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State Feedback H.-Control for
Discrete-Time Infinite-Dimensional
Stochastic Bilinear Systems*
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Abstract

In this paper we consider the class of infinite-dimensional
discrete-time linear systems with multiplicative random distur-
bances (i.e. with states multiplied by a random sequence), also
known as stochastic bilinear systems. We obtain necessary and
sufficient conditions, in terms of an algebraic Riccati-like oper-
ator equation, for existence of a state-feedback controller that
stabilizes the system and ensures that the influence of the addi-
tive disturbance on the output is smaller than some prespecified
bound. In a deterministic framework this problem is equivalent
to the Hoo-control problem in a state-space formulation. Our re-
sults, when specialized to the case with no multiplicative random
disturbance, reduces to the ones known for the deterministic case.
Due to the intrinsic probabilistic nature of the stochastic bilinear
model (the multiplicative noise acting on the state of the system
makes it a stochastic process, regardless the additive disturbance)
a probabilistic framework for the aforementioned problem had to
be developed, leading to a stochastic Hoo-control problem.
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1 Introduction

A great deal of attention has been given over the past two decades to the
analysis of linear systems containing multiplicative random disturbances
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(i.e. with states multiplied by a random sequence), also called stochastic
bilinear systems, motivated, at least partly, by various areas of applica-
tion. For example, population models, nuclear fission and heat transfer,
immunology, etc ([15]). Several aspects regarding structural properties
of such models, in discrete and continuous time, finite and infinite di-
mensional, have been investigated in current literature where fundamental
questions as well as practical and theoretical motivations for considering
such a special class of systems can be found (e.g. see [2],[7],[14],[15],[17],
[22],[23],[25] - for further references see [10]).

During the past decade a great number of papers have been published
on H..-(sub)optimal control, since the pioneering work by Zames [26]. An
early account of the developments in H.,- control theory can be found
in [6]. Although the Hs-control problem was originally formulated in the
frequency domain, a great deal of attention has recently been given to time-
domain methods based on algebraic Riccati equations ([1],[4],[18],[19]). The
development of the dynamic-game theoretic approach to worst-case design,
as an alternative to frequency-domain H.,-techniques [19], provided a so-
lution to the problem of disturbance attenuation for a broader class of
systems. This approach has been used for H.,-control in infinite horizon
time-invariant linear systems of finite and infinite dimensions, finite hori-
zon time-varying linear systems, and nonlinear systems ([1],[8],[9],[18],[19])-
Thus the H,.-control problem in its equivalent state-space formulation can
be viewed as a minimax optimization problem where the controller is the
minimizing player and the disturbance the maximizing player.

The problem we shall consider in this paper is to derive necessary and
sufficient conditions for existence of a state feedback controller that sta-
bilizes a discrete-time infinite-dimensional stochastic bilinear system and
ensures that the influence of the additive disturbance on the output is
smaller than some prespecified bound. If the model had no multiplicative
noise, that is, if we considered the deterministic case, then this problem
would be the usual H.,-control problem for discrete-time linear systems
in a state-space approach, and necessary and sufficient conditions for the
aforementioned problem in terms of algebraic Riccati equations can be
found, for instance, in [18]. Therefore, the reason for calling the problem
considered here as a stochastic H.,-control problem is twofold:

I) The multiplicative noise acting on the state of the system makes our
problem intrinsically a probabilistic one, since the state of the system is a
stochastic process, regardless the additive disturbance.

IT) When restricted to the deterministic case, that is, if the model has
no multiplicative random disturbance, our problem reduces to the usual
H,-control problem in a state-space approach.

Of course, the stochastic problem posed above can only be defined in a
state-space formulation, since it would not be possible to set a link between
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the state-space domain and frequency domain in this case.

We apply a game theoretic approach to analyze the underlying problem
and obtain a solution in terms of an algebraic Riccati-like operator equa-
tion, which generalizes known results for the linear case (cf. [18]). Indeed,
the algebraic Riccati-like operator presented in Section 5 contains some ex-
tra terms, which are function of the correlation (S) and expected value (s)
of the multiplicative noise, not found in the deterministic case. When we
specialize the result to the case with no multiplicative random disturbance
(s =0 and S =0), these extra terms go to zero and the resulting algebraic
Riccati-like operator reduces to the usual one for H,- control.

