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Abstract

This work considers denumerable state Markov Decision

Chains endowed with a long-run expected average reward cri-
terion and bounded rewards. Apart from standard continuity-
compactness restrictions, it is supposed that the Lyapunov Func-

tion Condition for bounded rewards holds true; this assumption

guarantees the existence of a (possibly) unbounded solution of the
optimality equation yielding optimal stationary policies. In this
context, it is shown that the relative value functions and di�er-

ential rewards produced by the Value Iteration method converge
pointwise to the solution of the optimality equation, and that it
is possible to obtain a sequence of stationary policies whose limit

points are optimal. These results extend those in [17], where it
was assumed that the `�rst error function' is bounded, and in [6],
where weaker convergence results were obtained assuming that

under the action of an arbitrary stationary policy the state space
is a communicating class.
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1 Introduction

This work considers Markov Decision Processes (MDP's) with denumer-

able state space, discrete time parameter, bounded rewards, and endowed
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with the (lim-sup) expected average reward criterion. Besides standard

continuity-compactness conditions, the main restriction on the structure of

the model is that the Lyapunov Function Condition (LFC )|introduced by

Hordijk in [16]|holds true, an assumption that implies the existence of a

(generally unbounded) solution of the average reward optimality equation

(AROE ) yielding optimal stationary policies. The following questions are

addressed within this framework: Is it possible to use the value iteration

(VI ) procedure (a) to approximate the solution of the AROE? and (b) to

determine a sequence of stationary policies whose limit points are optimal?

Of course, these are classical problems that have been extensively stud-

ied, for instance, in [6,8,12,17,21, 22,24] and references therein. Therefore,

it is important to begin by pointing out the main di�erence between the

results in this work and those already available in the literature, particu-

larly in [6] and in the paper by Hordijk, Schweitzer and Tijms [17] where,

assuming that the LFC holds, the VI method was used to provide an af-

�rmative answer to the questions posed above. First, the VI procedure

has been widely analized under several variants of the Simultaneous Doe-

blin Condition (SDC ) [23], which allow to obtain very strong convergence

results. For instance, under (simultaneous) scrambling the relative value

functions produced by the VI method converge at a geometric rate to the

solution of the AROE ; for this and related results see Hern�andez-Lerma

[12] and the interior references. However, SDC imposes very hard restric-

tions on the recurrence structure of the model [2,3] and is substantially

stronger than LFC , the basic stability condition assumed in this note; in

fact, LFC in Assumption 2.2 below can be safely classi�ed as the weakest

among the conditions presently available to guarantee the existence of op-

timal stationary policies for arbitrary continuous and bounded rewards, at

least for the class of MDP's in which each stationary policy has a unique

ergodic set of states. Concerning results obtained under LFC , in [17] it was

supposed that the reward function is (possibly) unbounded, but that the

`�rst error function' is bounded; this assumption is not satis�ed in many

interesting applications and, when applied to the bounded rewards case, it

implies that the solution of the AROE is itself bounded, a condition that, in

general, imposes strong restrictions on the model [2,3]. On the other hand,

the results in [6] refer to the case of bounded rewards and the assumption

of boundedness of the �rst error function was avoided at the expense of

assuming that every stationary policy induces a communicating Markov

chain. Then it was established that the the VI method allows to approx-

imate the solution of the optimality equation in the Ces�aro sense. In this

paper the boundedness condition on the �rst error function as well as the

communicating assumption are avoided, and it is shown that the relative

value functions and di�erential rewards converge pointwise to the solution

of the AROE . Thus, the results presented in Theorem 3.1 below can be
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seen as an improved version of those in [17] applied to the bounded rewards

framework, and in [6]; details on these comments are given in Remark 3.1.

On the other hand, it should be mentioned that following the ideas

in [17], Sennott [22] used the VI procedure to obtain convergent approx-

imations of the solution of the AROE , although some of the assumptions

used there seem to be very di�cult to verify, particularly Assumption 5.

The recent paper by Montes-de-Oca and Hern�andez-Lerma [18] contains an

extension of the results in [22] to the case of MDP's with Borel state and ac-

tion spaces, as well as interesting comments about the diverse applications

of the VI method; see also [1,13,14].

The remainder of the paper has been organized as follows: In Section 2

the decision model and all the structural assumptions are introduced, and

then some basic consequences are presented in the form of Lemmas 2.1 and

2.2, including uniqueness of the solution of the AROE . Next, in Section 3

the VI procedure is brie
y described and the answer to the two problems

considered above is stated in the form of Theorem 3.1. The necessary

technical preliminaries to establish this result are contained in Sections 4

and 5, and then Theorem 3.1 is proved in Section 6. Finally, the paper

concludes with some brief comments in Section 7.

Notation. As usual IR and IN stand for the sets of real numbers and

nonnegative integers, respectively. Given an event W , the corresponding

indicator function is denoted by I [W ]. If IK is a topological space, IB(IK)

is the space of all continuous and bounded functions r : IK ! IR endowed

with the supremum norm:

krk := sup
k2IK

jr(k)j (<1); r 2 IB(IK):

Finally, a cartesian product of topological spaces is always endowed with

the corresponding product topology and, for a; b 2 IR, a ^ b := minfa; bg.

2 Decision Model and Basic Results

Let (S;A; fA(x)jx 2 Sg; r; p) be the usual MDP where the state space S is a

denumerable set endowed with the discrete topology, and the metric space

A is the action set. For each x 2 S; A(x) � A stands for the nonempty set

of admissible actions at state x, whereas the set of admissible state{action

pairs is IK := f(x; a)jx 2 S; a 2 A(x)g, which is considered as a topological
subspace of S �A. On the other hand, r : IK! IR is the reward function

and p is the transition law. The interpretation of this model is as follows:

At each time t 2 IN the state of a dynamical system is observed, say

Xt = x 2 S, and an action At = a 2 A(x) is chosen. Then a reward r(x; a)
is obtained and, regardless of the previous states and actions, the state of
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the system at time t+1 will be Xt+1 = y 2 S with probability px y(a); this
is the Markov property of the decision process.

Assumption 2.1

(i)For each x 2 S; A(x) is a compact subset of A.

(ii)For each x; y 2 S, the mapping a 7! px y(a) is continuous in a 2 A(x).

(iii) r 2 IB(IK).

Control Policies For k 2 IN the information vector up to time k is

denoted by Ik and is de�ned by

I0 := X0; whereas Ik := (X0; A0; � � � ; Xk�1; Ak�1; Xk); k > 0: (2:1)

On the other hand, for each t 2 IN, ht := (x0; a0; � � � ; xt�1; at�1; xt) denotes
an admissible history of the process up to time t; this means that xk 2 S
for all k � t and ak 2 A(xk) if k < t. A policy � = f�tg is a (possibly

randomized) measurable rule for choosing actions which may depend on

the current state as well as on the record of previous states and actions.

If � is the policy being used and B is a Borel subset of A, the probability
of the event [At 2 B] given It = ht is �t(Bjht), where �t(A(xt)jht) = 1 is

always valid; for details see, for instance, [12 pp. 1{4] or [15]. The class of

all policies is denoted by IP. Given the initial state and the policy � being

used the distribution of the state{action process f(Xt; At)g is uniquely

determined and is denoted by P �
x , while E

�
x stands for the corresponding

expectation operator. Now set IF := �x2SA(x), that is, IF consists of all

(choice) functions f : S ! A satisfying that f(x) 2 A(x) for all x 2 S;
notice that IF is a compact metric space in the product topology [7]. A

policy � is stationary if there exists f 2 IF such that when the system is

in progress under �, action f(x) is applied whenever the observed state

is Xt = x regardless of t 2 IN. Next, de�ne IM := �n2INIF, i.e., the

(compact metric) space IM consists of all sequences fftg with ft 2 IF for

all t 2 IN. A policy � 2 IP is Markov if there exists fftg 2 IM for which the

following occurs when the system evolves under �: for each time t 2 IN, the

action prescribed by � at time t is ft(Xt). The class of stationary (resp.

