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Abstract

We study in this paper the hierarchical regulation of a control sys-

tem with two controls. State and controls are subjected to (viability)

constraints, and the controls have to be chosen in order to maintain

the viability of the state. We characterize the (set{valued) subregu-

lation maps governing the evolution of viable controls, and establish

a metaregulation law for the evolution of viable state{control so-

lutions. Moreover, among the viable evolutions, we select solutions

regulated in a hierarchical manner : the regulation of the �rst control

depends only on the present state and the present controls, whereas

the regulation of the second control also takes into account the ve-

locity of the �rst control. The main example is given by the heavy

hierarchical solutions : both controls are constant as long as possible,

but when the viability of the solution is at stake, the second control

will vary �rst whereas the �rst control remains constant, and then,

if this is no longer su�cient, also the �rst control starts moving.

We present our results in the framework of dynamical games,

where these concepts can be used to model a hierarchical game, i.e.,

a game where one player has a stronger inertial power.

Key words: regulation of control systems with two controls under viability

constraints, dynamical games, viability theory, di�erential inclusions
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0 Introduction

We study in this paper the hierarchical regulation of a control system with
two or more controls.

It has been motivated by a demo{economic model introduced by N. Bon-
neuil [4]. In this model, the state represents the per capita capital and the
controls the per capita consumption and the crude birth rate. The controls
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are supposed to evolve with bounded velocity. Furthermore, capital, per
capita consumption and crude birth rate are subjected to positivity (via-
bility) constraints, and the controls have to be chosen in order to maintain
the viability of the state.

In order to obtain numerical results, the crude birth rate has been �xed,
and the viability of the control system has been studied only with respect to
the per capita consumption [4]. Of particular interest are solutions obeying
the inertia principle: the control maintaining the viability of the state
evolves with minimal velocity. Such solutions are called heavy solutions
(see [2, ch. 7]) for a rigorous de�nition).

Actually, both crude birth rate and per capita consumption are submit-
ted to a hierarchical inertia principle, the crude birth rate being \heavier"
than the per capita consumption. Namely, both controls evolve with min-
imal velocity, but when the viability of the solution is at stake, the per
capita consumption will change �rst, and then, if this is no longer su�-
cient, also the crude birth rate will evolve. This motivates the terminology
\cascades".

The controls are thus regulated in a hierarchical manner: in order to
construct viable state solutions, the evolution of the velocity of the crude
birth rate depends only on the present state and the present controls,
whereas the regulation of the per capita consumption has also to take into
account the present velocity of the crude birth rate.

These concepts can also be used in a dynamical game framework in order
to model a hierarchical dynamical game. In this paper, we will present our
results in the dynamical game terminology. We understand under the name
\dynamical game" any problem related to dynamical systems controlled
by two or more players, which is a more general notion than \di�erential
game". Since Isaacs [9], the terminology \di�erential game" is usually
reserved to control problems with two control vectors, each of them under
the control of one of the two players. The purpose of a di�erential game is
for one player, to reach a target or to maximize a cost, the purpose of the
second player being opposite (see for example [8], [10]).

In this paper, the purpose of the dynamical game is to maintain for a
given initial condition at least one solution of the dynamical system in a
closed subset, which is a viability problem. The rule of the game is no longer
minimaximization, but a hierarchical inertia principle. This means that one
player has a stronger inertial power: he/she changes his/her control last,
forcing the other player to move his/her control �rst.

Namely, we consider the following two{person game:

� The dynamics of the game are given by8<
:

i: x0(t) = f(x(t); u(t); v(t))
ii: u(t) 2 U(x(t))
iii: v(t) 2 V (x(t); u(t));

(1)
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where u(�), v(�) are regarded as strategies used by the players to
govern the evolution of the state x(�) of the game.

� The purpose of the game is to maintain the state of the system in a
given set K = Dom(U), i. e., to �nd \playable" solutions of the game
(1). (See [2, ch. 14] for a presentation of playability.)

� The players act on the velocities of the strategies, which are regarded
as decisions.

� The players play a hierarchical game: in order to construct playable
strategies, the �rst player's decision depends only on the present state
and the present strategies, whereas the second player has also to
consider the �rst player's decision.

� The main example for such a hierarchical game is given by the game,
where the strategies obey a hierarchical inertia principle: both strate-
gies evolve with minimal velocity, but when the viability of the solu-
tion is at stake, the inertia of the second strategy will be abandoned
�rst, and then, if this is not longer su�cient, both strategies will
move.

