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Abstract

In this paper the properties of linear systems in the behavioural

approach are analyzed in the case when the alphabet set is a �nitely

generated module over a Noetherian ring. This study is motivated by

some possible applications to the theory of convolutional codes and of

parametrized systems. The �rst class of systems that is considered is

the class of controllable systems. Controllable systems admit a nice

image representation and this seems to be of some use for the theory

of convolutional codes. The second part of the paper is devoted to

the analysis of autonomous systems, which constitute a special class

of non controllable systems. In this class of systems it is possible to

�nd a natural extension of the classical Rouchaleau-Kalman-Wyman

theorem to the behavioural approach. Finally the realizability of a

system, that corresponds to the fact that the canonical state space

is a �nitely generated module, is analyzed. This concept is strictly

connected with the problem of representing the trellis diagram of a

convolutional code.
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1 Introduction

When, in the early '70s, systems theory showed to be a very powerful tool
for the study of dynamical systems, many researchers tried to extend the
results found in this �eld to more general frameworks, such as systems over
rings. These attempts were motivated both by pure theoretical reasons and
by some possible applications to real world problems such as for instance
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parametrized systems [4, 13], time delay systems [15], distributed systems
[3] and the coding theory [5].

The strict relationship between system theory and coding theory was
�rst pointed out by Forney in his study of convolutional codes [11]. Actually
it was noted that an encoder for a convolutional code can be seen as a linear
system over a �nite �eld. Consequently much knowledge on linear systems
could be used in the study of convolutional codes. Since codes over �nite
�elds can be sometimes too restrictive, it seemed natural to develop a
theory of convolutional codes also over groups and rings. This produced a
remarkable contribution to linear systems over rings.

In the last years the behavioural approach to dynamical systems has
been the object of much investigation. Actually, this approach constitutes
an alternative framework for modelling phenomena that seems to be more
e�ective when there exists an unclear distinction between causes and e�ects
(see [25]). Also optimal control techniques [26] and modelling procedures
[24, 14, 1] have been proposed in this setup.

Very recently it has been also realized that the behavioural approach
to system theory is a very useful framework where one can develop a more
general theory of convolutional codes (see [12, 10]). Therefore it seems
quite interesting to extend this approach, originally introduced for systems
over general �elds and in particular over the real �eld, to more general
structures, such as groups or rings. In [19, 12] it is shown that many
properties of linear systems over �elds hold true even for systems over
noncommutative groups. The most important result in this sense is the
fact that even in this generality it is possible to de�ne a canonical state
space group. It is shown moreover how the state group can be connected
with the trellis diagrams of the convolutional code and how it can be used
for the synthesis of a canonical encoder.

Another interesting �eld in which systems over rings in the behavioural
approach could be applied is the theory of parametrized systems. These
are the systems whose behaviours are not �xed but depend on a set of
parameters. It seems that the study of this class of systems will give some
light to the structure of time varying systems. A subsequent paper will be
devoted to this kind of questions.

In this paper we will study linear systems in the behavioural approach
when the signal alphabet is a �nitely generated module over a Noetherian
ring. The choice of Noetherian rings is motivated by various reasons. First
Noetherian property seems to be su�ciently general to cover all rings of
common interest. Only dealing with parametrized systems more general
rings could be needed. Another reason is connected with the canonical
state space and the problem of realizability. As shown in this paper, under
weak hypotheses, the canonical state space of a systems over a Noetherian
ring is a �nitely generated module and this provides a nice representation
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of the so called trellis diagram, representation that can be useful in prac-
tice. Finally the Noetherian property seems to be the weakest requirement
allowing to characterize systems admitting an image representation by the
controllability property as it happens for systems over �elds [25].

The most relevant ring in the theory of convolutional code is the ring of
integers Z, since alphabet sets that are often used in this context are �nite
Abelian groups. These can be always considered �nite generated modules
over Z. In any case in this paper we focus our attention to questions related
to the �nitely generated structure of the signal alphabet. This can be useful
even for �nite groups. Actually, when the alphabet set is a �nite group and
contains a large number of elements, it can be useful to analyse if it can be
e�ciently generated by a small number of elements. This can simplify the
analysis of the properties of the code and can be useful for the synthesis of
encoders, decoders and trellis diagrams.

We give now a brief outline of the paper. In section two we present
the de�nition of linear system over a Noetherian ring and the de�nitions
of complete and strongly complete system. In section three we list vari-
ous possible de�nitions of controllability which appear in literature and we
show how they are related each other in our context. We show moreover
that any complete and controllable system admits an image representation
and �nally we introduce the concept of controllable subsystem. In sec-
tion four we introduce the concepts of autonomous system and of �nitely
generated system and we investigate the relations between these two prop-
erties. We also present an interesting result showing that there exists a
strict relationship between an autonomous system over a Noetherian do-
main and a corresponding linear system over the �eld of fractions. This
seems to give a �rst extension to the behavioural approach of the classical
Rouchaleau-Kalman-Wyman theorem [5, 21, 20]. In section �ve we �nd
some conditions ensuring the realizability of a system, i.e. ensuring that
its canonical state space module is �nitely generated. Note that the fact
that the canonical state space is a �nitely generated module seems to be
the natural translation of the realizability problem as it has been proposed
in the classical systems over rings setup [21] to the behavioural approach.

Finally note that the proof of the results presented in this paper are
essentially di�erent from the proof of the analogous results for systems over
�elds. There are two main reasons. First in the context of systems over
�elds there exists a very powerful tool that is the theory of duality of vector
spaces and such a theory can be extended from vector spaces to modules
only partially. Moreover, the existence of the Smith canonical form for
polynomial matrices with coe�cients over a �eld simpli�es drastically the
proofs of the results on systems over �elds.
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2 Basic De�nitions

In this section some basic concepts of behavioural theory of dynamical
systems will be recalled and then some more speci�c ideas for systems over
rings in this approach will be introduced.

Before it is necessary to introduce some notation. In this paper only
commutative Noetherian rings will be considered. A commutative ring R

is Noetherian if it satis�es the ascending chain condition, i.e. I1 � I2 �

I3 � � � � is an increasing sequence of ideals in R, then there exists n 2 N

such that In = In+1 = In+2 = � � �. It can be seen that R is Noetherian if
and only if each ideal in R is �nite generated. For the elementary results
on commutative Noetherian rings needed in this paper, refer to [2]. Note
only that if W is a �nitely generated module over a Noetherian ring, then
W satis�es the ascending chain condition on its submodules and that every
submodule of W is �nitely generated.

Given a ring R, x 2 R is said to be a zero-divisor, if there exists y 6= 0
in R such that xy = 0. If R is a domain, then no nonzero element of R is
zero-divisor.