Markov) policies is naturally identi�ed with IF (resp. IM) and, with these

conventions, it is clear that IF � IM � IP.

Performance Index The (lim-sup expected) average reward at state

x 2 S under policy � is de�ned by

J(x; �) := lim sup
k!1

1

k + 1
E�
x [

kX

t=0

r(Xt; At)]; (2:2)
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whereas

J(x) := sup
�2IP

J(x; �) (2:3)

is the optimal average reward at state x. A policy � is average optimal

(AO) if J(x; �) = J(x) for all x 2 S.

Optimality Equation To establish the existence of optimal stationary

policies it is necessary to complement Assumption 2.1 with an additional

condition [20]. In Assumption 2.2 below an appropriate restriction on the

transition structure of the model is given so that the existence of an optimal

stationary policy is guaranteed. First, let z 2 S be a given state, �xed

throughout the remainder of the paper, and de�ne the �rst passage time

T as follows:

T := minfn > 0jXn = zg; (2:4)

where the usual convention that the minimum of the empty set is 1 is

enforced.

Assumption 2.2 (LFC for bounded rewards [16,17; 4,6,23].) There exists

l : S ! [0;1) satisfying the following conditions (i)-(iii); such a function

is referred to as a Lyapunov function for bounded rewards.

(i) 1 +
P

y 6=z px y(a)l(y) � l(x); x 2 S; a 2 A(x).

(ii) For each x 2 S, the mapping

f 7!
X

y 6=z

pxy(f(x))l(y) = Ef
x [l(X1)I [T > 1]]

is continuous in f 2 IF.

(iii) For each f 2 IF and x 2 S, Ef
x [l(Xn)I [T > n]]! 0 as n!1.

Under Assumptions 2.1 and 2.2 the average reward optimality equation

(AROE ) given by (2.5) below has a solution yielding an optimal stationary

policy.

Lemma 2.1 Suppose that Assumptions 2.1 and 2.2 hold true. Then there

exist h : S ! IR and g 2 IR such that (i)-(iv) below occur.

(i) g = J(x) for each x 2 S; see (2.2) and (2.3).

(ii) h(z) = 0 and jh(x)j � 2krk � l(x); x 2 S.

(iii) The AROE is satis�ed by g and h(�), that is,

g + h(x) = sup
a2A(x)

[r(x; a) +
X

y

px y(a)h(y)]; x 2 S: (2:5)
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(iv) An optimal stationary policy exists. Furthermore, for each x 2 S
the right hand side of (2.5)|considered as a function of a 2 A(x)|has a

maximizer f�(x), and the corresponding policy f� 2 IF is optimal.

A proof of this result can be found in [16, chapter 5]. Notice that g in

this lemma is uniquely determined, since it is the optimal average reward

at every state. The function h is also unique, as established in part (iv) of

the following lemma.

Lemma 2.2 Under Assumptions 2.1 and 2.2 the following assertions (i)-

(iv) are satis�ed.

(i) For each � 2 IP; x 2 S and n 2 IN,

E�
x [

nX

t=0

I [T > t] + l(Xn+1)I [T > n+ 1]] � l(x); (2:6)

consequently,

E�
x [T ] � l(x): (2:7)

Now de�ne

�n(x) := sup
�2IP

E�
x [l(Xn)I [T > n]]; x 2 S; n 2 IN: (2:8)

(ii) For each x 2 S,
lim
n!1

�n(x) = 0 (2:9)

and
1

n+ 1
sup
�2IP

E�
x [l(Xn+1)]! 0 as n!1: (2:10)

(iii) Let f 2 IF and c 2 [0;1) be arbitrary but �xed.

(a) Suppose that U : S ! IR satis�es

jU(x)j � c � l(x) and U(x) �
X

y

px y(f(x))U(y); x 2 S: (2:11)

Then U(x) � U(z) for all x 2 S.

Similarly,

(b) If L : S ! IR is such that for all x 2 S

jL(x)j � c � l(x) and L(x) �
X

y

pxy(f(x))L(y);
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then L(x) � L(z) for all x 2 S.

(iv) Suppose that h1; h2 : S ! IR satisfy (a)-(c) below.

(a) h1(z) = h2(z) = 0;

(b) For some c 2 [0;1), jhi(x)j � c � l(x); x 2 S; i = 1; 2, and

(c) For i = 1; 2,

g + hi(x) = sup
a2A(x)

[r(x; a) +
X

y

px y(a)hi(y)]; x 2 S: (2:12)

Then h1 = h2.

Proof: (i) Notice that, by (2.1) and (2.4), for each k 2 IN the event [T > k]
is Ik-measurable and I [T > k + 1] = I [T > k]I [Xk+1 6= z]. Then for each

x 2 S, � 2 IP and k 2 IN

E�
x [I [T > k] + l(Xk+1)I [T > k + 1]jIk; Ak]

= E�
x [I [T > k](1 + l(Xk+1)I [Xk+1 6= z])jIk; Ak]

= I [T > k](1 +
X

y 6=z

pXk y(Ak)l(y))

� I [T > k]l(Xk);

where the second equality follows from the Markov property and the in-

equality is due to Assumption 2.2(i). Then, taking expectation with respect

to P �
x it follows that

E�
x [I [T > k] + l(Xk+1)I [T > k + 1]] � E�

x [I [T > k]l(Xk)]: (2:13)

Inequality (2.6) can now be established by induction as follows: For n = 0

the assertion is equivalent to Assumption 2.2(i). Now suppose that (2.6)

occurs for n = k � 1 2 IN. In this case

E�
x [

kX

t=0

I [T > t] + l(Xk+1)I [T > k + 1]]

= E�
x [

k�1X

t=0

I [T > t]] +E�
x [I [T > k] + l(Xk+1)I [T > k + 1]]

� E�
x [

k�1X

t=0

I [T > t]] +E�
x [l(Xk)I [T > k]] (by(2:13))

and then the induction hypothesis yields

E�
x [

kX

t=0

I [T > t] + l(Xk+1)I [T > k + 1]] � l(x);

7
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which is (2.6) with n = k. Finally, since l � 0, (2.6) implies

E�
x [T ] = lim

n!1

nX

k=0

E�
x [I [T > k]] � l(x):

(ii) Convergence (2.9) was obtained in [16]; see the proof of equation 5.7.2

in [16, pp. 43-44]. To establish (2.10) observe that

Pn+1
k=1 I [Xk = z;Xt 6= z; k < t � n+ 1] + I [Xt 6= z; 1 � t � n+ 1]

= I [Xk = z for some t 2 f1; 2; : : : ; n+ 1g]

+ I [Xk 6= z for all t 2 f1; 2; : : : ; n+ 1g]

= 1;

so that

E�
x [l(Xn+1)] =

n+1X

k=1

E�
x [l(Xn+1)I [Xk = z;Xt 6= z; k < t � n+ 1]]

+E�
x [l(Xn+1)I [Xk 6= z; 1 � k � n+ 1]]:

(2:14)

Next, note that for each positive integer k � n + 1 (see (2.1) for the

de�nition of Ik)

E�
x [l(Xn+1)I [Xk = z;Xt 6= z; k < t � n+ 1]jIk]

= I [Xk = z]E�0

z [l(Xn+1�k)I [Xt 6= z; 0 < t � n+ 1� k]]