In this case, the players will try to minimize at each instant the velocity
of their control. Therefore, we shall bound a priori these velocities by
constants c1 and c2: �

u0(t) 2 c1B1

v0(t) 2 c2B2;
(2)

where B1 and B2 are the respective closed unit balls of the strategy spaces.
We will hence act on the state{strategy space, which allows not only to �nd
playable state{solutions, but also regular strategies. The idea for choosing
decision rules such that the decision of the second player depends not only
on the present state and the present strategies, but also on the �rst players
decision, i. e., �

u0(t) 2 S1(x(t); u(t); v(t))
v0(t) 2 S2(x(t); u(t); v(t);u

0(t));
(3)

is to introduce the concept of \cascades", which allows a hierarchical se-
lection of a given set{valued map with images in a product space in an
appropriate manner.

Naturally, these concepts can be extended to n{player dynamical games.

1 The Viability Theorem

We recall the Viability Theorem for di�erential inclusions and we adapt it
in the framework of dynamical games.
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Let X be a �nite dimensional vector space. Recall that the domain of
a set{valued map F : X ; X is de�ned by

Dom(F ) = fx 2 X ; F (x) 6= ;g:

Theorem 1.1 (Viability Theorem) [2, th. 3.3.5,th. 4.1.2] Let F : X ;
X be a nontrivial, upper semicontinuous set{valued map with compact con-
vex images and linear growth, and let K � Dom(F ) be a closed set. The
following properties are equivalent:

i. For any x0 2 K there exists a viable solution on [0;1[ to the di�er-
ential inclusion�

x0(t) 2 F (x(t)) for almost all t � 0
x(0) = x0;

(4)

i. e., a solution of system (4) remaining in K for all t � 0.

ii. The set K is a viability domain, i. e., it satis�es the following tan-
gential condition

F (x) \ TK(x) 6= ; for all x 2 K:

When K is not a viability domain, there exists a largest closed viability
domain contained in K, called the viability kernel V iabF (K) of K.

The viability kernel is the set of all initial conditions such that at least
one solution starting from them is viable in K ([2, Th. 4. 1. 2.]). The linear
growth of F ensures the existence of viable solutions de�ned on the interval
[0;1[. The contingent cone to K at x is the set

TK(x) = fv 2 X ; lim inf
��!0+

dK(x+ �v)

�
= 0g; (5)

where dK(y) denotes the distance of y to K, de�ned by

dK(y) := inf
z2K

jjy � zjj: (6)

The viability kernel is an e�cient concept used in many situations (see
for example [5], [13]). Recently, algorithms have been designed to �nd it
(see [14], [15]).

Let us now consider the two{person game
8<
:

i: x0(t) = f(x(t); u(t); v(t))
ii: u(t) 2 U(x(t))
iii: v(t) 2 V (x(t); u(t));

(7)
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where Z1 and Z2 are �nite dimensional vector spaces, U : X ; Z1 and
V : X � Z1 ; Z2 are set{valued maps and f : Graph(U � V ) �! X is a
single{valued map. Here, U�V denotes the composition x 7! f(u; v) 2 Z1�

Z2; u 2 U(x) and v 2 V (x; u)g. To obtain state{solutions x(�) regulated by
\smooth" strategies u(�) and v(�), we introduce two nonnegative functions
'1, '2 on X �Z1 �Z2 bounding the growth of the strategies. We get the
following associated two{person game

8<
:

i: x0(t) = f(x(t); u(t); v(t))
ii: u0(t) 2 '1(x(t); u(t); v(t))B1

iii: v0(t) 2 '2(x(t); u(t); v(t))B2;

(8)

where B1 and B2 denote the closed unit balls of Z1 and Z2 respectively.
Solutions of (8) are called '{smooth solutions. We regard state{dependent
constraints on the strategies as constraints on the state{strategy triples:

(x(t); u(t); v(t)) 2 K := Graph(U � V ):

We posit the following assumptions

8>><
>>:

i. Graph(U) and Graph(V ) are closed.

ii. f is continuous and has linear growth.

iii. '1 and '2 are continuous and have linear growth.
(9)

We deduce from the Viability Theorem 1.1 applied to the two{person game
(8) on K = Graph(U � V ) (see also [2, th. 7.2.5]) the following

Theorem 1.2 (Subregulation and Metaregulation Map) Let us as-
sume that the two{person game (7) and the functions '1, '2 satisfy con-
ditions (9). Let R : X ; Z1 � Z2 be a closed set{valued map contained in
U � V . Then the following two conditions are equivalent:

i. For all initial state{strategy condition (x0; u0; v0) 2 Graph(R), there
exists a '{smooth state{strategy solution (x(�); u(�); v(�)) on [0;1[ to
the two{person game (7) starting at (x0; u0; v0) and viable in
Graph(R).

ii. R is a solution to the partial di�erential inclusion

0 2 DR(x; u; v)(f(x; u; v)) � '1(x; u; v)B1 � '2(x; u; v)B2

for all (x; u; v) 2 Graph(R) satisfying the constraints

8x 2 Dom(U � V ); R(x) � (U � V )(x):
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In this case, the map R is called a '{subregulation map of U � V . The
metaregulation law regulating the evolution of the state{strategy solutions
viable in Graph(R) takes the form of the system of di�erential inclusions

�
i: x0(t) = f(x(t); u(t); v(t))
ii: (u0(t); v0(t)) 2 GR(x(t); u(t); v(t));

(10)

where the set{valued map GR is de�ned by

GR(x; u; v) := DR(x; u; v)(f(x; u; v)) \ '1(x; u; v)B1 � '2(x; u; v)B2

and called the metaregulation map associated with R.
Furthermore, there exists a largest '{subregulation map R' contained in
U � V .