The symbol R[z; z�1] we will denote the ring of all Laurent polynomials
with coe�cients in R, i.e. the ring of polynomials for which positive and
negative powers of the indeterminate z are allowed. More formally the ring
R[z; z�1] can be considered the ring of fraction of R[z] with respect to the
multiplicatively closed set S = fzi : i 2 Ng. It follows from Hilbert basis
theorem and from prop. 7.3 in [2] that R[z; z�1] is Noetherian, if R is.

A dynamical system is de�ned as a triple � = (T;W;B), where T is the
time set, W is the signal alphabet, i.e. the space where the signals take
their values and �nally B is a subset of the set W T of all the signals and it
describes the dynamics of the system simply specifying what are the signals
that are allowed. In this paper only a particular kind of dynamical systems
will be considered, i.e. linear shift-invariant systems over Noetherian rings.

More precisely a linear shift-invariant system over a Noetherian ring R
is a dynamical system such that:

� The time set T is the set of integers Z. Dynamical systems whose
time set is Z are called discrete.

� The signal alphabetW is a �nite generated module over a Noetherian
ring R.

� On the set of all signals WZ can be introduced a module structure
over the ring R[z; z�1] of the Laurent polynomials over R as follows:

Both the sum of two signals in WZ and the product of an element of
R and a signal in WZ are done pointwise while for every w 2 WZ,
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zhw 2WZ is de�ned as

(zhw)(t) := w(t + h):

The product of a Laurent polynomial in R[z; z�1] and a signal in WZ

is de�ned by extending the previous de�nitions by linearity. More
precisely if p =

P
L

i=l piz
i is a polynomial in R[z; z�1] and w 2 WZ,

then

(pw)(t) =

LX
i=l

piw(t + i):

The behaviour of a linear shift-invariant system over R is a R[z; z�1]
submodule of WZ.

In case that R is a �eld, we obtain the linear shift-invariant systems intro-
duced by Willems in [25].

An important property of linear shift-invariant systems that is useful
to consider is the completeness.

De�nition 1 Let � = (Z;W;B) be any dynamical system. Then

1. � is complete if

w 2 B , wjI 2 BjI for all finite I � Z:

2. � is L-complete with L 2 N if

w 2 B , wj[t;t+L] 2 Bj[t;t+L] for all t 2 Z:

3. � is strongly complete if � is L-complete for some L 2 N .

It is clear that a complete linear shift-invariant system is determined by the
countable family of �nitely generated R-submodules Bj[�n;n] �W 2n+1,n =
0; 1; 2; :::, while if � is a L-complete linear shift-invariant system, then it is
determined by the �nitely generated R-submodule Bj[0;L] �WL+1.

As shown in [25], for linear shift-invariant systems over �elds, com-
pleteness and strongly completeness are equivalent. This assertion can be
generalized for systems over rings whose signal alphabet W is a module
satisfying the descending chain condition, i.e. M1 � M2 � M3 � � � � is
an decreasing sequence of submodule of W , then there exists n 2 N such
that Mn = Mn+1 = Mn+2 = � � �. Examples of such modules are given
by �nite dimensional vector spaces or by �nite Abelian groups that can
be considered modules over the ring Z. The proof of this equivalence is
essentially similar to the one given in [23] for systems over �elds.
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Proposition 1 Let � = (Z;W;B) be a linear shift-invariant complete sys-

tem over a ring R. If the module W satis�es the descending chain condi-

tion, then � is strongly complete.

Proof: Consider the modules

Mn := fw(n) : w 2 B; wj[0;n�1] = 0g:

It is clear thatM1 �M2 �M3 � � � � and so there exists N 2 N such that
MN = MN+1 = MN+2 = � � �. We want to show that � is N -complete.
To this purpose it is enough to show that if wj[t;t+N ] 2 Bj[t;t+N ] for all
t = 0; 1; : : : ; n, then we have that wj[0;n+N ] 2 Bj[0;n+N ]. We show this by
induction on n. For n = 0 this is true. Suppose that the assertion is true
for n�1 and suppose that wj[t;t+N ] 2 Bj[t;t+N ] for all t = 0; 1; : : : ; n. Then,
by induction, we have that wj[0;n+N�1] 2 Bj[0;n+N�1] and so there exists
w1 2 B such that w1j[0;n+N�1] = wj[0;n+N�1]. On the other hand, since
wj[n;n+N ] 2 Bj[n;n+N ], then there exists w2 2 B such that w2j[n;n+N ] =
wj[n;n+N ]. Let w0 := w2 � w1 2 B. Then w0j[n;n+N�1] = 0. Since MN =

MN+n, then there exists �w 2 B such that �wj[0;n+N�1] = 0 and �w(n+N) =
w0(n + N). Let w00 := w1 + �w 2 B. Then w00j[0;n+N�1] = w1j[0;n+N�1] =

wj[0;n+N�1] and w
00(n+N) = w1(n+N)+ �w(n+N) = w1(n+N)+w0(n+

N) = w1(n +N) + w2(n +N) � w1(n +N) = w2(n +N). We can argue
that w00j[0;n+N ]

= wj[0;n+N ] and so wj[0;n+N ] 2 Bj[0;n+N ].

Completeness and strongly completeness are not equivalent in general
even for systems over the principal ideal domain Z, as shown in [7]. In any
case it seems that complete systems that are not strongly complete seem
to be very pathological and very di�cult to characterize.

3 Controllable Systems

We begin the study of linear shift-invariant systems over a Noetherian ring
by analyzing the class of controllable systems. The notion of controllability

considered in this paper is not connected with a state space realization, but
is a property of the system itself. This property has been �rst introduced
by Willems in [25]. Other notions of controllability have been introduced
also in [12, 19] and they are not always equivalent. In this section various
de�nitions of controllability will be presented and the connections between
them will be analyzed.

De�nition 2 Let � = (Z;W;B) be a linear shift-invariant system over a

ring R. Then

1. � is zero-controllable if for all w 2 B, there exist k 2 N and w0 2 B

such that

w0j(�1;0] = wj(�1;0]; w
0
j[k;+1) = 0:
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2. � is symmetric controllable if for all w 2 B, there exist h; k 2 N and

w0; w00 2 B such that(
w0j(�1;0]

= wj(�1;0]; w0j[k;+1)
= 0;

w00j(�1;�h] = 0; w00j[0;+1)
= wj[0;+1):

3. � is strongly zero-controllable if there exists k 2 N such that for all

w 2 B, there exists w0 2 B such that

w0j(�1;0] = wj(�1;0]; w
0
j[k;+1) = 0:

4. � is controllable if for all w1; w2 2 B, there exists k 2 N and w 2 B

such that

wj(�1;0] = w1j(�1;0]; wj[k;+1) = (z�kw2)j[k;+1):

5. � is strongly controllable if there exists k 2 N such that for all

w1; w2 2 B, there exists w 2 B such that

wj(�1;0] = w1j(�1;0]; wj[k;+1) = (z�kw2)j[k;+1):

It can be seen that strong zero-controllability and strong controllability
are equivalent and so they will not be distinguished. Moreover strong
controllability implies controllability that implies symmetric controllability
that �nally implies zero-controllability. This is summarized in the following
scheme.