= I [Xk = z]E�0

z [l(Xn+1�k)I [T > n+ 1� k]]

� I [Xk = z]�n+1�k(z)

(2:15)

where the `shifted' policy �0 is determined by

�0t(�jht) = �t+k(�jX0; A0; � � � ; Xk�1; Ak�1; ht)

(see [12, p. 5]) and (a) the �rst equality follows from the Markov property,

(b) the second equality is due to the de�nition of T in (2.4), and (c) the

de�nition of �n+1�k(z) in (2.8) was used to obtain the inequality. Taking

expectations with respect to P �
x , (2.15) yields

E�
x [l(Xn+1)I [Xk = z;Xt 6= z; k < t � n+ 1]]

� P �
x [Xk = z]�n+1�k(z) � �n+1�k(z): (2:16)
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To conclude observe that, by (2.4) and (2.8),

E�
x [l(Xn+1)I [Xt 6= z; 1 � t � n+1]] = E�

x [l(Xn+1)I [T > n+1] � �n+1(x);

which combined with (2.14) and (2.16) implies

E�
x [l(Xn+1)]

n+ 1
�

�n+1(x)

n+ 1
+

Pn+1
k=1 �n+1�k(z)

n+ 1
;

and then (2.10) follows from (2.9).

(iii) First consider part (a). Set d(x) := U(x) � U(z); x 2 S and notice

that the second equality in (2.11) implies that

d(x) �
X

y

px y(f(x))d(y)

=
X

y 6=z

px y(f(x))d(y)

= Ef
x [d(X1)I [T > 1]]; x 2 S;

where d(z) = 0 and the de�nition of T in (2.4) were used to obtain the

equalities. Then a simple induction argument yields

d(x) � E�
x [d(Xn)I [T > n]]; x 2 S; n 2 IN: (2:17)

To conclude observe that d(x) � jU(x)j + jU(z)j � c � l(x) + jU(z)j �
(c+ jU(z)j)l(x), where l(�) � 1 was used to obtain the third inequality; see

Assumption 2.2(i). Then (2.17) implies that for all x 2 S

d(x) � (c+ jU(z)j)Ef
x [l(Xn)I [T > n]]! 0 as n!1;

where the convergence follows from Assumption 2.2(iii) (or from (2.9)).

Therefore, U(x) � U(z) = d(x) � 0 for all x 2 S, which is the desired

conclusion. Finally, (b) follows by setting U � �L and applying part (a).

(iv) Combining (2.12) with Lemma 3.3 in [15] it follows that

jh1(x)� h2(x)j � sup
a2A(x)

[
X

y

px y(a)jh1(y)� h2(y)j]; x 2 S: (2:18)

Now observe that for each x 2 S, the mapping

a 7!
X

y

px y(a)l(y) =
X

y 6=z

pxy(a)l(y) + px z(a)l(z); a 2 A(x);

9
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is continuous, by Assumptions 2.1 and 2.2, and that by condition (b) in the

statement of the theorem,

jh1(x) � h2(x)j � 2c � l(x); x 2 S: (2:19)

These facts imply, via Proposition 18 in [19 p. 232], that for each x 2 S,
the mapping

a 7!
X

y

pxy(a)jh1(y)� h2(y)j

is continuous in a 2 A(x). Since each set A(x) is compact, there exists

f 2 IF such that

X

y

px y(f(x)jh1(y)� h2(y)j = sup
a2A(x)

[
X

y

px y(a)jh1(y)� h2(y)j]; x 2 S;

and in combination with (2.18) this equality yields

jh1(x)� h2(x)j �
X

y

px y(f(x))jh1(y)� h2(y)j; x 2 S:

Then, setting U � jh1 � h2j, part (iii) (a) and (2.19) together imply that

jh1(x)� h2(x)j � jh1(z)� h2(z)j = 0; x 2 S

where condition (a) in the statement of the theorem was used to obtain the

equality. tu

As already mentioned, the main objective of this work is to apply the VI

procedure to approximate the solution (g; h(�)) of the AROE . The precise
result in this direction, stated as Theorem 3.1 in the following section,

requires an additional condition on the transition structure of the model

which is now introduced.

Assumption 2.3 For each a 2 A(z), pz z(a) > 0.

Remark 2.1 It is interesting to observe that Assumption 2.3 does not

imply any loss of generality, since it can be obtained by making an ap-

propriate transformation on the transition law. In fact, suppose that

M = (S;A; fA(x)jx 2 Sg; r; p) satis�es Assumptions 2.1 and 2.2 and de�ne

the transformed transition law p� as follows:

p�x y(a) := (1� �)�x y + � � px y(a); (x; a) 2 IK; y 2 S;

10
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where � 2 (0; 1) is a given number and �xy := 1 (resp. 0) if x = y
(resp. x 6= y). Now set M� := (S;A; fA(x)jx 2 Sg; r; p�), which clearly

satis�es Assumptions 2.1 and 2.3. Moreover, it is not di�cult to see that

l�(�) := l(�)=� is a Lyapunov function forM�, so that Assumption 2.2 is also

satis�ed by M�. The models M and M� are equivalent, in the following

sense: Let the pair (g; h) be the solution to the AROE for model M and

let (g�; h�) be the corresponding pair for model M�. Then (a) g� = g, (b)
h� = h=�, and (c) A policy f 2 IF is optimal for modelM if and only if f is

optimal for M�. The transformation p 7! p� was introduced by Schweitzer

in [21].

Remark 2.2 Throughout the remainder Assumptions 2.1{2.3 are sup-

posed to hold true, even without explicit reference. On the other hand,

Assumption 2.3 will be used only in one place, namely, in the the proof of

part (ii) of Lemma 5.1.

3 Value Iteration and Main Theorem

In this section the main result of this note is presented in the form of

Theorem 3.1 below. To begin with, the necessary notions are introduced.

De�nition 3.1 (The VI Method.)

(i) The sequence fVn : S ! IR jn = �1; 0; 1; � � �g of value iteration func-

tions is recursively de�ned as follows: V�1 � 0 and, for n � 0,

Vn(x) = sup
a2A(x)

[r(x; a) +
X

y

pxy(a)Vn�1(y)]; x 2 S:

(ii) The relative value functions Rn : S ! IR are de�ned by

Rn(x) := Vn(x) � Vn(z); x 2 S; n = �1; 0; 1; 2; � � � :

(iii) For each x 2 S and n 2 IN de�ne the nth di�erential reward at x by

gn(x) := Vn(x) � Vn�1(x):

It is known that for all n 2 IN there exists a policy �n 2 IM such that

[12,20]

Vn(x) = E�n

x [

nX

t=0

r(Xt; At)]

= sup
�2IP

E�
x [

nX

t=0

r(Xt; At)]; x 2 S;

(3:1)

11
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and then it is clear that

jVn(�)j � (n+ 1)krk: (3:2)

Also, combining (3.1) with Lemma 3.3 in [15] it follows that

jVn+k(x)� Vn(x)j � sup
�2IP

jE�
x [

n+kX

t=n+1

r(Xt; At)]j � kkrk; n; k 2 IN; (3:3)

which yields

kgn(�)k � krk; n 2 IN: (3:4)

The following theorem, showing that the VI method can be used to ap-

proximate the solution (g; h(�)) of the AROE (2.5), is the main result of

this note.

Theorem 3.1 Under Assumptions 2.1{2.3, (i)-(iv) below occur.

(i) limn!1 gn(z) = g.

Moreover,

(ii) For all x 2 S
lim
n!1

gn(x) = g:

(iii) For each x 2 S,
lim
n!1

Rn(x) = h(x):

(iv) Given n 2 IN there exists a policy fn 2 IF such that, for each x 2 S,
fn(x) is a maximizer of the mapping

a 7! r(x; a) +
X

y

px y(a)Rn(y); a 2 A(x):

Furthermore, every limit point of ffng � IF is optimal.