Due to the intrinsic probabilistic nature of the model state, additive
stochastic inputs have to be considered. Indeed, the H.,-control problem
was originally defined for the linear case on a deterministic framework, since
a worst (disturbance)-case controller was being designed and therefore there
was nothing to gain in considering stochastic disturbances. In fact it has
been shown for the linear case (cf. [1],[4],[18],[19]) that the “maximizing”
disturbance of the minimax problem is in the form of a state-feedback, a re-
sult that will also hold for the bilinear stochastic case (see eq. (8), Remark
2 and proof of Lemma 2 below). However, since the state of the bilinear
model under consideration is a stochastic process, additive stochastic inputs
are naturally included among the possible “maximizing” disturbance. This
reasoning also explains the main difference between the results presented
in this paper and those in [3], where an optimization criterion similar to
the one in problem OP (Section 5 below) was considered but the additive
input sequences were assumed to be zero-mean and independent of the past
states, thus excluding state-feedback as possible “maximizing” additive in-
put disturbance. These assumptions considerably simplified the problem
and an exact solution to problem OP (instead of SOP) via the algebraic
Riccati-like operator equation was obtained in [3].

The present work is organized in the following way. Section 2 presents
the notation, borrowed from the discrete-time stochastic bilinear system
literature. It is not necessarily standard, as far as the H., literature is
concerned, but necessary for pursuing the proposed approach. The model
under consideration is described in Section 3, and some stability results
that will be required in the sequel are presented in Section 4. The main
theorem is stated in Section 5, where a necessary and sufficient condition
for the solution to a stochastic Hs,-control problem is formulated in terms
of a solution to an algebraic Riccati-like operator equation, and mirrors
its linear counterpart (cf. [18]). Indeed the Huo- control of discrete-time
linear systems leads to some extra invertibility conditions not found in the
continuous-time case and this is also the case for the discrete-time bilinear
stochastic models through condition (i) of the Theorem (Section 5 below).
Condition (ii) is the algebraic Riccati-like operator equation and condi-
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tion (iii) assures stability of the closed loop system as well as the strict
inequality in problem SOP (see Proposition 3 and Remark 2 below). The
proof of sufficiency is established in Section 6 while necessity is presented
in Section 7. Our analysis relies on the properties of the operators F and
F# (see Section 3) established in [3] and [13]. The structure of proofs is
essentially based on the approach of [18],[19] but many techniques used in
deterministic linear systems do not generalize to our case. In particular,
the solutions to minimax problems in the proof of necessity require a re-
sult due to Yakubovich (Proposition 7 below) since, unlike the linear case,
an explicit characterization of solutions to these problems are not easily
obtained. Also a truncation of the minimax problem is required in the
stochastic case. The construction of the probability spaces with the inde-
pendence properties assumed in the paper is presented in the Appendix.

2 Notation

Let X and X' be Banach spaces and denote by B[X, X'] the Banach space
of all bounded linear transformations of X into X'. For simplicity we set
B[X] = B[X, X] and denote by G[X] the group of all invertible opera-
tors from B[X]. The norms in X, X' and the induced uniform norm in
B[X, X'] will all be denoted by ||.||, and r(.) will stand for the spectral
radius in the Banach algebra B[X]. For any nontrivial complex Hilbert
space Hy we shall denote by (.;.) the inner product in Hy ((.;.)pg, with
norm ||.||m, if Hy is a probabilistic space) and an upper star * will stand
for adjoint as usual. Let BT[Hy| = {T € B[Hy]; T > 0} be the weakly
closed convex cone of all self-adjoint nonnegative operators in B[Hj] and
define G*[Hy] = BT [Hp] N G[Hy]. Let Hy be separable and By, [Hp] the
class of all compact operators from B[Hy|. If T' € Boo[Hp], let {\; k > 0}
be the nonincreasing nonnegative null sequence made up of all eigenvalues
of (T*T)'/? € By [Hp], each of them counted according to its multiplic-
ity and set || T}y = Y poo Ak. Let Bi[Hg| = {T € Bo[Hp); ||T]1 < oo}
denote the class of all nuclear operators from B[Hy] and set B [Hy] =
Bl [H()] N B+[H0] ||||1 is a norm in B1 [H()] and (Bl [H()], ||||1) is a Banach
space. The trace of T € By[Hy) is defined as tr(T) = >, o (Tex; ex), which
does not depend on the choice of the orthonormal basis {ex; k£ > 0} for Hp.
|tr(T)| < tx(T*T)"/? = ||T||1, so that tr(.) : B;[Hp] — C'is a bounded linear
functional. For f,g € Hy, let fog € By[Hy] be defined as (fog)h = (h; g)f
for all h € Hy, so that (fo f) € By [Hy]. Set lo(Hp) = e Ho, the direct
sum of countably infinite copies of Hy, which is a Hilbert space made up
of all sequences {z, € Hy, k> 0; Y7 llze||* < oo}