The graph of the largest '{subregulation map R' is the viability kernel
of the graph of U�V for the di�erential inclusion (8). It is very di�cult to
characterize it analytically, but it can be determined numerically by using
the viability kernel algorithm (see [6], [7], [14], [15]). This is the reason
why we use below not only the largest subregulation map R', but any
subregulation map R which can be characterized in an easier way (in the
case of inequality constraints one can use Maderner's results [11], [12].)

2 Cascades of Two Controls

We shall �rst de�ne cascades of a general set{valued map G, and then,
in particular, consider cascades of the metaregulation map GR of a two{
person game. Our aim is to show the existence of state{strategy solutions
of the two{person game (7) for all initial conditions in the graph of a given
subregulation map, where the evolution of the strategies is governed by a
cascade of the metaregulation map.

Let X , Z1, Z2 be �nite dimensional spaces and G : X ; Z1 � Z2 be a
set{valued map. The map G induces the projection G1 := �1 �G of G on
Z1, i. e.,

G1 : X ; Z1; x 7! fu 2 Z1; 9v 2 Z2 such that (u; v) 2 G(x)g

and further

G2 : X � Z1 ; Z2; (x; u) 7! fv 2 Z2; (u; v) 2 G(x)g.

We observe thatDom(G1) = Dom(G), Graph(G1) = �X�Z1(Graph(G)) =
Dom(G2), and that Graph(G2) = Graph(G).

Figure 1 shows an example of the decomposition of a set{valued map
with values in IR2. For �xed x 2 X , the set G1(x) is the projection of the
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Figure 1: The sets G(x), G1(x) and G2(x; u).

-

6 '

&

$

%
� -

?

6

G(x)

G1(x)

G2(x; u)

u

set G(x) on the u{line, and for �xed u 2 IR, the set G2(x; u) is the projec-
tion of the intersection of the vertical line through u and the set G(x) on
the v{line.

De�nition 2.1 Two set{valued maps

S1 : X ; Z1 and S2 : X � Z1 ; Z2

form a cascade of G if Dom(S1) = Dom(G1), Dom(S2) = Dom(G2),
Graph(S1) and Graph(S2) are closed, and

�
SG1

(x) := S1(x) \G1(x) 6= ; 8x 2 Dom(S1)
SG2

(x; u) := S2(x; u) \G2(x; u) 6= ; 8(x; u) 2 Dom(S2):

A cascade (S1; S2) of G induces a map S : Dom(G) ; Z1 � Z2 by the
following relation:

(u; v) 2 S(x) () u 2 S1(x) and v 2 S2(x; u): (11)

The map S has closed graph, and satis�es S(x) \ G(x) 6= ; for all x 2

Dom(G), so that it de�nes a selection procedure of the map G in the sense
of [2, ch. 6]. To apply the Viability Theorem 1.1, we need S to have convex
values. An easy proof implies the statement below:

7
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Lemma 2.1 Let us assume that G1 has convex values. The following two
conditions are equivalent:

i. S has convex values.

ii. S1 and S2 satisfy the convexity conditions�
(a) tu1 + (1� t)u2 2 S1(x)
(b) tS2(x; u1) + (1� t)S2(x; u2) � S2(x; tu1 + (1� t)u2)

(12)
for all (x; u1); (x; u2) 2 Dom(S2) \Graph(S1) and t 2 [0; 1].

Naturally, the condition (12) is satis�ed if S1 and S2 have convex values
and if the intersection map SG1

= S1\G1 is single{valued, or in particular,
if S1 and S2 are both single{valued.

We turn now to the dynamical game (7)8<
:

i: x0(t) = f(x(t); u(t); v(t))
ii: u(t) 2 U(x(t))
iii: v(t) 2 V (x(t); u(t))

and �x two nonnegative functions '1, '2 and a '{subregulation map R :
X ; Z1 � Z2 of U � V .