The proof of this result is contained in Section 6. Unfortunately, we

have not been able neither of �nding a direct way to establish this theo-

rem nor of adapting the arguments used in [6] and [17] to the framework

of Assumptions 2.1{2.3. Rather, the proof of Theorem 3.1 given below is

somewhat technical and is based on the preliminaries presented in the fol-

lowing two sections. Before going any further, the relation of Theorem 3.1

with other results in the literature is discussed in some detail.

Remark 3.1 The main di�erences between Theorem 3.1 and the results

in [17], applied to the bounded rewards case, and in [6], are as follows:

12
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(i) In [17] the conclusions in Theorem 3.1 are shown to occur but, in ad-

dition to Assumptions 2.1{2.3, the following condition is supposed to hold

true:

The �rst `error function' e(�) := R0(�)� [g + h(�)] is bounded,

that is, kek <1. Since kR0k = kV0(�)�V0(z)k � 2krk (see (3.2)), kek <1

implies that h(�) is a bounded function, a condition that is violated in

interesting applications (see Example 3.1 below).

On the other hand, it should be emphasized that, in general, the as-

sumptions in Section 2 do not guarantee that the �rst error function e
de�ned above is bounded for arbitrary reward function r 2 IB(IK). This

can be seen as follows:

For all r 2 IB(IK); kek <1) For all r 2 IB(IK);

h(�) in the AROE is bounded

(as shown above)

) SDC holds (see [2])

) sup
x2S;f2IF

Ef
x [T ] <1

where the last implication follows from the fact that, by Assumption 2.2,

state z is positive recurrent under arbitrary f 2 IF. However, under As-

sumption 2.2, Ef
x [T ] is always �nite but, in general, not a bounded function

of (x; f) 2 S � IF; see Example 3.1 below.

(ii) In [6] it was supposed that (a) Under the action of an arbitrary station-

ary policy the state process fXtg is a communicating chain, that is, given

f 2 IF and x; y 2 S there exists n � n(x; y; f) such that P f
x [Xn = y] > 0,

and (b) Assumptions 2.1 and 2.2 hold true. Within this framework, con-

vergences weaker than those in Theorem 3.1 were obtained, namely, it was

shown in [6] that fgn(z)g and fRn(�)g converge in the Ces�aro sense to g
and h(�), respectively, i.e.,

lim
n!1

1

n+ 1

nX

k=0

gk(z) = g; and lim
n!1

1

n+ 1

nX

k=0

Rk(x) = h(x); x 2 S:

Example 3.1 Let A be a �nite set endowed with the discrete topology

and let fUna; Dnajn 2 IN; a 2 Ag be a collection of independent IN-valued

random variables such that

(i) P [Una = k] = qa(k); n; k 2 IN; a 2 A; i.e., for each a 2 A, the
random variables fUnajn 2 INg are identically distributed with common

distribution fqa(k)jk 2 INg, and

(ii) P [Dna = 1] = �a = 1� P [Dna = 0].

13
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These random variables are interpreted as the arriving and service streams

in a single{server queueing model with state space S = IN, action space

A and A(x) � A for all x 2 IN. Let Xn = x 2 IN be the number of

customers waiting for service at the beginning of the time period [n; n+1).

If x > 0 and action An = a 2 A(x) is applied, then the number of arrivals

in [n; n + 1) is Una, whereas the server can provide a complete service

with probability �a; Dna(= 0; 1) is interpreted as the number of customers
leaving the system after service completion in period [n; n + 1). These

considerations can be summarized in the following evolution equation:

Xn+1 = Xn + Una �Dn a if Xn > 0 and An = a; (3:5)

when Xn = 0 the server stays idle in the period [n; n+ 1) so that

Xn+1 = Una if Xn = 0 and An = a:

From these equations the transition law is determined by

px y(a) = (1� �a)qa(y � x) + �aqa(y � x� 1); x; y 2 IN; x > 0

= qa(y);
(3:6)

where qa(s) := 0 for s < 0. If a reward function r 2 IB(IN � A) � IB(IK)

is chosen, then the �niteness of A implies that Assumption 2.1 holds. To

verify the other assumptions the following additional condition is imposed:

�a < �a a 2 A; (3:7)

where �a :=
P1

k=1 kqa(k); a 2 A. Notice that (3.7) yields that �a < 1 for

all action a, and this in turn implies that

qa(0) > 0; a 2 A: (3:8)

Next set z := 0. In this case (3.6) and (3.8) together show that Assumption

2.3 holds with z = 0. To verify Assumption 2.2 de�ne C;B 2 (0;1) by

C := max
a2A

f(�a � �a)
�1g and B := max

a2A
fqa(0)

�1(1 + C�a)g;

and set

l(x) := Cx +B; x 2 IN:

In this case straightforward calculations using (3.6) yield that

1 +
X

y 6=z

px y(a)l(y) � l(x); x 2 IN; (3:9)

14
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which is the �rst condition of Assumption 2.2, whereas the second one fol-

lows from the �niteness of the action set. To verify part (iii) of Assumption

2.3, let f 2 IF be arbitrary but �xed. From the evolution equation (3.5),

Xn+1 � Xn�1 ifXn > 0, which immediately yields that T � x; P f
x {almost

surely for all x 2 IN, so that

Ef
x [T ] � x; x 2 IN; (3:10)

see (2.4) for the de�nition of T . Now observe that (3.9) implies that

Ef
x [T ] � l(x)(<1) (see the proof of Lemma 2.2(i)). In particular,

P f
x [T > k]! 0 as k !1 (3:11)

and, by the dominated convergence theorem,

Ef
x [(T � k)I [T > k]] = Ef

x [T � T ^ k]! 0 as k !1:

On the other hand, the Markov property and the de�nition of T yield that

Ef
x [(T � k)I [T > k]jIk] = I [T > k]Ef

Xk
[T ] � I [T > k]Xk

(see (2.1), (2.4) and (3.10)) and then the last displayed convergence yields

Ef
x [XkI [T > k]] � Ef

x [(T � k)I [T > k]]! 0 as k !1: (3:12)

To conclude observe that

Ef
x [l(Xk)I [T > k]] = C �Ef

x [XkI [T > k]]+B �P f
x [T > k]! 0 as k !1;

by (3.11) and (3.12), and this is precisely the third part of Assumption 2.2.

In short, the assumptions in Section 2 are satis�ed in this example and, by

Theorem 3.1, the di�erential rewards and relative value functions produced

by the VI method converge to the solution (g; h) of the AROE for arbitrary

reward function r 2 IB(IK). On the other hand, it has been shown that

x � Ef
x [T ]; x 2 S, so that Ef

x [T ] is not a bounded function of (x; f); by
the comments in Remark 3.1(i), this shows that for some r 2 IB(IK) the

�rst error function is not bounded, so that the convergences in Theorem

3.1 can not be obtained from the results in [17]. For instance, if for a 2 A,
r(x; a) := 1 for x 6= 0 and r(0; a) := 0, it is not di�cult to see that the �rst

error function and the function h(�) in the AROE are both unbounded.

4 Preliminaries: First Part

This section starts the journey to the proof of Theorem 3.1. To begin with,

some useful notation is introduced.

15
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De�nition 4.1

(i) The functions U;L : S ! IR are de�ned as follows: For each x 2 S,

U(x) := lim sup
n!1

gn(x); and L(x) := lim inf
n!1

gn(x):

(ii) For each k 2 IN de�ne bk := sup�2IPE
�
z [TI [T > k]].

