t ! +1 for every x0 2 N and input y with jy(t)j � cjx(t; x0; y)j. The

desired conclusion follows then by combining the previous discussion and

properties (a) and (b) of Condition 2.2.

3 Output Feedback Stabilizability

Our �rst result is the following theorem.

Theorem 3.1 If Condition 2.1 is satis�ed, then the system (1.1) with

m=1 is G.A.S. by means of a continuous output feedback u = �(y) with

�(0) = 0 which is smooth on <nnf0g.

Proof: In order to simplify the notation we denote y = y1; g = g1:

Consider a pair of C� functions a; b : <+ ! < of class K
1

such that

according to the previous notations the following holds:

jg(x; y)j � a(jxj) + b(jyj); 8 (x; y) 2 <n+1 (3.1)
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(see [9] for a proof of the previous inequality). We de�ne �1(s) = 
(s)

and �2(s) = (1=2)
(s); 
 being the function introduced in Condition 2.1.

Without any loss of generality we may assume that a; b are C1 on <nf0g

and 
 is C1 on <. The latter is a direct consequence of (2.2) and Lemma

3.1 in [13]. We establish that there exists a C� map y ! �(y) which is odd,

C1 on <nf0g; its restriction � : <+ ! <+ is of class K
1

and such that

the function

�(y) +

�
�(1 +E)y � b(y)� �(y) ; y � 0

�(1 +E)y + b(�y)� �(y) ; y < 0;
(3.2)

E being an arbitrary positive constant and b as de�ned in (3.1), is an output

feedback stabilizer. Particularly, � can be chosen in such a way that

2a(jxj) + max

�
jD�1(jxj)f(x; y)j; �2(jxj) � y �

3

2
�1(jxj)

�

<
1

4
�(�2(jxj));8x 6= 0: (3.3)

The existence of � satisfying the previous properties follows from the fact

that �2 is of class K
1

and the mappings a(jxj); �1(jxj); �2(jxj); D�1(jxj)

and f(x; y) are continuous vanishing at zero.

In order to establish that the map � as de�ned by (3.2) is the desirable

output feedback we �rst prove that the following properties are satis�ed:

(i) For every initial state (x0; y0) 2 <
n+1 we have

d

dt
(y2(t)) = y(t)(g(x(t); y(t)) + �(y(t))) � �jy(t)j2 (3.4)

for each t � 0 such that jy(t)j > �2(jx(t)j) and for which the corre-

sponding (not necessarily unique) solution

(x(t); y(t)) = (x(t; x0; y0); y(t; x0; y0))

of the closed - loop system

_x = f(x; y); _y = g(x; y) + �(y) (3.5)

exists;

(ii) the region

M + f(x; y) 2 <n+1 : jyj � �1(jxj)g (3.6)

is positively invariant with respect to (3.5).
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We �rst prove property (i). We substitute the term

�(y)y = jyj�(jyj) = �(1 +E)y2 � jyjb(jyj)� jyj�(jyj) (3.7)

in (3.4) and take into account (3.1). It su�ces then to show that

jyj(a(jxj) + b(jyj))� (1 +E)y2 � jyjb(jyj)� jyj�(jyj) < �jyj2;

or jyj(a(jxj)��(jyj)) < 0 for jyj > �2(jxj) which follows from (3.3). Next we

establish property (ii). Let (x0; y0) 2M . Since 0 2 <n+1 is an equilibrium

for (3.5) and belongs to M; we may assume that (x0; y0) 6= 0. We show

that the corresponding solution of (3.5) lies in M for every t � 0 for which

it exists. Equivalently

y2(t) � �21(jx(t)j) or y
2
0 + 2

Z t

0

y(s) (g(x(s); y(s)) + �(y(s))) ds

� �21(jx0j) + 2

Z t

0

�1(jx(s)j)D�1(jx(s)j)
x0(s)

jx(s)j
f(x(s); y(s))ds

for every t � 0. Since jy0j � �1(jx0j) it su�ces to prove that

y(g(x; y) + �(y)) < �1(jxj)D�1(jxj)
x0

jxj
f(x; y)

for �2(jxj) � y � 3
2
�1(jxj) or by (3.1) and (3.7) that

jyj (a(jxj) + b(jyj))� (1 +E)y2 � jyjb(jyj)� jyj�(jyj)

� �1(jxj)D�1(jxj)
x0

jxj
f(x; y)

which follows from (3.3) and the fact that 1
2
�1(jxj) � y � 3

2
�1(jxj):

From property (i) it follows that for any initial state (x0; y0) the y-

component of the solution (x(t); y(t)) of (3.5) satis�es the inequality

jy(t)j � jy0je
�

1

2
t (3.8a)

as long as the solution exists and

�1(jx(t)j) < jy(t)j (3.8b)

By (3.8) and the positively invariance of M we distinguish two cases.