Strong zero-controllability~w�
Strong controllabilityww�

Controllability (Willems)ww�
Symmetric controllabilityww�

Zero-controllability

Note that both strong controllability and controllability are the origi-
nal de�nitions proposed by Willems in [25], while strong zero-controllability
and symmetric controllability have been introduced by Trott in [22].
The symmetric version of zero-controllability, that could be called zero-
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reachability, can be introduced and connected with the other notions of
controllability in an obvious way. The following proposition shows that if
R is Noetherian, then symmetric controllability, controllability and strong
controllability coincide. If moreover the system is strongly complete, then
all the controllability notions are equivalent.

Proposition 2 Let � = (Z;W;B) be a linear shift-invariant system over

a Noetherian ring R. Then � is symmetric controllable if and only if � is

strongly controllable. If moreover � is strongly complete, then all notions

of controllability are equivalent.

Proof: Suppose that � is symmetric controllable. Let B̂ is the set of
trajectories in B with �nite support. Note that B̂ is a Noetherian module
over R[z; z�1] (a moduleM is Noetherian if each submodule ofM is �nitely
generated; see problem 10 pag. 85 in [2]). Let w1; : : : ; wn a set of generators
for B̂ and suppose that their supports are included in [�N;N ]. Take now
a w 2 B. We want to show that there exists w0 2 B such that w0j(�1;0]

=

wj(�1;0] and w0j[2N;+1)
= 0. By symmetric controllability it is easy to

see that there exists ŵ 2 B̂ and w1; w2 2 B such that w1j(�1;0] = 0,
w2j[0;+1) = 0 and w = ŵ + w1 + w2. Then

ŵ =

nX
j=1

X
aijz

iwj =

nX
j=1

X
jij�N

aijz
iwj +

nX
j=1

X
jij>N

aijz
iwj ;

where aij 2 R. De�ning

ŵ0 :=

nX
j=1

X
jij�N

aijz
iwj 2 B̂;

w01 := w1 +

nX
j=1

X
i>N

aijz
iwj 2 B

and

w01 := w1 +

nX
j=1

X
i<�N

aijz
iwj 2 B;

then we have that w0
1j(�1;0]

= 0, w0
2j[0;+1)

= 0 and w = ŵ0 + w01 + w02.

De�ne �nally w0 := ŵ0 + w02 = w � w01. Then it is easy to verify that
w0j(�1;0]

= wj(�1;0] and w0j[2N;+1)
= 0.

In order to prove the second assertion it is su�cient to show that if
� is zero-controllable, then it is strongly controllable. Suppose that � is
zero-controllable and let for all n 2 N

Mn := fwj[�L;0] : w 2 B; wj[n;+1) = 0g:
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Then we have that M1 � M2 � M3 � � � � � WL+1 and so, since R is
Noetherian and WL+1 is �nitely generated, there exists N 2 N such that
MN = MN+1 = MN+2 = � � �. Take now any w 2 B. Then, since � is
zero-controllable then wj[�L;0] 2 Mn for some n and so wj[�L;0] 2 MN .
Therefore any trajectory in B can be controlled to zero in at most N steps
and hence � is strongly controllable.

Presently it is not known if the second part of the previous proposition
holds true for complete systems. In the following we give an example
showing show that in general zero-controllability does not imply strong
controllability.

Example Let � = (Z;R;B) be a linear shift invariant system over the
real �eld R, where

B := fpw : p 2 R[z; z�1]g

and where w is any irrational trajectory in R
Z (i.e. a trajectory such

that pw has in�nite support, for every polynomial p 2 R[z; z�1]) such that
wj(0;+1) = 0. It is clear that � is a linear shift-invariant zero-controllable
system. However it is not di�cult to verify that it is not symmetric con-
trollable, since the only trajectories in B with �nite support is the zero
trajectory. This implies that � is not strongly complete and so it is not
complete either, since for linear shift invariant systems over �elds complete-
ness and strongly completeness coincide.

3.1 Image representation for controllable systems

As shown in [25], for linear shift-invariant complete and controllable sys-
tems over �elds there exists a useful representation that is called image
representation. More precisely the behaviour of these systems coincides
with the image of a suitable linear operator that is called shift operator.
We will see now that this representation holds true also for systems over
Noetherian rings.

Let V and W be two modules over a ring R and let Hom(V;W ) be the
set of all the R-homomorphisms from V to W . The set Hom(V;W )[z; z�1]
of all Laurent polynomials with coe�cients in Hom(V;W ) can be de�ned
in the usual way. This is not a ring but only an R[z; z�1]-module. Given
an M 2 Hom(V;W )[z; z�1]

M =

LX
i=l

Miz
i;

whereMi 2 Hom(V;W ), we can associate an R[z; z�1]-homomorphism 	M

from V Z to WZ in the following way:
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If v 2 V Z, then for all t 2 Z we de�ne

	M (v)(t) :=

LX
i=l

Miv(t+ i):

The homomorphisms de�ned in this way are called shift operators while a
linear shift-invariant system admits an image representation if there exists
a shift operator whose image coincides with the behaviour of the system.

The family of shift operators can be characterized in terms of continuity
w.r. to a suitable topology de�ned on the signal spaces. More precisely
consider the discrete topology on V andW and the product topology on the
signal spaces V Z and WZ. Such a topology is called pointwise convergence
topology since a sequence fwng

1
n=1 �WZ converges to w 2 WZ if and only

if the sequence fwn(t)g
1
n=1 � W converges to w(t) 2 W in the discrete

topology for all t 2 Z and so if and only if wn(t) is eventually equal to w(t)
for all t 2 Z.

It is not di�cult to prove that closed subsets of WZ corresponds to
complete behaviours. Note moreover that WZ with this topology satis�es
the �rst axiom of countability (see [16, pag. 92]) and therefore (see [6, pag.
218]) a subset B of WZ is closed if and only if the fact that fwng

1
n=1 � B

converges to w 2 WZ implies that w 2 B. Moreover a map � : V Z! WZ

is continuous if and only if for every sequence fwng
1
n=1 � V Z converging

to w we have that f�(wn)g
1
n=1 �WZ converges to �(w). It is possible to

characterize the shift operators in terms of continuity w.r. to the pointwise
topology.