Remark 4.1 Notice that kUk; kLk � krk, by (3.4).

The main objective in this section is to establish the following result,

which is the �rst essential component of the proof of Theorem 3.1 presented

in Section 6; see Remark 2.2.

Theorem 4.1 There exists a policy � 2 IM such that

L(z) +
[U(z)� L(z)]

E�
z [T ]

� g; (4:1)

recall that g is the optimal average reward.

The proof of this theorem has been divided into several pieces given

below in the form of Lemmas 4.1{4.3; the arguments in the proofs of these

preliminaries are along the ideas used in [4] and [5]. The �rst two lemmas

refer to continuity properties derived from Assumptions 2.1 and 2.2.

Lemma 4.1

(i) limk!1 bk = 0.

(ii) For each k 2 IN and x 2 S, the mappings

� 7! E�
x [r(Xk ; Ak)I [T > k]]; and � 7! P �

x [T = k]

are continuous in � 2 IM.

(iii) The function � 7! E�
z [T ]; � 2 IM, is continuous.

(iv) Suppose that the sequence f�ng � IM converges to � (2 IM) as n!1.

Then

lim
n!1

E�n
z [

T^n�1X

t=0

r(Xt; At)] = E�
z [

T�1X

t=0

r(Xt; At)]:

Proof: (i) Let � 2 IP be arbitrary. Since the event [T > k] is Ik-
measurable, the Markov property implies that E�

x [TI [T > k]jIk] = I [T >
k]E�0

Xk
[T ] � I [T > k]l(Xk), where (2.7) was used to obtain the inequality

and the shifted policy �0 is determined by

�0t(�jht) = �t+k(�jX0; A0; : : : ; Xk�1; Ak�1; ht);
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cf. the proof of Lemma 2.2 (ii). Then, it follows that

E�
x [TI [T > k]] � E�

x [I [T > k]l(Xk)];

so that 0 � bk � �k(z)! 0 as k !1; see (2.8) and (2.9).

(ii) This part follows from an induction argument using Assumptions 2.1

and 2.2 and Proposition 2.18 in [19 p. 232].

(iii) For each positive integer k, E�
z [T ^ k] = k +

Pk�1
r=0(r � k)P �

z [T = r]
is a continuous function of � 2 IM, by part (ii). On the other hand, using

that T � T ^ k � (T � k)I [T > k] � TI [T > k] it follows that

sup
�2IP

jE�
z [T ]�E�

z [T ^ k]j � sup
�2IP

E�
z [TI [T > k]] = bk ! 0 as k !1;

by part (i). Therefore, being a uniform limit of continuous functions, the

mapping � 7! E�
z [T ]; � 2 IM, is itself continuous.

(iv) Let k 2 IN be �xed, select n 2 IN [ f1g satisfying k < n, and observe

that for each � 2 IP,

jE�
z [

T^n�1X

t=0

r(Xt; At)]�E�
z [

T^k�1X

t=0

r(Xt; At)]j � E�
z [

T^n�1X

t=T^k

jr(Xt; At)j]:

Since 0 � T ^ n � T ^ k � T � T ^ k � (T � k)I [T > k] � TI [T > k]; it
follows that

(a)

jE�
z [

T^n�1X

t=0

r(Xt; At)]�E
�
z [

T^k�1X

t=0

r(Xt; At)]j � krk�E�
z [T^n�T^k] � krk�bk:

In particular, setting n =1,

(b) jE�
z [

T�1X

t=0

r(Xt; At)]�E�
z [

T^k�1X

t=0

r(Xt; At)]j � krk � bk:

On the other hand, part (ii) above yields that

(c) � 7! E�
z [
PT^k�1

t=0 r(Xt; At)] = E�
z [
Pk�1

t=0 r(Xt; At)I [T > t]]; � 2 IM, is

a continuous mapping .

To conclude observe that (a) and (b) together with the triangle in-

equality yield, via straightforward calculations, that for each k; n 2 IN,

with n > k,
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jE�n
z [

T^n�1X

t=0

r(Xt; At)]�E�
z [

T�1X

t=0

r(Xt; At)]j

� jE�n
z [

T^k�1X

t=0

r(Xt; At)]�E�
z [

T^k�1X

t=0

r(Xt; At)]j+ 2krk � bk:

Upon taking limit superior as n ! 1 in both sides of this inequality and

using that limn!1 �n = �, property (c) above implies that

lim sup
n!1

jE�n
z [

T^n�1X

t=0

r(Xt; At)]�E�
z [

T�1X

t=0

r(Xt; At)]j � 2krkbk;

and combining this inequality with part (i) it follows that

lim
n!1

E�n
z [

T^n�1X

t=0

r(Xt; At)] = E�
z [

T�1X

t=0

r(Xt; At)];

which is the desired conclusion. tu

Lemma 4.2 Let c 2 IR and W : IN � (IN n f0g) ! IR satisfy (i) and (ii)

below.

(i) jW (m; k)j � c � k; m; k 2 IN; k � 1;

(ii) For each positive integer k, limm!1W (m; k) =: �(k) exists.

Then, if f�mg � IM is a sequence converging to � 2 IM and fn(m)g � IN

is a sequence increasing to 1,

lim
m!1

n(m)X

k=1

W (m; k)P �m
z [T = k] =

1X

k=1

�(k)P �
z [T = k]: (4:2)

Proof: First notice that, by Lemma 4.1(ii),

(a) For each k 2 IN n f0g; lim
m!1

P �m
z [T = k] = P �

z [T = k]:

Next, de�ne the sequence ffm : INnf0g ! IRg as follows: For each m 2 IN,

fm(k) :=W (m; k) if 1 � k � n(m); fm(k) := 0; otherwise: (4:3)

From the assumptions in the statement of the lemma it follows that
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(b) For k;m 2 IN; k � 1,

jfm(k)j � c � k; k;m 2 IN; k � 1; and lim
m!1

fm(k) = �(k):

On the other hand, by Lemma 4.1(iii),

(c) lim
m!1

1X

k=1

kP �m
z [T = k] = lim

m!1
E�m
z [T ] = E�

z [T ] =

1X

k=1

kP �
z [T = k]:

Then, (a){(c) allow to use Proposition 2.18 in [19, p.232] to conclude that

lim
m!1

1X

k=1

fm(k)P
�m
z [T = k] =

1X

k=1

�(k)P �
z [T = k];

which, by (4.3), is equivalent to (4.2). tu

The following result follows combining (2.2) and (2.3) with equation (6.2)

in [5] applied with n = 1, or from Theorem 4.2 in [4].

Lemma 4.3 Let � 2 IP be an arbitrary policy. Then,

E�
z [
PT�1

t=0 r(Xt; At)]

E�
z [T ]

� g:

Lemmas 4.1-4.3 will be now used to establish Theorem 4.1.