Let (£2,X,u) be a probability space, where X' is a o-field of subsets
of a nonempty set 2 and p a probability measure on X. Let Hy =
Lo (2, X, u; Hy) denote the Hilbert space of all second order Hp-valued
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random variables with inner product given by (z;y)n, = £((z;y)) for all
z,y € Ho where £ stands for the expectation of the underlying scalar
valued random variables. Accordingly, the norm of z € Hj is given by
llzll3, = (E(|z]|?))"/2. For any x,y € Ho, the expectation and corre-
lation operators will be denoted by Ex € Hy and E(z oy) € Bi[Hy)
respectively (cf. [12]). It is easy to verify that E(x o x) € B; [Hp] and
(2;9)1, = tr(E(z o y)). Finally for any family {z, € Ho; ¢+ € ® # 0} set
Tie,; icdy = {y € Ho; y is independent of {x, € Hy; + € }}. In particular
for any « € Hy, Z, = {y € Ho; y is independent of z}.

3 Description of the Model

Throughout this paper H, H', H"” and H"' will stand for separable com-
plex Hilbert spaces. Set H = Lo(£2, X, pu; H), H' = Lo(2, X, u; H"),
H'" = Ly(2, X, u; H') and H"' = Lyo(2, X, u; H"), where (2,X, 1) is
the underlying probability space. We assume that {w; € H; ¢ > 0} is
a stationary independent random sequence with expected value and cor-
relation operator denoted by s € H and S € Bj [H] respectively, and
set C = (S —sos) € Bff[H). We assume that X C Ily(H), &, C
B oH,V CL(H), Vo C P oH U CLH"), U, CD;_H', Z C
I,(H"), Z, C @j_,H" are Hilbert spaces with the following property.
If x = (zg,21,...) € X, x5, = (T0, 21, -, Tpn) € Xpn, v = (vo,v1,...) €V,
v = (v, V1, ., Up) € Vp, u = (ug,ur,...) € U, uy, = (g, U1, ..., Up) €
Un, 2 = (20,%1,...) € Z, and 2z, = (20,21,...,2n) € Zy; then w; €
T, 28,0050 Vi U0 eyt 20y 2w ywi—p } TOT ALl 5 > 0. Notice that if v =
(vo,v1,...) € V then v; may not be independent of past states zy, k < i,
and this is a crucial difference between the approach of this paper and the
one in [3]. In the Appendix we show how one could construct a probability
space (2, X, u) and X, X, V, Vy, U, Uy, Z, Z,,, which lead to the above
properties.

Consider a discrete time bilinear system in a stochastic environment,
whose model is given by the following infinite-dimensional difference equa-
tion:

o0
Tiy1 = (A() + ZAk(wi; ek>> z; + Bu; + D, To € Xy (1)
k=1

where v = (vg,v1,...) € V, u = (ug,u1,...) € U, Ay € B[H], {4} €
B[H],k > 1} is a bounded sequence, D € B[H',H|, B € B[H", H] and
{er;k > 1} is an orthornormal basis for H made up of the eigenvectors
of S € B [H]. Now suppose u; = —Kw; for some K € B[H, H"]. Since
Xp = (Z0, .., Tn) € X and v, = (Vg ..., V) € Vy, it follows that

wp € Z{wmvo} and w; € Z{wo7v07---7vi7w07---7wi_1}'
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Set R; = E(v; ov;) € Bff[H'] and Q; = E(x; o z;) € B [H] for every
i > 0. By a straightforward modification of Lemma 2 in [12] and the fact
that w; € Zy,, ;) we can show that the state correlation sequence evolve
as follows.

Qi+1 = fBK(Qi) + E(FBK:L‘Z' o D’Ui) + E(FBKl‘i o D’Ui)* + DR;D*. (2)

Here Fpi and Fpg are operators in B[B[H]| and B[H], respectively, de-
fined as
Fpk(P) = Fpx PFj + T(P), VP € B[H],

FBK—A[) +ZS€LALEBH]
k=1

with 7 € B[B[H]] given by

T(P)= Y (Cer;e)ArPA;, VP € B[H].
k,l=1

=

Associated with 7 and Fpx set 7# € B[B[H]| and i, € B[B[H]] as
follows: for all P € B[H],

Z C’ek,el Al PAL

k,l=1

Fi(P) = F} PFpg + T#(P).

Set F# = Ff, F = Fo, F = Fy,and , g = {K € B[H,H"); r(F}.) < 1}.

4 Some Stability Results

The following propositions will be required for proving the main results of
the next sections.

Proposition 1 Consider model (1) with B = 0 and D = 0. Ifx =
(zo,21,...) € X for every mg € Xy then r(F#) < 1.