Theorem 2.1 (Cascade) Let us assume that the conditions (9) hold true.
Let (S1; S2) be a cascade of the metaregulation map GR. If S1 and S2 satisfy
the convexity condition (12), then for all initial conditions (x0; u0; v0) 2
Graph(R) there exists a solution (x(�); u(�); v(�)) of the hierarchical game

8<
:

i: x0(t) = f(x(t); u(t); v(t))
ii: u0(t) 2 SGR;1

(x(t); u(t); v(t))
iii: v0(t) 2 SGR;2

(x(t); u(t); v(t);u0(t))
(13)

de�ned on [0;1[ with x(0) = x0, u(0) = u0, v(0) = v0, and viable in
Graph(R).

We noted SGR;1
= (SGR

)1 of de�nition 2.1 in the theorem above.

Proof: We consider the set{valued map F de�ned by

F (x; u; v) := ff(x; u; v)g � (S(x; u; v) \ ('1(x; u; v)B1 � '2(x; u; v)B2))

for all (x; u; v) 2 Graph(R), where S is the set{valued map de�ned by (11),
and the following di�erential inclusion�

(x0(t); u0(t); v0(t)) 2 F (x(t); u(t); v(t));
where (x(t); u(t); v(t)) 2 Graph(R) for all t � 0:

(14)

8
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Since S has closed graph and convex values, and

(S(x; u; v)\ ('1(x; u; v)B1 �'2(x; u; v)B2)) � (S(x; u; v)\GR(x; u; v) 6= ;

for all (x; u; v) 2 Graph(R), F is upper semicontinuous with nonempty
convex compact images and with linear growth. To apply the Viability
Theorem 1.1, we have to verify that Graph(R) is a viability domain of F ,
i. e.,

TGraph(R)(x; u; v) \ F (x; u; v) 6= ; 8(x; u; v) 2 Graph(R):

But this is implied by the fact that the sets GR;1(x; u; v) \ S1(x; u; v) and
GR;2(x; u; v;u

0) \ S2(x; u; v;u
0) are always nonempty. Therefore, for all

initial state (x0; u0; v0) 2 Graph(R) there exists a solution (x(�); u(�); v(�))
to (14) viable in Graph(R). But this is also a solution of (13), because it
satis�es

(x0(t); u0(t); v0(t)) 2 TGraph(R)(x(t); u(t); v(t))
= Graph(DR(x(t); u(t); v(t))

almost everywhere, and hence

(u0(t); v0(t)) 2 DR(x(t); u(t); v(t))(f(x(t); u(t); v(t))
\'1(x(t); u(t); v(t))B1 � '2(x(t); u(t); v(t))B2

= GR(x(t); u(t); v(t))

almost everywhere. 2

Corollary 2.1 If the same assumptions as in the previous theorem hold
true, and if the intersections SGR;1

= fsGR;1
g and SGR;2

= fsGR;2
g are

single{valued, then for all initial conditions (x0; u0; v0) 2 Graph(R) there
exists a solution (x(�); u(�); v(�)) of the hierarchical closed loop game8<

:
i: x0(t) = f(x(t); u(t); v(t))
ii: u0(t) = sGR;1

(x(t); u(t); v(t))
iii: v0(t) = sGR;2

(x(t); u(t); v(t);u0(t))
(15)

de�ned on [0;1[ with x(0) = x0, u(0) = u0, v(0) = v0, and viable in
Graph(R).

3 Some Properties of the Metaregulation Map

Let G : X ; Z1 � Z2 be a set{valued map and X , Z1 and Z2 be �-
nite dimensional vector spaces. We shall investigate whether convexity
and closedness of the images and lower semicontinuity are inherited by G1

and G2. These results will be needed in the next section to establish the
existence of hierarchical heavy solutions.
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Proposition 3.1 If G has closed convex values, then G1 has convex and
G2 has closed convex values. If in addition G(x) is compact for all x 2

Dom(G), then G1 has also closed values.

Proof: The �rst statement is obvious. To verify the second, we �x
x 2 Dom(G1) and a sequence (un)n in G1(x) converging to u 2 Z1. For
all n 2 IN there exists vn 2 Z2 such that (un; vn) 2 G(x). Since G(x) is
compact, there exists a subsequence converging to some (~u; v) 2 G(x). But
un converges to u, which yields u = ~u 2 G1(x). 2

The lower semicontinuity of G implies directly the lower semicontinuity
of G1, but it is not su�cient for the lower semicontinuity of G2.

Proposition 3.2 If G is lower semicontinuous, then G1 is lower semicon-
tinuous.

Proof: We �x x 2 Dom(G1), u 2 G1(x) and a sequence (xn)n inDom(G1)
converging to x. Let v 2 Z2 such that (u; v) 2 G(x). Since G is lower semi-
continuous, there exists (un; vn) 2 G(xn) for all n 2 IN converging to (u; v).
In particular, G1(x) 3 un �! u. 2

Proposition 3.3 Let us assume that G is lower semicontinuous and that
for all x 2 Dom(G) and all � > 0 there exists � > 0 such that

�
jjx� ~xjj < �; u1; u2 2 G1(~x) with jju1 � u2jj < �

=) supv12G2(~x;u1)
infv22G2(~x;u2) jjv1 � v2jj < �:

(16)

Then G2 is lower semicontinuous.