Proof of Theorem 4.1: Let n 2 IN be arbitrary. As already noted, there

exists �n 2 IM such that

Vn(x) = E�n

x [

nX

t=0

r(Xt; At)]; x 2 S: (4:4)

Now select a sequence fn(m)g � IN increasing to 1 such that

lim
m!1

gn(m)(z) = lim
m!1

[Vn(m)(z)� Vn(m)�1(z)] = U(z) =: �(1); (4:5)

see De�nition 4.1(i). On the other hand, since f�ng � IM and IM is a com-

pact metric space, it can be assumed|taking a subsequence if necessary|

that

lim
m!1

�n(m) =: � 2 IM (4:6)
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exists. To complete the proof it will be shown that this policy � satis�es

(4.1). First observe that (4.4) and Bellman's optimality principle together

yield that

Vn(z) = E�n

z [

T^n�1X

t=0

r(Xt; At) + Vn�T^n(XT^n)];

or equivalently,

Vn(z)�E�n

z [Vn�T^n(XT^n)] = E�n

z [

T^n�1X

t=0

r(Xt; At)]: (4:7)

On the other hand,

Vn(z)�E�n

z [Vn�T^n(XT^n)]

= Vn(z)�

nX

k=1

Vn�k(z)P
�n

z [T = k]�E�n

z [V0(Xn)I [T > n]]

=

nX

k=1

(Vn(z)� Vn�k(z))P
�n

z [T = k] +E�n

z [(Vn(z)� V0(Xn))I [T > n]];

(4:8)
and (see (3.3))

(Vn(m)(z)� Vn(m)�k(z)jk = 2; 3; � � �) 2 �1k=2[�kkrk; kkrk] =: IE;

where, by convention, Vs(z) := 0 for s < �1; recall that V�1 � 0, by De�-

nition 3.1. Since IE is a compact metric space, after taking a subsequence

of fn(m)g it can be assumed that, in addition to (4.5) and (4.6),

lim
m!1

[Vn(m)(z)� Vn(m)�k(z)] =: �(k)

exists for all k � 2. Setting W (m; k) := Vn(m)(z) � Vn(m)�k(z); m; k 2
IN; k � 1 and c := krk, the last displayed equality, (4.5) and (4.6) together

yield, via Lemma 4.2, that as m!1,

n(m)X

k=1

[Vn(m)(z)� Vn(m)�k(z)]P
�n(m)

z [T = k]!

1X

k=1

�(k)P �
z [T = k]: (4:9)

To continue observe that

jE�n

z [(Vn(z)� V0(Xn))I [T > n]]j

� E�n

z [((n+ 1)krk+ krk)I [T > n]] (by (3:2))

� krkE�n

z [2TI [T > n]] � 2krkbn (see De�nition 4:1(ii))
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so that, by Lemma 4.1(i),

E�n
z [(Vn(z)� V0(Xn))I [T > n]]! 0 as n!1: (4:10)

Therefore, replacing n by n(m) in (4.8) and taking limit as m!1, (4.9)

and (4.10) together imply that

limm!1fVn(m)(z)�E�n(m)

z [Vn(m)�T^n(m)(XT^n(m))]g

=

1X

k=1

�(k)P �
z [T = k]: (4:11)

Next, combining (4.6) and Lemma 4.1(iv) it follows that

lim
m!1

E�n(m)

z [

T^n(m)�1X

t=0

r(Xt; At)] = E�
z [

T�1X

t=0

r(Xt; At)] (4:12)

so that, replacing n by n(m) in (4.7) and taking limit as m ! 1 in both

sides of the resulting equality, equations (4.11) and (4.12) together imply

that
1X

k=1

�(k)P �
z [T = k] = E�

z [

T�1X

t=0

r(Xt; At)]: (4:13)

Finally, it will be shown that

�(s) � U(z) + (s� 1)L(z); s = 1; 2; � � � : (4:14)

Assuming this inequality, the conclusion follows in this way: Notice that

1X

s=1

�(s)P �
z [T = s] �

1X

s=1

fU(z) + (s� 1)L(z)gP �
z [T = s]

= U(z)� L(z) + L(z)

1X

s=1

sP �
z [T = s]

= U(z)� L(z) + L(z)E�
z [T ];

and that in combination with (4.13) this implies that

U(z)� L(z) + L(z)E�
z [T ] � E�

z [

T�1X

t=0

r(Xt; At)];

so that

L(z) +
U(z)� L(z)

E�
z [T ]

�
E�
z [
PT�1

t=0 r(Xt; At)]

E�
z [T ]

� g;
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where the second inequality follows from Lemma 4.3. Thus, the policy

� 2 IM given in (4.6) satis�es (4.1). To complete the proof it is su�cient

to establish (4.14). With this in mind note that, by De�nition 4.i(i), for

each integer k � 1

L(z) = lim inf
n!1

[Vn(z)� Vn�1(z)]

� lim inf
m!1

[Vn(m)�k(z)� Vn(m)�k�1(z)]:
(4:15)

Then, for each positive integer s,

�(s) = lim
m!1

[Vn(m)(z)� Vn(m)�s(z)]

= lim
m!1

[Vn(m)(z)� Vn(m)�1(z) +

s�1X

k=1

(Vn(m)�k(z)� Vn(m)�k�1(z))]

= U(z) + lim
m!1

s�1X

k=1

(Vn(m)�k(z)� Vn(m)�k�1(z))] (see (4:5))

� U(z) +

s�1X

k=1

lim inf
m!1

(Vn(m)�k(z)� Vn(m)�k�1(z))]

and combining the last inequality with (4.15) it follows that

�(s) � U(z) + (s� 1)L(z);

this establishes (4.14), since the integer s � 1 was arbitrary and, as already

mentioned, completes the proof of Theorem 4.1. tu

5 Preliminaries: Second Part

The objective of this section is to establish the second essential component

of the proof of Theorem 3.1, which is the following.

Theorem 5.1 For each x 2 S,

L(x) � g:

The proof of this theorem is somewhat technical and has been split into

Lemmas 5.1-5.3 below. The idea behind the arguments used to establish

part (ii) of the following lemma was motivated by the proof of the `Key

Renewal Theorem' as presented in Feller [10, Section 7 of Chapter 13].

Lemma 5.1 (i) For all x 2 S, (a) L(x) � L(z), and (b) U(x) � U(z).
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(ii) Let fn(m)g1m=0 � IN n f0g be a given sequence increasing to 1 such

that

lim
m!1

gn(m)(z) = L(z):

Then

lim
m!1

gn(m)�1(z) = L(z): (5:1)

Proof: (i) For each x 2 S select a sequence fnx(m)g1m=0 of positive

integers satisfying

lim
m!1

gnx(m)(x) = L(x); (5:2)

see De�nition 4.1. Next, for each m 2 IN select fm 2 IF such that

Vnx(m)�1(x) = r(x; fm(x)) +
X

y

pxy(fm(x))Vnx(m)�2(y); x 2 S;

the existence of such a stationary policy follows from Assumption 2.1 and

the boundedness of the VI functions Vk(�) (see (3.2) and recall that V�1 �
0). Now observe that, by De�nition 3.1(i),

Vnx(m)(x) � r(x; fm(x)) +
X

y

px y(fm(x))Vnx(m)�1(y) x 2 S:

The last two displayed relations together imply, by De�nition 3.1(iii), that

for each state x

gnx(m)(x) �
X

y

pxy(fm(x))gnx(m)�1(y): (5:3)

On the other hand, using that IF is compact metric, it is possible to select

a subsequence such that, in addition to (5.2),

fm ! f 2 IF as m!1: (5:4)

Since jgk(�)j � krk (see (3.4)), inequality (5.3), Fatou's lemma and As-

sumption 2.1 together imply that, for all x 2 S

lim inf
m!1

fgnx(m)(x) + krkg �
X

y

lim inf
m!1

(px y(fm(x))[gnx(m)�1(y) + krk])

=
X

y

px y(f(x))(lim inf
m!1

gnx(m)�1(y) + krk)

�
X

y

px y(f(x))(L(y) + krk)
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where the second inequality is due to the de�nition of L(y) as the limit

inferior of the whole sequence fgn(y)g. Combining this with (5.2) it follows

that
L(x) �

X

y

px y(f(x)) lim inf
m!1

gnx(m)�1(y)

�
X

y

px y(f(x))L(y); x 2 S:
(5:5)

Since jL(�)j � krk � krkl(�) (see Remark 4.1 and recall that the Lyapunov

function l(�) is � 1), Lemma 2.2(iiib) and (5.5) together yield that L(x) �
L(z); x 2 S establishing part (a) whereas part (b) follows along the same

lines.