Proposition 3 Let V and W be modules over a ring R. Let � be an

operator from V Z to WZ and consider in V Z and WZ the pointwise con-

vergence topology. Then � is a continuous R[z; z�1]-homomorphism from

V Z to WZ if and only if � is a shift operator.

Proof: Suppose that � is continuous. Consider for all v 2 V the sig-
nal �v 2 V Z such that �v(0) = v and �v(t) = 0 for all t 6= 0. Since
the sequence fzn�vg

1
n=1 converges to zero, then, by continuity, the se-

quence fzn�(�v)g
1
n=1 converges to zero. Analogously, since the sequence

fz�n�vg
1
n=1 converges to zero, then the sequence fz

�n�(�v)g
1
n=1 converges

to zero. We can argue that �(�v) has �nite support. Since � is an R-
homomorphism, then for all i 2 Z there exists Mi 2 Hom(V;W ) such that
�(�v)(i) = Miv for all v 2 V . Consider the polynomial M :=

P
Miz

i in
Hom(V;W )[z; z�1].
We want to show that � coincides with the shift operator 	M and conse-
quently we have to show that for all v 2 (Rl)Zwe have that �(v) = 	M (v).
If v has �nite support, then this is true. For any v 2 (Rl)Z consider the
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sequence fvng
1
n=1 de�ned as follows:

vnj[�n;n] = vj[�n;n]; vnj(�1;�n) = 0 and vnj(n;+1) = 0:

It is clear that fvng converges to v and so, by continuity of �, f�(vn)g
converges to �(v). On the other hand, since vn has �nite support, then
�(vn) = 	M (vn) and so, for every t 2 Z, there exists N 2 N such that for
all n > N we have 	M (vn)(t) = �(v)(t). It is clear that, if n is big enough,
then 	M (vn)(t) = 	M (v)(t).
Conversely it is easy to see that 	M , where M 2 Hom(V;W )[z; z�1], is a
continuous R[z; z�1] homomorphism from V Z to WZ. Suppose that the
sequence fvng

1
n=1 � (Rl)Z converges to v. Actually, we have that

	M (vn)(t) =

LX
i=l

Mivn(t+ i)

and so, since there exists N 2 N such that for all n > N we have vn(t+i) =
v(t+ i); 8i = l; l+ 1; : : : ; L, then for all n > N we have

	M (vn)(t) =

LX
i=l

Mivn(t+ i) =

LX
i=l

Miv(t+ i) = 	M (v)(t):

Consequently the sequence f	M (vn)g
1
n=1 � (Rl)Z converges to 	M (v) and

we have the continuity of 	M .

The following theorem shows that complete controllable linear shift-
invariant systems over Noetherian rings admit an image representation.
The proof of this theorem is based on the proof of the strong controllability
theorem in [12].

Theorem 1 Let R be a Noetherian ring and let � = (Z;W;B) be a linear

shift-invariant complete system. Then � is symmetric controllable if and

only if B = im 	M for some shift operator 	M from V Z to WZ, where V

is a suitable �nitely generated R-module.

Proof: It is trivial to prove that if B = im 	M , then � is symmetric
controllable. Suppose conversely that � is symmetric controllable and so
also strongly controllable. Then there exists k 2 N such that for all w 2 B,
there exists w0 2 B such that

w0j(�1;0] = wj(�1;0]; w
0
j[k;+1) = 0:

Let
B[0;k) := fw 2 B : w(t) = 0;8t 62 [0; k)g:

11



S. ZAMPIERI AND S.K. MITTER

Since R is Noetherian, then B[0;k) is �nitely generated overR. Let u1; : : : ; ul
be a family of generators. Fix V := Rl and let e1; : : : ; el be the canonical
basis in Rl. Let moreoverMt be the unique homomorphism in Hom(Rl;W )
such that for all i = 1; : : : ; l we have Mt(ei) = ui(�t) and de�ne

M :=

0X
t=�k+1

Mtz
t

as an element in Hom(Rl;W )[z; z�1]. We want to show that B = im 	M .
Let w 2 im 	M . Then w = 	M (v) for some v 2 (Rl)Z. Let vh 2 (Rl)Z be
de�ned as follows:

vh(t) =

�
v(t) if jtj � h

0 otherwise:

It is clear that, since the support of M is included in (�k; 0], then we have
that wh := 	M (vh) coincides with w in the interval [�h + k; h]. Since
wh 2 B and since � is complete, then we have w 2 B.
Let w 2 B. First we show that w = wp+wf , where wp; wf 2 B and wp(t) =
0 for all t � k and wf (t) = 0 for all t � 0. Actually, by strong controllability,
there exists wp 2 B such that wpj(�1;0] = wj(�1;0]; wpj[k;+1) = 0 and so,
if we de�ne wf := w � wp we have that wp; wf satisfy the conditions we
required. We want to show now that wp; wf 2 im 	M . Consider the
sequence w0; w1; w2; : : : such that wij(�1;i] = 0 constructed recursively in
the following way:
Let w0 := wf . If we suppose we have found wi such that wij(�1;i] = 0,
then, by strong controllability, there exists ŵi such that ŵij(�1;i+1] =
wij(�1;i+1]; ŵij[k+i+1;+1) = 0. De�ne wi+1 := wi � ŵi. It is clear that
wi+1j(�1;i+1] = 0. Moreover zi+1ŵi 2 B[0;k) and so

zi+1ŵi =

lX
j=1

ai+1;juj

Consequently we have that

(zi+1ŵi)(t) =

lX
j=1

ai+1;juj(t) =

lX
j=1

ai+1;jM�tej =M�t

2
64
ai+1;1

...
ai+1;l

3
75

and so ŵi = 	M (aj+1) where aj+1 2 (Rl)Z such that

aj+1(t) :=

8>>><
>>>:

2
64
ai+1;1

...
ai+1;l

3
75 if t = i+ 1

0 otherwise

12
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Therefore, if vi :=
P

i

j=0 aj+1, then wf � wi = 	M (vi). We have that wi

converges to zero and so 	M (vi) converges to wf . It is clear that also the
sequence vi converges to a limit signal that we call vf , and, by continuity
of 	M we have that wf = 	M (vf ) and so wf 2 im 	M . In a similar way
it can be shown that wp 2 im 	M and so also w = wf + wp 2 im 	M .