Proof: Fix (x; u) 2 Dom(G2), v 2 G2(x; u) and a sequence (xn; un)n
in Dom(G2) converging to (x; u). We have to construct a sequence (vn)n
converging to v with vn 2 G2(xn; un) for all n 2 IN. Because G is lower
semicontinuous and (xn)n converges to x, there exists (~un; ~vn) 2 G(xn) for
all n 2 IN such that (~un; ~vn) �! (u; v) if n �! 1. By assumption (16),
for all k 2 IN there exists �k > 0 (without restriction �k # 0) such that

jjx � ~xjj < �k; u1; u2 2 G1(~x) with jju1 � u2jj < �k
=) supv12G2(~x;u1)

infv22G2(~x;u2) jjv1 � v2jj <
1
k
:

By induction we �nd an index sequence n1 < n2 < : : : < nk < : : : such
that

jjx� xnjj � �k; jju� unjj �
�k

2
; jju� ~unjj �

�k

2
8n � nk:

10
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Therefore for all k 2 IN and for all n � nk we have

sup
v12G2(xn;~un)

inf
v22G2(xn;un)

jjv1 � v2jj <
1

k
:

With k(n) := maxfk 2 IN; n � nkg (k(n) " 1), we have in particular that
for all n 2 IN

9vn 2 G2(xn; un) such that jj~vn � vnjj <
1

k(n)
:

Letting n �!1 yields vn �! v, which is the desired conclusion. 2

If G has compact values, condition (16) is satis�ed if the family of set{
valued maps G2(x; �) : G1(x); Z2 (x 2 X) is locally uniformly continuous
relative to the Hausdor� semimetric dl de�ned on the family of compact
subsets of Z2 by

K;L � Z compact =) dl(K;L) := sup
v2K

inf
w2L

jjv � wjj:

Proposition 3.4 If G is upper semicontinuous with compact values, then
condition (16) is necessary for the lower semicontinuity of G2.

Proof: We suppose (16) is not satis�ed. Then there exists x 2 Dom(G)
and � > 0 such that for all n 2 IN there exist xn 2 B(x; 1

n
); un; ~un 2

G1(xn); jjun � ~unjj <
1
n
such that

sup
v12G2(xn;~un)

inf
v22G2(xn;un)

jjv1 � v2jj � � >
�

2
: (17)

For all n 2 IN we can choose ~vn 2 G2(xn; ~un) such that

inf
v22G2(xn;un)

jj~vn � v2jj >
�

2
: (18)

Since xn �! x, and G is upper semicontinuous with compact values, al-
most all G(xn) are contained in the compact set B(G(x); 1). The sequence
(~un; ~vn)n contains hence a convergent subsequence. So we can assume that
(~un; ~vn)n converges already to (u; v) 2 Z1 � Z2. Since Graph(G) is closed
and

Graph(G) 3 (xn; ~un; ~vn) �! (x; u; v);

we obtain (u; v) 2 G(x). Condition (18) implies that jj~vn � vnjj >
�
2
for

all vn 2 G2(xn; un); in particular, there does not exist any sequence of
vn 2 G2(xn; un) converging to v 2 G2(x; u). Hence G2 cannot be lower
semicontinuous. 2
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4 Hierarchical Inertia Principle

The simplest way to construct explicit dynamical closed loops in cascade of
the dynamical game (7) associated with a given subregulation map R is to
select the elements ofGR;1 andGR;2 each with minimal norm. Such a state{
strategy solution (x(�); u(�); v(�)) will satisfy a hierarchical inertia principle:
when the viability is at stake, the inertia of the second strategy will be
relaxed �rst, and then, if this is no longer su�cient, both strategies will
evolve. To realize the hierarchical inertia principle, we need the following
de�nition.

De�nition 4.1 Let G : X ; Z1 � Z2 be a set{valued map, and X, Z1

and Z2 be �nite dimensional vector spaces. We denote by inerG1
(x) and

inerG2
(x; u) the elements of G1(x) (resp. G2(x; u)) with minimal norm:

inerG1
(x) = fu 2 G1(x); jjujj = min

~u2G1(x)
jj~ujjg 8x 2 Dom(G1)

inerG2
(x; u) = fv 2 G2(x; u); jjvjj = min

~v2G2(x;u)
jj~vjjg 8(x; u) 2 Dom(G2):