Proof: This is a straightforward corollary to Lemma 2 in [13]. O
Proposition 2 Consider model (1) with w; = —Kx; for some K €

B[H,H"]. Then r(f;}'&K) < 1if and only if x = (zg,21,...) € X for every
v = (vo,v1,...) €V and zg € Ap.
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Proof: Let us prove sufficiency. All we have to show is that x € Iy(H)
whenever v € V C I(H') since x,, = (2o, ..., xn) € Xy, for all n > 0, and
therefore the independence condition required for x to belong to X will be
satisfied (see Section 3). According to Lemma 1 in [12] it follows that, for
i>1

zi = ((ABK)wi_r--(ABK )ws) To

1—1
+ ) ((ABK)wi_y - (ABK)w;) Dvj_1 + D1,
j=1

where N
(Apk)w; = (Ao — BK) + ZAL-(wi;ek)-
k=1

Thus, by the triangle inequality in H,

lzillre < I ((ABK )ws s -+(ABK )wo) Tolln

i—1 3
3 ((As) s (Apr)y) Doj e + 1Dl
j=1

. i—j
Claim: || (Agx) s, (Asx)uy) Doj 1l < I1FE I IRl IDIP,

for every 1 < j < i. Indeed, take 1 < j arbitrary and set zy, = Dv;_1,

w(i_j) = w; and x’(i_].)_l_l = (ABK)wEi—j)mEi_j) for every ¢ > j, so that

sy = (k)

ot ...(ABK)w(’)566 = (ABK)wi_l ---(-ABK)w]- va—l

for every i > j. Since wy € I,/ and wéifj) € I{zg,w(’),...,wz. .- for ev-
ii)-

oxh.

ery i > j, it follows from Lemma 2 in [12] that E(m’(i_j) (z—j)+1) =

+1
Fpr(B(z(;_; ox(;_;)) for every i > j, so that

B(z(;_j ol ;) =Fpx" I (E(xf oxp)) = Fp" /(DR; 1 D"),

and hence (cf. [13])
i
2y 15 = 1E(2{;_j) o i)l < IFFx I IR—1 1| DII?
for every ¢ > j, which proves the claimed result. Similarly we get
I ((ABK iy -+ (ABK )wo) @oll5e < I Ff | 1Qolls
for every ¢ > 0. Recall that
1Dvi- 11 = | E(Dv;1  Doi—)lls < [IDIPl|Ris
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for every i > 1, and set: a = ((p, (1, ...) with ¢; = ||}'§EKi||1/2 for each i > 0,

and b = (B, 1, ...) with B = [|Qoll;* and B8; = ||R;_i[l;/*|D|| for each
j > 1. Therefore, from (3), we get

i
lzillse <= CimjBi

j=0

for every i > 0. Since a € I (for ||alli = Y5y ||]-"§tKi||1/2 < 00, because
r(}'ﬁK) <1,cf. [11]) and b € I (for v € V C I5(H') so that E;’io IR, =
Y20 lojll3e = IVl < oo, and hence ||l = (3272, 67)'/* < o), it
follows that the convolution ¢ = a*xb = {y; = >.'_, G—;jBj; ¢ > 0} lies
itself in Iy with ||c||2 < ||al|1||b]]2 (see e.g. [5, p. 529]7). Hence

0 1/2 o 1/2
Il = (Z ”mi“%{> < (Zﬁ) = llellz < o0
i=0 i=0

for every v € V and xy € Xy. From Proposition 1 and making v = 0 we
obtain the proof of necessity. O

5 Main Theorem

For (z9,v,q) € Xy ®V ®U and K € B[H, H"] define the linear operator
Xpg from Xy @V DU to X as
XBK(Q?(),V,q) =X = (.’L'(),.’L'l, )7

where x is generated by (1) with u; = —Kxz; + q;, 9 = (g0, q1,-.-) €EU. An

immediate consequence of the proof of Proposition 2 is that, if r(}'ﬁK) <1,
then x € X and Xpk is bounded and therefore Xpx € B[Xy @V o U, X].
Let H" = H&® H" and consider the following H''-valued random sequence

{zi; i > 0}:
B M1/2.’Ili _ M1/2.’Ili
S Kzt

where M € BT[H]. Note that z = (zg, 21,...) € Z and hence the bounded
linear operator Zgx € B[Xy ®V @ U, Z] such that

ZBK(:UO;v:q) =z= (Z[):Zl) )

is well-defined. As usual in H,-control problems, we assume xy = 0 and
q =0 in order to have linear operators on v for the state and output
sequences. That is, we define X%, € B[V, X] and Z%, € B[V, Z] as

X%K(V) = Xpk(0,v,0) and Z%K(v) = Zpk(0,v,0).