The �rst is jy(t)j � �1(jx(t)j) after some �nite time. The second is jy(t)j >

�1(jx(t)j) for all t � 0 (for which the solution exists). This in conjunction

with (3.8) implies that y(t) ! 0 and so �1(jx(t)j) ! 0 provided that the

solution exists for all t � 0. Since �1 is C� vanishing at zero it follows
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that (x(t); y(t)) ! 0 as t ! +1. We can use the previous arguments

in order to show that (3.5) is complete. Indeed, by (3.8) the solution

(x(t); y(t)) exists for all t � 0 such that (x(t); y(t)) 62M . Finally, we invoke

Proposition 2.3 which asserts that Condition 2.1 implies Condition 2.2 with

the same characteristic function 
(= �1): It follows that the solution of (3.5)

also exists for all t � 0 with (x(t); y(t)) 2 M and thus by the positively

invariance of M for every t � 0.

We are now in a position to prove that 0 2 <m+1 is globally asymptoti-

cally stable with respect to (3.5). Using the positively invariance of M and

Condition 2.2 it follows that x(t; x0; y0)! 0 as t! +1 and consequently

y(t) ! 0 as t ! +1 for every initial (x0; y0) 2 M . The previous dis-

cussion, in conjunction with the fact that because of (3.8) each trajectory

with initial state outside M is tending to zero as t ! +1 or enters M

after some �nite time, guarantees that (x(t); y(t)) ! 0 as t ! +1 for all

(x0; y0) 2 <n+1 . Next, we show that, 0 2 <n+1 is stable with respect to

(3.5). By (2.2) and the fact that �1 is C
� vanishing at zero, we can �nd for

each � > 0 a � > 0 with � + �1(�) � �=2 such that

j(x(t; x0; y0); y(t; x0; y0))j � jx(t; x0; y0)j+ �1(jx(t; x0; y0)j) <
�

2
(3.9)

for all t � 0 and (x0; y0) 2 M with jx0j < �. Finally, from (3.8), (3.9),

the positively invariance of M and since �1 is strictly increasing it fol-

lows that for every (x0; y0) 62 M with jx0j < � and jy0j < �1(�) we have

�1(jx(t; x0; y0)j) < jy(t; x0; y0)j < �1(�) as long as the solution remains

outside M; which in conjunction with (3.9) implies that

j(x(t; x0; y0); y(t; x0; y0))j < �1(�) + � +
�

2
< � (3.10)

for all t � 0. By (3.9) and (3.10) it follows that for each � > 0 we have

j(x(t; x0; y0); y(t; x0; y0))j < � for all t � 0 and (x0; y0) belonging to the

region f(x; y) 2 <n+1 : jxj < �; jyj < �1(�)g. We conclude that 0 2 <n+1

is globally asymptotically stable with respect to (3.5).

Next we generalize Corollary 2.2 and Proposition 4.3 in [3] by proving

that if the dynamics f and gi are C
1 , (@f=@x)(0; 0) is Hurwitz and Con-

dition 2.2 is satis�ed, then the system (1.1) is G.A.S. by a smooth output

feedback. First, we examine the case m = 1. As in the proof of Theorem

3.1 we use the notations y = y1 and g = g1 .

Theorem 3.2 Consider the system (1.1) with m = 1 and suppose that the

mappings f and g = g1 are C1 , the matrix (@f=@x)(0; 0) is Hurwitz and

either Condition 2.2 or one of its stronger versions ((2.5) plus (2.6), (2.7),

Condition 2.1, I.S.S.C.) is satis�ed. Then (1.1) with m = 1 is G.A.S. by

means of a C1 output feedback u = �(y); �(0) = 0; which is linear near

10
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zero and such that the matrix 
@f
@x
(0; 0); @f

@y
(0; 0)

@g
@x
(0; 0); @g

@y
(0; 0) + @�

@y
(0)

!
(3.11)

is Hurwitz and furthermore the system

_x = f(x; y); _y = g(x; y) + �(y) + w (3.12)

with w as input satis�es Condition 2.2.