If the set{valued mapsG1 andG2 have convex compact values, the maps
inerG1

and inerG2
are single{valued on Dom(G1) and Dom(G2) respec-

tively. In this case, we denote by inerG1
and inerG2

also the corresponding
functions. They arise from the intersection of G1 and G2 respectively with
the set{valued maps iner1 and iner2 de�ned by

iner1(x) = fu 2 Z1; jjujj � inf ~u2G1(x) jj~ujjg 8x 2 Dom(G1)
iner2(x; u) = fv 2 Z2; jjvjj � inf ~v2G2(x;u) jj~vjjg 8(x; u) 2 Dom(G2):

Figure 2 shows again a two{dimensional example. For �xed x 2 X , the
point inerG1

(x) =: u is the point of the projection G1(x) of the set G(x) on
the u{line which has minimal absolute value. The point inerG2

(x; u) =: v
is the point of the projection G2(x; u) of the intersection of the vertical
line through u and the set G(x) on the v{line which has minimal absolute
value.

We have to verify that the pair (iner1; iner2) de�nes a cascade of G,
i. e., that their graphs are closed. This can be treated in a more general
framework by an optimization procedure.

Proposition 4.1 Let us assume that the set{valued map G has convex
compact values and that the induced maps G1 and G2 are lower semicon-
tinuous. Let V1 : Dom(G1)� Z1 �! IR and V2 : Dom(G2)� Z2 �! IR be
continuous. Then the pair (S1; S2) de�ned by

S1(x) := fu 2 Z1; V1(x; u) � inf ~u2G1(x) V1(x; ~u)g
S2(x; u) := fv 2 Z2; V2(x; u; v) � inf ~v2G2(x;u) V2(x; u; ~v)g

is a cascade of G.

12
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Figure 2: The points inerG1
(x) = u and inerG2

(x; u) = v.

-

6 '

&

$

%
G(x)

u = inerG1
(x)

v = inerG2
(x; u)

Proof: We observe �rst that the set S1(x) \ G1(x) is always nonempty,
because V1 is continuous and G1(x) compact for all x 2 Dom(G1). Since
G1 is lower semicontinuous and V1 continuous, the Maximum Theorem [1,
th. 1.4.16] implies that the function # de�ned by

#(x; u) = V1(x; u) + sup
~u2G1(x)

(�V1(x; ~u))

is lower semicontinuous as well. This yields the closedness of Graph(S1),
because

Graph(S1) = f(x; u) 2 X � Z1; #(x; u) � 0g:

The same reasoning applies to G2. 2

Taking V1(x; u) = jjujj and V2(x; u; v) = jjvjj, we obtain the following
corollary.

Corollary 4.1 If G has convex compact images and if G1 and G2 are
lower semicontinuous, then (iner1; iner2) de�nes a cascade of G.

For dynamical games, we can now combine the preceding results with
the Cascade Theorem 2.1 to obtain the following

Corollary 4.2 Let us assume that the conditions (9) hold true, that the
metaregulation map GR has convex compact values, and that the associated

13
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maps GR;1 and GR;2 are lower semicontinuous. Then, for all initial condi-
tion (x0; u0; v0) 2 Graph(R), there exists a solution (x(�); u(�); v(�)) of the
hierarchical closed loop game8<

:
i: x0(t) = f(x(t); u(t); v(t))
ii: u0(t) = inerGR;1

(x(t); u(t); v(t))
iii: v0(t) = inerGR;2

(x(t); u(t); v(t);u0(t))

starting at (x0; u0; v0), de�ned on [0;1[ and viable in Graph(R).

Proof: The convexity condition (2.1) in Theorem 2.1 is satis�ed because
iner1 and iner2 have convex values and because inerGR;1

is single{valued. 2

Corollary 4.3 Let V1 : Graph(GR;1) ! IR and V2 : Graph(GR;2) ! IR
be continuous and convex, and let the intersection map SGR;1

= S1 \GR;1

be single{valued. If the same assumptions as in the previous corollary hold
true, then for all initial condition (x0; u0; v0) 2 Graph(R) there exists a
solution (x(�); u(�); v(�)) of the dynamical game (7) such that u0(�) and v0(�)
minimize V1(x(�); u(�); v(�); � ) and V2(x(�); u(�); v(�);u

0(�); � ) respectively
at each instant.

Proof: V1 and V2 convex imply that S1 and S2 have convex values, and
because SGR;1

= S1 \ GR;1 is single{valued, the convexity condition (2.1)
is satis�ed. 2

The following simple example demonstrates the hierarchical inertia prin-
ciple.