(ii) Let fn(m)g1m=0 be a sequence of positive integers increasing to1 such

that limm!1 gn(m)(z) = L(z) and let L0(z) be an arbitrary limit point of

fgn(m)�1(z)g
1
m=0. From De�nition 4.1 it is clear that L0(z) � L(z) and

that (5.1) will be established if it can be proved that

L0(z) = L(z): (5:6)

With this in mind, observe that taking a subsequence|if necessary|it can

be assumed that

lim
m!1

gn(m)�1(z) = L0(z): (5:7)

Now, in the proof of part (i) set nz(m) = n(m) for allm 2 IN and note that,

since IF is a compact metric space, after picking an additional subsequence

it can be supposed that (5.4) also holds. Then, (5.5) with x = z yields

L(z) �
X

y

pz y(f(z)) lim inf
m!1

gn(m)�1(y) �
X

y

pz y(f(z))L(y) � L(z);

where part (i) was used to obtain the right-most inequality. Therefore, all

inequalities in the last displayed relation are equalities, and then

X

y

pz y(f(z))[lim inf
m!1

gn(m)�1(y)� L(y)] = 0: (5:8)

Finally, from De�nition 4.1(i), lim infm!1 gn(m)�1(y) � L(y) for all y 2 S,
so that (5.8) implies that

lim inf
m!1

gn(m)�1(y) = L(y) if pz y(f(z)) > 0;

then Assumption 2.3 and (5.7) together yield that L0(z) = L(z) and, as
already mentioned, this completes the proof. tu
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Lemma 5.2 Let fRng be the sequence of relative value functions introduced

in De�nition 3.1. Then,

jRn(x)j � 3krkl(x); x 2 S; n 2 IN:

Proof: This result is essentially contained in [6]; by completeness, a short

proof is given. Let n 2 IN and x 2 S be �xed and select policy �n as in

(3.1) . Using Bellman's optimality principle, it follows that

Rn(x) = Vn(x) � Vn(z)

= E�n

x [

T^n�1X

t=0

r(Xt; At) + Vn�T^n(XT^n)� Vn(z)]:
(5:9)

Since T � n implies that T ^ n = T and XT^n = XT = z (by (2.4)), then

jVn�T^n(XT^n)� Vn(z)jI [T � n] = jVn�T (z)� Vn(z)jI [T � n]

� krkTI [T � n];
(5:10)

where (3.3) was used to obtain the inequality. On the other hand T ^n = n
on the event [T > n], so that using (3.3)

jVn�T^n(XT^n)� Vn(z)jI [T > n] = jV0(Xn)� Vn(z)jI [T > n]

� (krk+ (n+ 1)krk)I [T > n]

� 2krkTI [T > n]:

Combining this inequality with (5.10) it follows that

E�n

x [jVn�T^n(XT^n)� Vn(z)j]

= E�n

x [jVn�T (z)� Vn(z)jI [T � n]]]

+E�n

x [jV0(Xn)� Vn(z)jI [T > n]]

� krkE�n

x [TI [T � n]] + 2krkE�n

x [TI [T > n]]

� 2krkE�n

x [T ]:

(5:11)

Finally, observe that

jE�n

x [

T^n�1X

t=0

r(Xt; At)]j � krkE�n

x [T ^ n] � krkE�n

x [T ]

which, combined with (5.9) and (5.11), yields jRn(x)j � 3krkE�n

x [T ] �
3krkl(x), where Lemma 2.2(i) was used to obtain the second inequality. tu
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The �nal step before the proof of Theorem 5.1 is the following.

Lemma 5.3 There exists a sequence f~hk : S ! IRg satisfying j~hk(�)j �
3krkl(�) for all k 2 IN and, furthermore,

L(z)+~hk(x) � r(x; a)+
X

y

px y(a)~hk+1(y); (x; a) 2 IK; k 2 IN: (5:12)

Proof: Pick a sequence fn(m)g such that gn(m)(z)! L(z) as m!1. By

Lemma 5.1(ii) this implies that

lim
m!1

gn(m)�k(z) = L(z); k 2 IN: (5:13)

Next set ID := �x2S [�3krkl(x); 3krkl(x)], and for s < 0, gs(z) := 0 and

Rs(�) := 0. With this notation

Wm := (gn(m)�k;Rn(m)�kjk 2 IN) 2 ([�krk; krk]� ID)1 =: IH: (5:14)

Since IH is compact metric in the product topology, taking a subsequence

if necessary it can be assumed that

lim
m!1

Wn(m) =:W 2 IH (5:15)

exists, and from (5.13) it follows that W is of the form

W = (L(z); ~hkjk 2 IN) (5:16)

for certain functions ~hk : S ! IR belonging to ID, i.e.,

j~hk(x)j � 3krkl(x); x 2 S; k 2 IN:

To complete the proof it will be shown that the sequence f~hkg satis�es

(5.12). First note that (5.14)-(5.16) yield that

lim
m!1

Rn(m)�k(x) = ~hk(x); x 2 S; k 2 IN: (5:17)

On the other hand, De�nition 3.1(i) implies that for all (x; a) 2 IK and

m; k 2 IN with k < n(m)

Vn(m)�k(x) � r(x; a) +
X

y

px y(a)Vn(m)�k�1(y)

which is equivalent to

gn(m)�k(z) +Rn(m)�k(x) � r(x; a) +
X

y

pxy(a)Rn(m)�k�1(y); (5:18)
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see parts (ii) and (iii) of De�nition 3.1. Since
P

y pxy(a)l(y) <1 (by As-

sumption 2.2), Lemma 5.2, (5.17) and the dominated convergence theorem

together imply that

lim
m!1

X

y

pxy(a)Rn(m)�k�1(y) =
X

y

px y(a)~hk+1(y):

Taking limit as m ! 1 in both sides of (5.18) and using the above con-

vergence together with (5.13) and (5.17), it follows that for all (x; a) 2 IK

and k 2 IN

L(z) + ~hk(x) � r(x; a) +
X

y

px y(a)~hk+1(y);

and the proof is complete. tu

Lemmas 5.1{5.3 will be now used to establish Theorem 5.1.

Proof of Theorem 5.1: Let f~hkg be the sequence in Lemma 5.3. A

simple induction argument using (5.12) yields that for all x 2 S, � 2 IP

and n 2 IN

L(z) +
~h0(x)

n+ 1
�
E�
x [
Pn

t=0 r(Xt; At)]

n+ 1
+
E�
x [
~hn+1(Xn+1)]

n+ 1
:

Since j~hk(�)j � 3krkl(�), (2.10) implies that 1
n+1E

�
x [
~hn+1(Xn+1)] ! 0 as

n ! 1. Thus, taking limit superior in both sides of the last displayed

inequality it follows that

L(z) � lim sup
n!1

E�
x [
Pn

t=0 r(Xt; At)]

n+ 1
= J(x; �);

and then L(z) � J(x) = g, since � 2 IP was arbitrary; see (2.2), (2.3) and

Lemma 2.1(i). Then Lemma 5.1(i) yields that L(x) � L(z) � g for all

state x and the proof is complete. tu

6 Proof of Theorem 3.1

After the preliminaries in the previous sections the main result of this note

can be established as follows.

Proof of Theorem 3.1: (i) Let � 2 IM be as in Theorem 4.1 and note

that

L(z) � L(z) +
U(z)� L(z)

E�
z [T ]

� g � L(z);
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where U(z) � L(z) was used to obtain the leftmost inequality, the middle

one is nothing but (4.1), and the third inequality follows from Theorem

5.1. Then L(z) = g and
U(z)� L(z)

E�
z [T ]

= 0:

Since E�
z [T ] <1, by Lemma 2.2(i), this yields that

lim sup
n!1

gn(z) = U(z) = L(z) = lim inf
n!1

gn(z);

i.e., limn!1 gn(z) = g.