Proof: Notice �rst that, since g is C1 near zero, there exists a pair of

smooth functions a and b of class K
1

such that (3.1) holds and further

both a and b are linear near zero. (3.13)

Next we recall Proposition 2.6 which asserts that since (@f=@x)(0; 0) is

Hurwitz, we can determine a C1 function 
̂ : <+ ! <+ of class K
1

which

is linear near zero such that Condition 2.2 is satis�ed with respect to (1.2)

with 
̂ instead of 
. We de�ne �1(s) = 
̂(s); �2(s) = (1=2)�1(s). Since

f; �1 and �2 are C1 vanishing at zero and because of (3.13), there exists a

constant R > 0 such that

maxfjD�1(jxj)f(x; y)j; �2(jxj) � y �
3

2
�1(jxj)g � Rjxj; (3.14)

for x near zero. From (3.13) and (3.14) it follows that there exists an odd

C1 function � which is linear near zero such that the map � : <+ ! <+ is

of class K
1

and (3.3) is satis�ed. This in conjunction with (3.13) implies

that the output feedback � : < ! < as de�ned in (3.2) is smooth and

linear near zero. Moreover, since (@f=@x)(0; 0) is Hurwitz, we can select

the constant E in (3.2) su�ciently large such that the matrix (3.11) is also

Hurwitz. Using (3.3) and following exactly the same arguments with those

given in the proof of Theorem 3.1 we can establish that (3.8a) is ful�lled

as long as (3.8b) and

jw(t)j �
1

2
a(jx(t)j) +

1

4
�(jy(t)j) (3.15)

hold and for each t � 0 for which the solution

(x(t); y(t)) = (x(t; x0; y0;w); y(t; x0; y0;w))

of (3.12) exists. Furthermore (3.3) implies that the setM as de�ned by (3.6)

is positively invariant with respect to (3.12), with inputs w satisfying (3.15);

namely, for each (x0; y0) 2M it holds jy(t; x0; y0;w)j � �1(jx(t; x0; y0;w)j)

11
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as long as (3.15) is satis�ed. Let � : <+ ! <+ be a function of class K
1

such that

�(j(x; y)j) �
1

2
a(jxj) +

1

4
�(jyj); 8 (x; y) 2 <n+1 (3.16)

(The existence of � is guaranteed by the fact that both a and � : <+ ! <+

are of class K
1

). Using the previous properties, as well as property (a)

of Condition 2.2 imposed for the subsystem (1.2), we can establish as in

the proof of Theorem 3.1 that for each initial state (x0; y0) 2 <n+1 the

trajectory (x(t); y(t)) of (3.12) is tending to zero as t ! +1 for every

input w such that

jw(t)j < �(j(x(t); y(t))j) (3.17)

and providing that the solution exists for all t � 0. It follows that the

system (3.12) satis�es property (a) of Condition 2.2 with � instead of 
.

Moreover, as in the proof of Theorem 3.1 we can show that (3.5) (namely,

the system (3.12) with zero input) is complete and so zero 0 2 <n+1 is

a global attractor with respect to (3.5). This in conjunction with the

fact that the matrix (3.11) is Hurwitz implies that 0 2 <n+1 is globally

asymptotically stable with respect to (3.6).

Finally, we establish that the system (3.12) also satis�es property (b)

of Condition 2.2 with � instead of 
. Consider any vector (x0; y0) 2 <
n+1;

time T and input w satisfying (3.17) for all t 2 [0; T ) and assume that the

corresponding solution of (3.12) exists on [0; T ). We show that

lim
t!T

j(x(t); y(t);w(t))j < +1: (3.18)

We distinguish two cases. The �rst is �1(jx(t)j) < jy(t)j for t near T which

in conjunction with (3.8) and (3.15)-(3.17) implies that y(t) and therefore

x(t) and w(t) are bounded for t near T . The other case is (x0; y0) 2 M

and jy(t)j � �1(jx(t)j) for all t 2 [0; T ). Then by using property (b) of

Condition 2.2, which has assumed for the system (1.2), it follows that the

solution of (3.12) as well as the corresponding input w satisfying (3.17)

are both bounded on [0; T ]. The previous discussion asserts that (3.18) is

satis�ed and so the the proof is completed.