If � = (Z;W;B) is complete and symmetric controllable, then, as shown
by the previous theorem, B is the image of a shift operator 	M from V Z

to WZ. From the point of view of convolutional codes, the behaviour B
can be seen as the code and so the map 	M can be seen as an encoder. It
is clear that 	M represents really an encoder only if this map is injective.
Note that injective encoders correspond to the so called noncatastrophic
encoders in the convolutional codes literature. It is not true in general that
the behaviour of complete and symmetric controllable system coincides
with the image of an injective map shift operator 	M . Actually, in this
case the R[z; z�1] module B would be homomorphic to V Z and this is
not always possible. Some additional requirements stronger than strong
controllability are necessary in some cases(see [17, 8]). When the ring is a
principal ideal domain and when the alphabetW is a �nitely generated free
module, then strong controllability is the necessary and su�cient condition
for the existence of a injective image representation of a complete system
as shown in [9].

3.2 Controllable subsystems

Given a linear shift-invariant system � = (Z;W;B) over a Noetherian ring,
it is possible to de�ne the concept of controllable subsystem �c = (Z;W;Bc)
as the largest linear shift-invariant controllable subsystem of �. More pre-
cisely �c = (Z;W;Bc) is the controllable subsystem of � if

1. Bc � B.

2. �c = (Z;W;Bc) is a linear shift-invariant symmetric controllable sys-
tem.

3. For any linear shift-invariant symmetric controllable system �0 =
(Z;W;B0), such that B0 � B, we have that B0 � Bc.

The existence of such a system is ensured by the observation that,
if �i = (Z;W;B1), i 2 I , is a family of linear shift-invariant symmetric
controllable systems such that Bi � B, then (Z;W;B), where

B :=
X
i2I

Bi;

is a linear shift-invariant symmetric controllable system. Note that, by
Proposition 2, the controllable subsystem is strongly controllable and so it

13
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is the biggest strongly controllable subsystem of �. Note that he existence
of the biggest strongly controllable subsystem is not obvious in general.

Note moreover that if � = (Z;W;B) is symmetric controllable, then the
controllable subsystem �c coincides with �. If � is not symmetric control-
lable, then the controllable subsystem can give an estimate of how far is �
from being symmetric controllable and the distance can be estimated evalu-
ating how big the module B=Bc is. When � is strongly complete, then such
module is easier to estimate since it is �nitely generated over R, as shown
in Proposition 5 below. Note moreover that for strongly complete systems
controllable subsystem can be characterized in a nice way. More precisely
the controllable subsystem of a linear shift-invariant strongly complete sys-
tem � = (Z;W;B) is completely determined by the set of trajectories in
B with �nite support, that is a �nitely generated R[z; z�1]-submodule. To
show this we need to introduce the concept of L-completion of a behaviour.
If B is any behaviour, then de�ne CPL(B) to be the smallest L-complete
behaviour containing B. More explicitly

CPL(B) = fw 2WZ : wj[t;t+L] 2 Bj[t;t+L]g:

Proposition 4 Let � = (Z;W;B) be a linear shift-invariant L-complete

system over a ring R and �c = (Z;W;Bc) be its controllable subsystem.

Then �c is strongly complete and

Bc = CPL(B̂);

where B̂ := fŵ 2 B : ŵ has finite supportg.

Proof: First, if we show that CPL(B̂) is symmetric controllable, then we
would argue that Bc � CPL(B̂). Actually, if w 2 CPL(B̂), then there exists
ŵ 2 B̂ such that wj[�L;0] = ŵj[�L;0]. Let �w be a trajectory in WZ such
that �wj(�1;0] = wj(�1;0] and �wj[�L;+1) = wj[�L;+1). By L-completeness

of CPL(B̂) we have that �w 2 CPL(B̂). The symmetric can be shown
similarly.
Finally if we show that Bcj[0;L] � B̂j[0;L], then we would argue that Bc �

CPL(Bc) � CPL(B̂). Actually, suppose that w 2 Bc. Then there exists
w0 2 Bc such that w0j(�1;L]

= wj(�1;L] and w0j[L+h;+1)
= 0. Moreover

there exists w00 2 Bc such that w00j[0;+1)
= w0j[0;+1)

and w00j(�1;�k] = 0. It

is easy to see that w00 2 B̂ and that w00j[0;L] = wj[0;L].

The next proposition shows that if a linear shift-invariant � = (Z;W;B)
is strongly complete, then B=Bc is a �nitely generated R-module, where Bc
is the behaviour of controllable subsystem of �.

Proposition 5 Let R be a Noetherian ring and � = (Z;W;B) be a linear

shift-invariant strongly complete system. Let moreover �c = (Z;W;Bc) the

14
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controllable subsystem of �. Then the module B=Bc is �nitely generated

over R.

Proof: Suppose that � is L-complete. Consider the projection map

� : Bj[0;L] ! B=Bc

de�ned as follows: If we take m 2 Bj[0;L], then there exists w 2 B such
that wj[0;L] = m. De�ne �(m) := w + Bc. This is a good de�nition since
if w1; w2 2 B are such that w1j[0;L] = w2j[0;L], then w := w1 � w2 2 B

and wj[0;L] = 0. By L-completeness it is easy to see that w = w0 + w00

where w0; w00 2 B, w0j(0;+1) = 0 and w00j(�1;0] = 0. We want to show that

w0; w00 2 Bc. Let B0 to be the set of all trajectories w in B such that
w(t) = 0 for all t � N for some N 2 N . It is clear that w0 2 B0 and
moreover CPL(B

0) is zero controllable and so it is symmetric controllable
by Proposition 2. Consequently CPL(B

0) � Bc and so w
0 2 Bc. Similarly it

can be seen that w00 2 Bc. Therefore the homomorphism � is well de�ned.
It is clear that it is surjective and so we have that B=Bc is isomorphic to
Bj[0;L]= ker� that is �nitely generated over R.

If � = (Z;W;B) is a linear shift-invariant strongly complete system
over a �eld F , then there exists a linear shift-invariant subsystem �a =
(Z;W;Ba) of �, called autonomous subsystem, such that B = Ba � Bc,
where Bc is the behaviour of the controllable subsystem. In this case the au-
tonomous subsystem, that is not unique, has �nite dimensional behaviour.
Such a decomposition of a strongly complete system in the controllable
part a the autonomous part is not possible in general for systems over
rings. More precisely, if � = (Z;W;B) is a linear shift-invariant strongly
complete system over a Noetherian ring, then by the previous proposition
there exist w1; : : : ; wn 2 B such that

B = Bc + hw1; : : : ; wni;

where Bc is the behaviour of the controllable subsystem and hw1; : : : ; wni

is the R-module generated by w1; : : : ; wn. The previous formula can be
interpreted as a decomposition of the system in the controllable subsystem
and a autonomous subsystem. However the autonomous subsystem so de-
�ned, that is the system whose behaviour is hw1; : : : ; wni, is linear but not
shift-invariant in general. When, in particular, Bc = f0g, the autonomous
subsystem coincides with the entire system and so it is shift-invariant. This
case is studied in the following section.