(ii) Combining part (i) above with Lemma 5.1(i) it follows that

U(x) � U(z) = L(z) = g � L(x); x 2 S;

which, using that U(�) � L(�), yields U(x) = L(x) = g; x 2 S, i.e.,
limn!1 gn(x) = g for each state x; see De�nition 4.1(i).

(iii) Notice that, by Lemma 5.2,

Rn 2 ID = �x2S[�3krkl(x); 3krkl(x)]; n 2 IN; (6:1)

and that ID is a compact metric space. Thus, to establish that

lim
n!1

Rn = h

it is su�cient to verify that any limit point of fRng coincides with h. With

this in mind, let Q 2 ID be an arbitrary limit point of fRng, select a

sequence fn(m)g of positive integers such that

lim
m!1

Rn(m)(x) = Q(x) 2 [�3krkl(x); 3krkl(x)]; x 2 S; (6:2)

and observe that, by De�nition 3.1 and part (ii) above, Rk(x)�Rk�1(x) =
gk(x) � gk(z)! 0 as k !1. Therefore

lim
m!1

Rn(m)�1(x) = Q(x); x 2 S; (6:3)

also holds. Now let x 2 S be arbitrary but �xed and note that straightfor-

ward calculations using De�nition 3.1 yield that, for all x 2 S and m 2 IN,

gn(m)(z) +Rn(m)(x) = sup
a2A(x)

[r(x; a) +
X

y

px y(a)Rn(m)�1(y)]: (6:4)
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Next, let G � S be a �nite set and " > 0. Using Assumptions 2.1 and 2.2,

it follows that the mappings

a 7!
X

y

px y(a)l(y) and a 7!
X

y2G

px y(a)l(y)

are continuous in a 2 A(x). Since
P

y2G px y(a)l(y) %
P

y px y(a)l(y) as
G% S and A(x) is a compact subspace of A, Dini's Theorem [19, p. 162]

implies that

sup
a2A(x)

X

y=2G�

px y(a)l(y) < " (6:5)

for some �nite set G� � S. Then, using Lemma 3.3 in [15] it follows that

j sup
a2A(x)

[r(x; a) +
X

y

pxy(a)Rn(m)�1(y)]� sup
a2A(x)

[r(x; a) +
X

y

px y(a)Q(y)]j

� sup
a2A(x)

X

y

px y(a)jRn(m)�1(y)�Q(y)j

�
X

y2G�

jRn(m)�1(y)�Q(y)j

+ sup
a2A(x)

X

y=2G�

px y(a)[jRn(m)�1(y)j+ jQ(y)j]

�
X

y2G�

jRn(m)�1(y)�Q(y)j+ 6krk"

where (6.1), the inclusion in (6.2) and (6.5) were used to obtain the last

inequality. Since G� is a �nite subset of S and " > 0 is arbitrary, it follows,

via (6.3), that

j sup
a2A(x)

[r(x; a) +
X

y

pxy(a)Rn(m)�1(y)]� sup
a2A(x)

[r(x; a) +
X

y

px y(a)Q(y)]j

! 0 as m!1: (6:6)

Finally, take limit as m goes to 1 in both sides of (6.4). In this case, part

(i), (6.2) and (6.6) together imply that

g +Q(x) = sup
a2A(x)

[r(x; a) +
X

y

px y(a)Q(y)];

i.e., Q(�) is a solution of the AROE . To conclude note that Rk(z) = 0 for

all k, by De�nition 3.1, so that (6.2) yields that Q(z) = 0. Then, using

the inclusion in (6.2) together with the properties of the function h(�) in
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Lemma 2.1, the equality Q(�) = h(�) follows from Lemma 2.2(iv) and, as

already mentioned, this completes the proof of part (iii).

(iv) For each n 2 IN let the policy fn 2 IF be such that, for all (x; a) 2 IK,

r(x; fn(x)) +
X

y

px y(fn(x))Rn(y) � r(x; a) +
X

y

px y(a)Rn(y); (6:7)

the existence of such a stationary policy fn follows from Assumption 2.1

and the boundedness of Rn(�) = Vn(�) � Vn(z). Now let f 2 IF be an

accumulation point of ffng and pick a subsequence ffn(m)g such that

fn(m) ! f as m!1: (6:8)

To complete the proof it will be shown that this policy f is average optimal.

As already noted, given x 2 S, the mapping a 7!
P

y pxy(a)l(y) is �nite
and continuous in a 2 A(x), so that using Lemma 5.2 and part (iii) above

it follows that

lim
m!1

X

y

pxy(fn(m)(x))Rn(m)(y) =
X

y

px y(f(x))h(y);

by Proposition 2.18 in [19 p. 232], and

lim
m!1

X

y

px y(a)Rn(m)(y) =
X

y

pxy(a)h(y);

by the dominated convergence theorem. Replacing n by n(m) in both sides

of (6.7) and taking limit as m!1, the last two displayed equalities, (6.8)

and Assumption 2.1 together imply

r(x; f(x)) +
X

y

pxy(f(x))h(y) � r(x; a) +
X

y

px y(a)h(y); (x; a) 2 IK;

and then f is optimal, by Lemma 2.1(iv). tu

7 Conclusion

The value iteration procedure has been studied in the context of MDP's

with denumerable state space, bounded rewards and satisfying the continu-

ity and stability conditions in Assumptions 2.1{2.3; as already mentioned,

Assumption 2.3 does not represent a real restriction, since it can be achieved

after performing the Schweitzer transformation described in Remark 2.1.

Within this framework, the convergence of the relative value functions and

di�erential rewards to the solution of the AROE was established in The-

orem 3.1, and the relation of this result with the theorems obtained in [6]

and [17] was brie
y discussed in Remark 3.1. On the other hand, there
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are, at least, two interesting problems to be considered. First, note that

the Lyapunov stability condition in Assumption 2.2 can be appropriately

modi�ed to include unbounded rewards [16,17,23], and that the arguments

used to establish Theorem 3.1 rely heavily on the assumption that the re-

ward function is bounded. Thus, it is interesting to consider the following

problem:

P1: Is it possible to extend the results in Theorem 3.1 to include unbounded

reward functions?

On the other hand, an important application of the ideas behind the

VI method is to the construction of average optimal adaptive policies. The

point here is that, frequently, the transition-reward structure of the model

is not completely known to the controller, but depends on unknown pa-

rameters, so that the control task must be combined with an estimation

scheme. The combination of the VI method with an estimation procedure

was initiated by Federgruen and Schweitzer [9] and Hern�andez-Lerma and

Marcus [11]; in the latter paper the Non-stationary Value Iteration (NVI)

adaptive policy was introduced for discounted models, and the idea was ex-

tended to the average case in a series of papers, including [1]; an extensive

discussion about this theme can be found in [12]. However, the optimality

results for the NVI adaptive policy in the average case has been established

under SDC -like stability restrictions. The reason behind this, is that con-

ditions for the average optimality of the NVI adaptive policy are strongly

linked to assumptions ensuring that the convergence results in Theorem

3.1 occur, and when the average version of the NVI adaptive policy was

introduced, those results were available under SDC but not under LFC .

Therefore, the following seems to be an interesting problem:

P2: When the transition-reward structure of the model depends on un-

known parameters, combine the results in Theorem 3.1 with an estimation

scheme to establish the average optimality of the NVI adaptive policy.

Research on these problems is presently in progress.
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