Remark 3.3 If the assumption \(@f=@x)(0; 0) is Hurwitz" in the state-

ment of Theorem 3.2 is dropped and if we further assume that all the Dini

derivatives of 
 exist at zero, then similar to the proof of this theorem

it can be shown that there exists a continuous output feedback u = �(y)

such that (3.12) also satis�es Condition 2.2 and the origin will be a global

attractor with respect to (3.5). However in that case � will be in general

C1 on <nnf0g and zero may fails to be stable with respect to (3.5).

We are now in a position to prove our result concerning the output stabi-

lizability problem for the general case (1.1) with output y = (y1; y2; :::; ym)
0.

12
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Corollary 3.4 Consider the general (n+m)-dimensional case (1.1) and

assume that � and gi are C
1 . Then under the same hypothesis of Theorem

3.2 the system (1.1) is G.A.S. by means of a smooth output feedback which

is linear near zero.

Proof: The proof of the general case is based on Theorem 3.2 and follows

by using standard induction arguments like those given in [3, Proposition

4.3] and in other relative works (see for instance [6,8,13]). For reasons of

simplicity we consider the case m = 2. The general case follows similarly

by induction. First, we invoke Theorem 3.2 in order to establish that there

exists a C1 map y2 = �1(y1) with �1(0) = 0 which is linear near zero and

such that if we de�ne

X + (x0; y1)
0; F (X;Y ) + (f 0(x1; y1); g1(x; y1) + �1(y1) + Y )0;

the origin 0 2 <n+1 is globally asymptotically stable with respect to

_X = F (X;Y ) (3.19)

with Y = 0; (@F=@X)(0; 0) is Hurwitz and the system (3.19) with Y as

input satis�es Condition 2.2. Then we apply the transformation x = x; y1 =

y1; Y = y2��1(y1).In the new coordinates the original system (3.19) takes

the form
_X = F (X;Y ); _Y = G(X;Y ) + u (3.20a)

where

G(X;Y ) + �D�1(y1)(g1(x; y1) + �1(y1) + Y )

+ g2(x; y1; �1(y1) + Y ) (3.20b)

The desired conclusion follows then by using the properties of (3.19) and

applying once again Theorem 3.2 for (3.20).

4 Weaker Stability Conditions

It is worth remarking that the assumption 
 2 K
1

that has been imposed

in both Conditions 2.1 and 2.2 can be relaxed in some cases. For instance,

let us assume that there exists a pair of increasing bounded functions a; b :

<+ ! <+ satisfying (3.1). Then the results of Theorems 3.1 and 3.2

concerning the case (1.1) with m = 1 are also valid if instead of Conditions

2.1 or 2.2 the system (1.2) satis�es one of the following weaker versions.

Condition 4.1 The system (1.2) is complete and there exist a p.d.u.u.

C1 function V : <n ! <+ and a bounded function 
 2 K such that (2.2)

holds.

13
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Condition 4.2 The system (1.2) is complete and there exists a bounded

function 
 2 K such that properties (a) and (b) of Condition 2.2 are sat-

is�ed.

Indeed, in that case we can determine an increasing function �1 : <
+ !

<+ and positive constants � and � such that �1(s) � 
(s) for all s � 0 and

�1(s) = � for every � � �. Furthermore we can assume that without any

loss of generality both a and b satisfying (3.1) are constants on [�;+1). The

previous assumption guarantees the existence a bounded C� map � which is

constant for jyj > �; its restriction � : <+ ! <+ is increasing and satis�es

all the required properties including (3.3). The desired feedback will given

again by (3.2) whereas its derivative will be constant for jyj > �. Moreover

in this case the resulting system (3.12) will be complete. This follows

from completeness assumption for (1.2) and the fact that � is bounded.

Indeed, boundedness of � together with (3.2) implies that for every pair of

mappings x(t) and w(t); w being essentially bounded, the one-dimensional

system _y = g(x; y) + �(y) + w is complete. The latter in conjunction with

the completeness of (1.2) implies completeness of (3.12).

Note at this point that both Conditions 4.1 and 4.2 are weaker than

I.S.S.C. as well as Condition 2.2 and as in Section 2 we can easily establish

that Condition 4.1 implies Condition 4.2.