4 Finitely Generated and Autonomous Systems

This section is concerned with a particular class of noncontrollable linear
shift-invariant systems, i.e. the linear shift-invariant system whose control-
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lable subsystem is zero. We will call these systems autonomous. It is easy
to see that a linear shift-invariant system � = (Z;W;B) is autonomous
if and only if the zero trajectory is the only trajectory in B with �nite
support. The concept of autonomous system we propose here is slightly
di�erent from the one originally proposed in [25] in the general behavioural
framework. As we will see these two concepts coincides for strongly com-
plete systems. It can can be seen that autonomous systems are strictly
connected with the class of �nitely generated systems that are linear sys-
tems whose behaviour is a �nitely generated R-submodule of WZ. These
systems are very interesting, since they admit a nice state representation.

Suppose that � = (Z;W;B) is a �nitely generated linear shift-invariant
system and let fw1; : : : ; wng be a family of generators of the �nitely gener-
ated R-module B. Then for every generator wi, since � is shift-invariant,
we have that zwi 2 B and so there exist ai1; : : : ; ain 2 R such that

zwi = ai1w1 + � � �+ ainwn:

De�ne the matrix A 2 Rn�n as A := faijg
n

i;j=1. Then we have that

z [w1 � � � wn ] = [w1 � � � wn ]A:

Note that A must be invertible and so detA is a unit in R.
Let w be any signal in B. Then

w = �1w1 + � � �+ �nwn = [w1 � � � wn ]x0;

where x0 := [�1; : : : ; �n]
T 2 Rn. For all t 2 Z we have that

w(t) = (ztw)(0) = ([w1 � � � wn ]A
tx0)(0) =

= [w1(0) � � � wn(0) ]A
tx0 = CAtx0;

where C := [w1(0) � � � wn(0) ] 2 W 1�n. Therefore � = (Z;W;B) is a
�nitely generated linear shift-invariant system if and only if for some n 2 N

there exist an invertible A 2 Rn�n and C 2W 1�n such that

B = fw 2 WZ : 9x0 2 Rn; w(t) = CAtx0; 8t 2 Zg: (1)

In other words, all �nitely generated linear shift-invariant systems admit a
state representation of the following kind:�

x(t+ 1) = Ax(t)
w(t) = Cx(t)

;

where x 2 (Rn)Z.
The following proposition clari�es the relation between �nitely gener-

ated systems and autonomous systems.
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Proposition 6 Let R be a Noetherian ring and � = (Z;W;B) be a linear

shift-invariant system. Then � is �nitely generated if and only if � is

autonomous and strongly complete.

Proof: Since � is �nitely generated, it admits a representation similar to
(1). We want to show now that � is n-complete. Let p 2 R[z; z�1] be the
characteristic polynomial of the matrix A. Then p = p0+ p1z+ � � �+ pnz

n,
with p0; pn invertible elements in R and by Cayley-Hamilton theorem it is
easy to see that

�B := fw 2WZ : pw = 0g � B:

It is clear that �� = (Z;W; �B) is n-complete. Suppose that wj[t;t+n] 2

Bj[t;t+n] for all t 2 Z. Then wj[t;t+n] 2 �Bj[t;t+n] for all t 2 Z and so w 2 �B.
Since wj[0;n] 2 Bj[0;n], there exists w

0 2 B such that w0j[0;n] = wj[0;n]. Let

� := w0 � w. Then � 2 �B and �j[0;n) = 0. It is easy to verify that, since
p0; pn are invertible, this implies that � = 0 and so w = w0 2 B. Suppose
that w 2 B has �nite support. Then w 2 �B and so pw = 0. Then it is
easy to see that this implies that w must be zero and so � = (Z;W;B) is
autonomous.
The converse is a direct consequence of Proposition 5.

We will show now another nice property of �nitely generated systems.
Actually, for these systems it is possible to extend the classical Rouchaleau-
Kalman-Wyman theorem (see [21]) to the behavioural approach. The proof
of the proposition above, that shows this extension, is based on the proof
of RouchaleauKalman-Wyman theorem given by Johnston in [5]. Before
we need to give a lemma providing a characterization of �nitely generated
linear shift-invariant systems � = (Z;W;B) in term of the ideal

Ann(B) := fp 2 R[z; z�1] : pw = 0; 8 w 2 Bg;

of R[z; z�1].

Lemma 1 Let R be a Noetherian ring and � = (Z;W;B) be a linear shift-

invariant system. Then � is �nitely generated if and only if Ann(B) con-

tains a polynomial p =
P

L

i=l piz
i such that both pl and pL are not zero-

divisors (i.e. there does not exist a; b 2 R di�erent from zero such that

apl = bpL = 0).

Proof: Suppose �rst that � is �nitely generated. Then it admits a repre-
sentation similar to (1). Let p =

P
n

i=0 piz
i be the characteristic polynomial

of A. Then, by the Cayley-Hamilton theorem (see [18]), p(A) = 0 and so
it is easy to see that p 2 Ann(B). Since p is a characteristic polynomial of
a matrix, then pn = 1. Moreover, since A is invertible, then it is easy to
see that also pn = detA is invertible. Suppose conversely that

p = plz
l + pl+1z

l+1 + � � �+ pL�1z
L�1 + pLz

L
2 Ann(B)
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where both pl; pl are not zero-divisors in R. Then it can be seen that
�B := fw 2 WZ : pw = 0g is a �nitely generated R-module containing B.
Actually, consider the map

� : B ! WL�l : w 7! wj[l;L):

It is easy to see that it is an R homomorphism and that this homomorphism
is injective. Suppose that �(w) = 0. Then, since w 2 �B, then it satis�es
the di�erence equation

plw(t+l)+pl+1w(t+l+1)+� � �+pL�1w(t+L�1)+pLw(t+L) = 0; 8t 2 Z:

If we apply this equation for t = 0 and we exploit the fact that w(l) =
w(l + 1) = � � � = w(L � 1) = 0 and that pl; pl are not zero-divisors in R,
then we argue that w(L) = 0. Repeating the same kind of argument and
using induction we see that w(t) = 0 for all t � l. In the same way w(t) = 0
for all t � l and so w = 0. By prop. 6.3 of [2] �B and so also B are �nitely
generated over R.

If R is a domain, the equivalent characterization provided by the previ-
ous proposition becomes simpler since in a domain there are not nonzero-
divisors and so in this case a linear shift-invariant system � = (Z;W;B) is
�nitely generated if and only if Ann(B) 6= f0g.