Example Consider the following dynamical game. The dynamics of the
game are given by 8<

:
i: x0(t) = 1
ii: u0(t) 2 [�c; c]

iii: v0(t) 2 [�c; c];
(19)

where c is a positive constant. Both players' strategies have to satisfy the
state{dependent constraints

u(t) + v(t) � b1 � �1x(t) and u(t) + v(t) � b2 � �2x(t)

for all t � 0. Here, b1; b2; �1; �2 2 IR are such that

0 < �1 < c < �2 < 2c:

It is easy to show that the graph of the set{valued map

U � V : IR+
; IR� IR;

x 7! f(u; v) 2 IR2; u+ v � b1 � �1x and u+ v � b2 � �2xg

14
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Figure 3:
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is a viability domain for the di�erential inclusion (19). Hence, R := U �V

is a regulation map for the game (19). Calculating the metaregulation map
GR belonging to R and selecting corresponding to the hierarchical inertia
principle, we �nd the metaregulation of the heavy hierarchical strategies:

inerGR;1
(x; u; v) =

�
c� �2 if u+ v = b2 � �2x

0 otherwise

inerGR;2
(x; u; v; inerGR;1

(x; u; v)) =

8<
:

��1 if u+ v = b1 � �1x

�c if u+ v = b2 � �2x

0 otherwise :

A solution of the hierarchical dynamical game8<
:

i: x0(t) = 1; x(0) = x0
ii: u0(t) = inerGR;1

(x(t); u(t); v(t)); u(0) = u0
iii: v0(t) = inerGR;2

(x(t); u(t); v(t);u0(t)); v(0) = v0;

for x0 = 0 and appropriate u0; v0 2 IR, is given by x(t) = 1 and by the
functions u(�) and v(�) whose graphs are given in �gure 3.

5 Hierarchical Viability Niches

In this section, we study evolutions obeying the hierarchical inertia prin-
ciple. More precisely, we want to explain when both strategies are con-
stant forever, when only the second strategy has to move whereas the �rst

15
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strategy remains constant, and when both strategies has to vary. For this
purpose, we consider the dynamical game (8), and �x the largest subreg-
ulation map R = R' associated with given '1, '2 according to Theorem
1.2. We introduce the following notation:

CR;1(u) = f(x; v) 2 X � Z2; 0 2 GR;1(x; u; v)g
CR(u; v) = fx 2 X ; (0; 0) 2 GR(x; u; v)g

= fx 2 X ; (0; 0) 2 DR(x; u; v)(f(x; u; v))g

for all u 2 Z1 and v 2 Z2. The set{valued maps CR;1 and CR have closed
graph provided that GR has closed graph.

Besides the dynamical game (8), we consider the restricted game8<
:

i: x0(t) = f(x(t); u(t); v(t))
ii: u0(t) = 0
iii: v0(t) 2 '2(x(t); u(t); v(t))B2;

(20)

where u(t) 2 U(x(t)) and v(t) 2 V (x(t); u(t)) for all t � 0. Here, the �rst
strategy a priori has to be constant. According to Theorem 1.2, we �x a
subregulation map R01 associated with the functions (0; '2), and de�ne
the set{valued map N1 by

8u 2 Z1; N1(u) = f(x; v) 2 X � Z2; (u; v) 2 R01(x)g � CR;1(u):

Finally, we restrict also the evolution of the second strategy considering8<
:

i: x0(t) = f(x(t); u(t); v(t))
ii: u0(t) = 0
iii: v0(t) = 0;

(21)

where u(t) 2 U(x(t)) and v(t) 2 V (x(t); u(t)) for all t � 0, and where both
strategies are constant. We �x a subregulation map R0 for the system
above, and we get the set{valued map N as the inverse of R0:

8(u; v) 2 Z1 � Z2; N(u; v) = fx 2 X ; (u; v) 2 R0(x)g � CR(u; v):

We call N1(u) partial viability niche of u, and N(u; v) viability niche of
(u; v).

Proposition 5.1

i. The partial viability niche N1(u) of a strategy u is the viability kernel
of Graph(V ) for the di�erential inclusion�

i: x0(t) = f(x(t); u; v(t))
ii: v0(t) 2 '2(x(t); u; v(t))B2

(22)

parameterized by the constant strategy u.

16
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ii. The viability niche N(u; v) of (u; v) is the viability kernel of (U �

V )�1(u; v) for the equation x0(t) = f(x(t); u; v) parameterized by the
constant strategies u, v.

Proof: Fix u 2 Z1. We have to show that N1(u) = V iab(Graph(V )). For
each (x0; v0) 2 N1(u) there exists a viable solution (x(�); u(�); v(�)) to the
di�erential inclusion (20) starting at (x0; u; v0) and viable in Graph(R

01) �
Graph(U�V ). Hence (x(�); u(�)) is a solution to (22) satisfying (x(t); v(t)) 2
Graph(V ) for all t � 0. Conversely, for all (x0; v0) 2 V iab(Graph(V )) there
exists a solution to (22) starting at (x0; v0) and viable in Graph(V ). Hence
(x(�); u; v(�)) is a solution to (20) viable in Graph(U � V ) and therefore
(u; v0) 2 R01(x0).