We can also derive an extension of Corollary 3.4 in the case 
 2 K

and under the extra assumption that each gi is bounded. However, a

more careful analysis, than this given in Theorem 3.2 and Corollary 3.4,

is required. We �rst need the following lemma whose proof consists of a

slight modi�cation of the procedure used in the proof of Theorem 3.2.

Lemma 4.3 Consider the system (1.1) with m = 1 and suppose that f and

g1 are smooth and g1 is decomposed as g1(x; y) = G1(x1; x2; y) +G2(x2; y)

with x = (x1; x2) 2 <n1 � <n2 , n1 + n2 = n for the case n2 � 1 and

g1(x; y) = G1(x; y) + G2(y) otherwise, where G1 and G2 are smooth van-

ishing at zero and G1 is bounded. Furthermore assume that (@f=@x)(0; 0)

is Hurwitz and the system (1.2) satis�es Condition 4.2 (or its stronger

version Condition 4.1). Then there exists a linear map �(y) such that

the system (1.1) with m = 1 is G.A.S. by means of the smooth feedback

u = �(y) � G2(x2; y): Furthermore the derivative of the closed-loop dy-

namics (f 0; G1 + �)0 at the origin will be Hurwitz and the system _x =

f(x; y); _y = G1(x; y) + �(y) + w with w as input satis�es Condition 4.2.

Proof (Outline): Let P be the positive de�nite solution of the matrix

equation P @f
@x
(0; 0) +

�
@f
@x
(0; 0)

�
0

P = �I and de�ne �(x; y) := x0Px y2;

u(y) := �(y)�G2(x2; y); �(y) := �Ey;E > 0:Then it can be easily justi�ed

that there exists a positive E1 such that for all E � E1 the derivative of �

14
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along the trajectories of the linearization at zero of the resulting closed-loop

system

_x = f(x; y1); _y = G1(x; y) + �(y) + w; �(y) = Ey (4.1)

is strictly negative and for su�ciently small c > 0; being independent of

E; the compact set

N := (x; y) 2 <n+1 : �(x; y) � c (4.2)

is positively invariant with respect to (4.1). As in Theorem 3.2, consider

the mappings �1(s) and �2(s) and without any loss of generality assume

that �2(s) =
1
2
�1(s) =

1
2
�;8s � � for arbitrary small positive constants �

and �: Pick � such that the sphere of radius 2� centered at 0 2 <n+1 is

contained in N: Let E be a positive constant satisfying

E > maxfE1; 2�
1 supG1(x; y)g+ 1

whose existence is guaranteed by the boundedness of G1: By a slight mod-

i�cation of the approach in Theorem 3.2 we can �nd a bounded function

� 2 K in such a way that

(i) for every initial y0 with jy0j > �=4 property (3.8a) holds for all inputs

! satisfying (3.17) with respect to (4.1) with E as de�ned by (4.3);

(ii) the set N [M; with M;N as de�ned by (3.6) and (4.2), respectively

is positively invariant with respect to (4.1).

The previous properties imply as in the proof of Theorem 3.2 the desired

conclusion.

Corollary 4.4 Suppose that f is C1; the subsystem (1.2) satis�es the

same hypotheses of Lemma 4.3 and the mappings gi , i = 1; :::;m are C1

and bounded. Then the system (1.1) is G.A.S. by means of a linear feedback

depending only on y1; :::ym .

Proof: For reasons of simplicity we consider the case m = 2. For the case

m = 1 we de�ne G1 = g1; G2 = 0 and apply the result of Lemma 4.3. Let

�1(y1) be the corresponding linear feedback stabilizer. We proceed as in

the proof of Corollary 3.4 following the same notations in order to obtain

the system (3.20). Note that G is decomposed as

G(X;Y ) + G1(X;Y ) +G2(y1; Y )

where

G1(X;Y ) + �D�1(y1)(g1(x; y1) + g2(x; y1; �1(y) + Y ) ;

G2(y1; Y ) = �D�1(y1)(Y + �1(y1)):

15
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The desired conclusion then follows from Lemma 4.3, the properties of

(3.19) and the fact that g1 and g2 are bounded. Particularly, there exists

a linear map �(Y ) as in the statement of Lemma 4.3 such that the desired

feedback stabilizer for (3.20) has the form �2(y1; Y ) = �(Y ) � G2(y1; Y );

namely it depends only on Y = y2��1(y1) and y1 (the last variable of X).

It turns out by the de�nition of G2 that �2 is linear and depends only on

y1 and y2:
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