Consider the linear shift-invariant system � = (Z; Rq;B), where W is a
�nitely generated free R-module. Therefore, up to isomorphisms, we have
that W = Rq for some q 2 N . Let F be the �eld of fractions of R. We can
de�ne a system �e = (Z; F q ;Be) as follows:

Be = f�aw 2 (F q)Z : �a 2 F; w 2 Bg:

We will call �e the localization of �. It is clear that �e is a linear shift-
invariant system on the �eld F and so it can be studied using all the
techniques that are available for these kind of dynamical systems (see [25]).
Therefore it is useful to connect properties of � with the properties its
localization. For �nitely generated dynamical systems this is provided by
the following proposition, that seems to be the extension of of Rouchaleau-
Kalman-Wyman theorem to the behavioural approach.

Proposition 7 Let R be a Noetherian domain, � = (Z; Rq;B) be linear

shift-invariant system and �e = (Z; F q ;Be) be its localization. Then � is

�nitely generated if and only if �e is �nitely generated.

Proof: One way is obvious.
Suppose conversely that Be is �nitely generated. Then, by Lemma 1,
Ann(Be) = f�p 2 F [z; z�1] : �p �w = 0; 8 �w 2 Beg 6= f0g. Let �p be a nonzero
element of Ann(Be). Then there exists a 2 R such that p = a�p 2 R[z; z�1]
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and so p 2 Ann(B). Again by Lemma 1 we argue that � is �nitely gener-
ated.

From the previous proposition we can argue a nice method for checking
if a linear shift-invariant system is �nitely generated. Let � = (Z; Rq ;B)
be a linear shift-invariant system and suppose that it is L-complete. Note
that if � is not strongly complete, then it cannot be �nitely generated.

Since � is L-complete, then it is completely described by the �nite
generated submodule M := Bj[0;L] of R

(L+1)q. Consider the subspace of

F (L+1)q de�ned in this way

V = fam : a 2 F; m 2Mg

and de�ne the L-complete linear shift-invariant system �� = (Z; F q ; �B)
where

�B = f �w 2 (F q)Z : �wj[t;t+L] 2 V ; 8t 2 Zg:

It is clear that V = Bej[0;L] and so �B = CPL(Be). We want to show that �
is �nitely generated if and only if �� is �nitely generated.

If �� is �nitely generated, then �e is �nitely generated, since Be � �B
and so � is �nitely generated by the previous proposition.

Suppose conversely that � is �nitely generated. Then, by the previous
proposition, �e is �nitely generated and so it is complete. It can be easily
proved that, since � is L-complete, then also �e is L-complete and so it
coincides with �� which is �nitely generated.

Therefore for checking if � is �nitely generated, one has to check if
�� is �nitely generated. Therefore if we have a set of generators of M,
then these constitute also a set of generators of V and from them it is
possible to compute a kernel representation of ��, i.e. a polynomial matrix
N 2 F [z; z�1]g�q such that

�B = kerN := fw 2 (F q)Z : Nw = 0g:

Since (see [25]) �� is �nitely generated if and only if N is full column rank,
then this provides a test also for �. Actually, by Proposition 7, � is �nitely
generated if and only if N is a full column rank polynomial matrix.

5 Finitely Generated State Space Module and Realiz-

able Systems

This last section will be devoted to the study of the state space module
of a linear shift-invariant system over a Noetherian ring. The concept of
state space have been introduced in the behavioural approach by Willems
in [25] in its greatest generality. For systems over groups it is possible to
de�ne a canonical state space as a quotient group.
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De�nition 3 Let � = (Z;W;B) be a linear shift-invariant system over a

ring R. Then the state space module X of � is the R-module de�ned as

follows

X := B=(B� + B+);

where B� is the subset of all the trajectories w in B supported in (�1; 0)
and analogously B+ is the subset of all the trajectories w in B supported in

[0;+1).

As shown by Willems in [25], the system �s = (Z;W �X ;Bs), with

Bs = f(w; x) 2 (W �X )Z : w 2 B; x(t) := ztw + B� + B+; 8t 2 Zg;

constitutes a minimal state space representation (or state realization) of
� in the sense that, up to isomorphisms, it is the smallest system of this
form such that B = fw : (w; x) 2 Bsg and satisfying the axiom of state.
Willems showed moreover that, when � is complete, �s is 2-complete. In
other words he showed that in this case �s is completely determined by its
evolution low, i.e.

(w; x) 2 Bs , (x(t); x(t + 1); w(t)) 2M; 8t 2 Z

where

M = f(x(0); x(1); w(0)) 2 X �X �W : (x;w) 2 Bsg =
= f(w + B� + B+; z

�1w + B� + B+; w(0)) : w 2 Bg:

In coding theory words, the evolution law determined by the module M
provides the trellis diagram describing the code associated to the system
�. Note that these considerations are really useful in practice only if the
state space module X is �nitely generated over R. In this case we say that
the system � is realizable. Only when � is realizable, the signal alphabet
W�X in the state space representation �s is a �nitely generated R-module
and so is the moduleM. Consequently the evolution law can be expressed
in a constructive way. More precisely, if m1; : : : ;ml is a set of generators
of M, then the evolution law can be expressed in the following way:
(w; x) 2 Bs if and only if the equation

(x(t); x(t + 1); w(t)) = a1m1 + � � �+ alml

admits solutions a1; : : : ; al 2 R for all t 2 Z.
In the following theorem some conditions ensuring the realizability of a

linear shift-invariant system over a Noetherian ring are analyzed.

Theorem 2 Let R be a Noetherian ring and � = (Z;W;B) be a linear

shift-invariant system. Then the following facts hold:
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1. If � is strongly complete system, then � is realizable.

2. If � is a symmetric controllable system, then � is realizable.

Proof: 1. Let X be the state space module of �. Suppose that � is
L-complete. Consider the the R-homomorphism

� : Bj[0;L] ! X

de�ned as follows: if we take m 2 Bj[0;L], then there exists w 2 B such
that wj[0;L] = m. Then we de�ne �(m) := w + B� + B+. This is a
good de�nition. Actually, if w0 2 B is such that w0j[0;L] = m, then � :=

w � w0 2 B and �j[0;L] = 0 and so, by L-completeness the signal w1 such
that w1j(�1;0] = �j(�1;0] and w1j(0;+1) = 0 is in B. It is clear that w1 2 B�

and w2 := � � w1 2 B+. Therefore � 2 B� + B+. Finally, it is easy to
see that the map � is surjective and so X �= Bj[0;L]= ker� that is �nitely
generated over R.
2. Suppose now that � is symmetric controllable. Then it is easy to see
that

B = B̂ + B� + B+;

where B̂ is the set of trajectories in B with �nite support. Consequently
we have that

X �= X̂ ;

where X̂ := B̂=B̂� + B̂+, where B̂� is the set of trajectories in B� with
�nite support and similarly B̂+ is the set of trajectories in B+ with �nite
support. Note that B̂ is a �nitely generated module over R[z; z�1]. Let
w1; : : : ; wn a set of generators for B̂ and suppose that their support are
included in [�N;N ]. We want to show that

fziwj : i = �N;�N + 1; : : : ;�1; 0; 1; : : : ; N � 1; N ; j = 1; 2; : : : ; ng

constitutes a set of generators for X̂ . Take w 2 B̂. Then

w =

nX
j=1

X
aijz

iwj =

nX
j=1

X
jij�N

aijz
iwj +

nX
j=1

X
jij>N

aijz
iwj :

It is clear that the second summand is in B̂� + B̂+ and so we have the
thesis.