The proof of the second part is similar. 2

We observe the following cascade{like behaviour of a heavy hierarchi-
cal solution. If for some t1 � 0 the state{solution x(�) enters the subset
CR(u; v) then both strategies u(�); v(�) remain equal to u and v respec-
tively as long as x(t) 2 CR(u; v). Furthermore, we obtain the following
alternative:

i. If x(t1) is contained in N(u; v), then (u(t); v(t)) remains equal to
(u; v) for all t � t1, and x(t) remains in the viability niche N(u; v)
for all t � t1.

ii. If x(t1) 62 N(u; v), then x(t) must eventually leave CR(u; v) in �nite
time t2 � t1 [2, prop. 4.1.4]. After that, u(t) remains equal to u as
long as (x(t); v(t)) 2 CR;1(u). A second alternative emerges:

(a) If (x(t2); v(t2)) is contained in N1(u), then u(t) remains equal
to u for all t � t2, and (x(t); v(t)) remains in the partial niche
N1(u) for all t � t2.

(b) If (x(t2); v(t2)) 62 N1(u), then (x(t); v(t)) must eventually leave
CR;1(u) in �nite time and u(t) must start moving as well.

6 Implicitly{De�ned Cascades

In this section, we give another example for a class of cascades. In fact, a
cascade of a set{valued map G : X ; Z1�Z2 can be de�ned selecting �rst a
strategy u 2 G1(x) satisfying the (implicit) inclusion 0 2 E1(x; u) and then
a strategy v 2 G2(x; u) solution to 0 2 E2(x; u; v), where E1 : X�Z1 ; Z1

and E2 : X � Z1 � Z2 ; Z2 are given set{valued maps.

Proposition 6.1 Assume that G has compact convex values, that E1 and
E2 satisfy Dom(E1) � Graph(G1) and Dom(E2) � Graph(G2), and that

17
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they are both upper semicontinuous with compact convex values. Assume
further that

E1(x; u) \ TG1(x)(u) 6= ; 8(x; u) 2 Graph(G1)
E2(x; u; v) \ TG2(x;u)(v) 6= ; 8(x; u; v) 2 Graph(G2):

(23)

Then the pair (S1; S2) de�ned by

S1(x) = fu 2 Z1; 0 2 E1(x; u)g 8x 2 Dom(G1)
S2(x; u) = fv 2 Z2; 0 2 E2(x; u; v)g 8(x; u) 2 Dom(G2)

(24)

is a cascade of G.

Proof: Graph(S1) = E�11 (0) is closed since E1 is upper semicontinuous
with compact values. Condition (23) means that for all x 2 Dom(G1),
G1(x) is a viability domain for the map E1(x; �). Since G1(x) is convex
and compact for all x 2 Dom(G1), the Equilibrium Theorem [1, th. 3. 2. 1]
yields that G1(x) contains an equilibrium of E1(x; �), i. e., there exists
u 2 G1(x) such that 0 2 E1(x; u). Hence S1(x) \ G1(x) 6= ; for all x 2
Dom(S1).

The same reasoning applies to S2 and G2. 2

We consider now the dynamical game (7) assuming it satisfying the
conditions (9). To apply the Cascade Theorem 2.1, we need S1 and S2
to have the convexity properties (12). We obtain by an easy proof the
following result:

Proposition 6.2 If E1 and E2 have convex values, then S1 has convex
values and S2(x; �) has convex graph for all x 2 Dom(G1).

The theorem below is an immediate consequence of the Cascade Theo-
rem 2.1 and Proposition 6.1.

Theorem 6.1 Let R be a regulation map for the dynamical game (7). As-
sume that the metaregulation map GR has convex compact values, that

E1 : X � Z1 � Z2 � Z1 ; Z1

E2 : X � Z1 � Z2 � Z1 � Z2 ; Z2

satisfy Dom(E1) � Graph(GR;1), Dom(E2) � Graph(GR;2), that they are
upper semicontinuous with compact convex values, and that the intersection
map SGR;1

= S1 \GR;1 is single{valued. Assume further that

E1(x; u; v;u
0) \ TGR;1(x;u;v)(u

0) 6= ; 8(x; u; v) 2 Dom(GR;1)

8u0 2 GR;1(x; u; v)
E2(x; u; v;u

0; v0) \ TGR;2(x;u;v;u0)(v
0) 6= ; 8(x; u; v;u0) 2 Dom(GR;2)

8v0 2 GR;2(x; u; v;u
0):

18
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Then for all (x0; u0; v0) 2 Graph(R) there exists a state{strategy solution
(x(�); u(�); v(�)) to the game (7) satisfying (u(t); v(t)) 2 Graph(R) for all
t � 0 and

0 2 E1(x(t); u(t); v(t);u
0(t))

0 2 E2(x(t); u(t); v(t);u
0(t); v0(t))

for all t � 0.
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