As shown in [17] the canonical state space of a complete linear shift-
invariant system over a �nite Abelian group is a �nite Abelian group. This
could be easily argued from the previous theorem and from Proposition
1. On the other hand a result like this does not hold for systems over
Noetherian rings, i.e. it is not true in general that the canonical state
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space of a complete linear shift-invariant system over a Noetherian ring is
a �nite generated module. Actually, it can be seen that the complete linear
system over Z given in [7] is not realizable.

The last result presented in this paper shows that there exists a strict
relation between the realizability and the module B=Bc that has been de-
�ned in the previous section.

Proposition 8 Let R be a Noetherian ring and � = (Z;W;B) be a linear

shift-invariant system. Let moreover �c = (Z;W;Bc) be the controllable

subsystem of �. Then � is realizable if and only if B=Bc is �nitely generated

over R.

Proof: (() Let X = B=B�, where B� := B� + B+, be the state space
module of �. The state space module Xc := Bc=Bc \ B�, where B� :=
B� + B+, is �nitely generated over R by the previous theorem and so,
since B=Bc is �nitely generated over R, B=Bc\B� is �nitely generated too.
Consequently X = B=B� is �nitely generated over R.
()) If X = B=B� is �nitely generated over R, then (Bf+Bp)=B� is �nitely
generated over R, where Bf denotes the submodule fw 2 B : wj(�1;h] =
0; 9h 2 Zg and Bp denotes the submodule fw 2 B : wj[k;+1) = 0; 9k 2 Zg.
We can argue that both submodules Bf=Bf\B� and Bp=Bp\B� are �nitely
generated over R.
Let w1; : : : ; wn 2 Bf such that wij(�1;0) = 0 and w1(0); : : : ; wn(0) is a set
of generators for the R-module fw(0) 2 W : w 2 B; wj(�1;0) = 0g. Then
it is clear that

Bf = B(w1) + � � �+ B(wn) + B+;

where B(wi) := fpwi : p 2 R[z; z�1]g. Consider the following increasing
sequence of modules

hwii+ Bf \ B� � hwi; zwii+ Bf \ B� � hwi; zwi; z
2wii+ Bf \ B� � � � � ;

where with hwi; zwi; : : : ; z
nwii we mean the R-module generated by wi,

zwi ,: : :, z
nwi. Since Bf=Bf \ B� is �nitely generated over R, then there

exists N 2 N such that

hwi; zwi; : : : ; z
N�1wii+ Bf \ B� = hwi; zwi; : : : ; z

Nwii+ Bf \ B�

and so there exist pj 2 R, j = 0; 1; : : : ; N � 1, such that

zNwi =

N�1X
j=0

pjz
jwi + w+ + w�;

where w� 2 B� and w+ 2 B+. It is clear that �wi := z�Nw� has �nite
support and moreover �wi(0) = wi(0). Doing the same with every wi, we
obtain a family �w1; : : : ; �wn 2 B with �nite support satisfying

Bf = B( �w1) + � � �+ B( �wn) + B+:
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In a similar way there exists a family ŵ1; : : : ; ŵm 2 B with �nite support
satisfying

Bp = B(ŵ1) + � � �+ B(ŵm) + B�:

We can argue that
Bf + Bp = B̂ + B�; (2)

where with B̂ we mean the set of trajectories in B with �nite support.
If we show that Bf + Bp = B̂ + B� is symmetric controllable, then we are
done, since in this case Bf + Bp � Bc and so B=Bf + Bp �nitely generated
over R would imply B=Bc �nitely generated over R.
Let w 2 B̂ + B�. Then w = ŵ + w+ + w�, where ŵ 2 B̂, w� 2 B�

and w+ 2 B+. Consider w1 := w� + ŵ. Then w1j(�1;0] = wj(�1;0] and
w1j[k;+1) = 0 for some k 2 N . On the other hand de�ning w2 := w+ + ŵ,
we have that w2j[0;+1) = wj[0;+1) and w2j(�1;�h] = 0 for some h 2 N .

This shows that B̂ + B� is symmetric controllable.

Remark Note that in the proof of the �rst part of Theorem 2 something
weaker than strongly completeness is really needed. Actually we need only
that the system has �nite memory. A linear shift-invariant system � =
(Z;W;B) has �nite memory if there exists L 2 N such that if w 2 B and
wj[0;L) = 0, then �w such that �wj(�1;0] = 0 and �wj(0;+1) = wj(0;+1) is
contained in B. As shown in [25], a system is strongly complete if and only
if it is complete and has �nite memory.

This observation and the previous proposition imply that all the results
given for strongly complete systems hold true for systems that are only
�nite memory. More speci�cally:

1. The second part of Proposition 2 holds true for �nite memory
systems, i.e. if a �nite memory linear shift-invariant system � =
(Z;W;B) over a Noetherian ring is zero controllable, then it is strongly
controllable. Actually, it is easy to verify that, if � is zero-
controllable, then Bp + Bf = B, where Bp and Bf are the submod-
ule of B de�ned in the proof of the previous proposition. If � is
�nite memory, then it is realizable and so, as seen in the proof of the
previous proposition, Bp + Bf is symmetric controllable.

2. Proposition 5 holds true for �nite memory systems, i.e. If � =
(Z;W;B) is a linear shift-invariant �nite memory system and �c =
(Z;W;Bc) is the controllable subsystem of �, then the module B=Bc
is �nitely generated over R.

3. Proposition 6 can be easily weakened in the following way. If � =
(Z;W;B) is a linear shift-invariant system over a Noetherian ring,
then the following facts are equivalent:
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i) � is �nitely generated.

ii) � is autonomous and �nite memory.

iii) � is autonomous and strongly complete.

This equivalence has the surprising consequence that linear shift-
invariant �nite memory autonomous systems are automatically com-
plete.
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