8
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Given the above bilinear system, it is desired to find a state-feedback
closed-loop controller that minimizes the impact of the disturbances v on
the output z (cf [1],[4],[18],[19]). That is:

Problem OP Find K €, g that minimizes

125 (V)2
123k |l = sup ——LE—==
vev vy
For the linear deterministic case this is the so-called state-feedback H .-
optimal control problem and, in general, is hard to be solved. Therefore one

poses a suboptimal problem which, in terms of the above bilinear system,
would be:

Problem SOP Given § >0 find K € , p such that | Z% || < 6. That is,
find K € , g such that for every v eV, v #0,

128k IE = 3 (I 2l + il ) < 623 loill3er

i=0 i=0
(Note that there is no loss of generality in assuming a cost in the form
luil|? = (u;; u;) instead of (Nu;;u;) for N € GT[H]).

In the next sections we shall prove the following theorem, which solves
the problem SOP, and generalizes to stochastic bilinear systems the results
previously established for the linear deterministic case (cf. [18]).

Theorem Suppose the pair (M,F) is detectable (cf. [3]) and consider
some § > 0 fized. Then there exists K € , g such that ||Z% | < & if and
only if there exists P € BT[H] satisfying the following conditions:

(i) I — D*PD € G*[H],
(i) P =M+ (Fix )1 p—x.)(P) + K; K, — KIK,

where
K,=(I+B*PB) 'B*PF} p(_g,, € B[H,H"],
1 1
K,=(I- = D*PD)—lg D*PFgk, € B[H,H'].
That is,

-1 -1
K, = <I+ B*PB + %B*PD (I - %D*PD) D*PB>
* 1 1 * —1 *
B*(I+ 5PD(I - D"PD) ‘D" | PF

9
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1 -1
_ _D PD + 5 D"PB(I+B"PB)” B*PD)

(I - PB(I+ B*PB)~ 1B*)PF>

Q'>|’—‘

o= (1
(5
(if) 7(Ffx )1 b ko) < L

Moreover, in such a case, Ky € , g and || Z% || <.

Remark 1 Note that (ngu)% D(—K,) is obtained from ]—'?Ku in the very

same way as ngu was obtained from F#, that is,

1 1
(Fhx)1 p—x,) = (F, + sDK.)"P(Fyk, + sDK,) + T#(P).
6 Sufficient Condition

In this section we prove the sufficiency part of the theorem.

Lemma 1 For § > 0 fized, suppose that there exists P € BT [H| satisfying
conditions (i), (ii) and (iii) of Theorem. Then K, € , p and ||Z% || < 6.

Note that (M, F) detectability is not needed in this part. The following
result, which is an immediate adaptation of Proposition 1 in [3], will be
used in the sequel:

Proposition 3 Let Hy be an arbitrary Hilbert space. Take F, Q) € B[H],
N = N* € B[Hy| and B € B[Hy, H] arbitrary. Suppose that, for some P €
B*[H], (N + B*PB) ! erists in B[H]. Set Kp = (N + B*PB) '!B*PF.
The following assertions are equivalent:

(a) Q+ KpNKp =P — Fj (P).
(b) For an arbitrary K € B[H, Hy),

Q+ K*NK =P — F},.(P)+ (K — Kp)*(B*PB + N)(K — Kp).
(¢c) Q=P —F#(P)+ Kp(B*PB+ N)Kp.

The proof of Lemma, 1 will follow from the next propositions.

Proposition 4 Under the hypothesis of Lemma 1, r((]—'ﬁKu)) <1

Proof: From condition (ii) of the Theorem,
P~ (Fix,)t p(-k,)(P) = M + KK, — K;K,

10
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and from Proposition 3, (a) = (c), we get

D*PD
M+KK,=P—Fph, (P)+K; <— —1> K,.

That is,
D*PD

M+ KK, +K! (1_ =

Define K € B[H,H & H' ® H"] as follows:
M1/2 ]

~

K =

(1 20) ",

Ky

Therefore (4) can be re-written as
K*K =P — Fl, (P).

Defining B € B[H & H' & H", H] as

. 1 D*PD\ '/?
B = —=D|(I— ——
o -1 ( : ) o]
we get
BK = —-DK,,
so that

(}-E&Ku)gg = (}-EEKH)%D(—KU)

and from condition (iii) of Theorem,
f(Fhk)pr) =r(Fhk,)

From (5), (6) and Proposition 2 of [3] we get T((ngu)) <1

D(—KU)) <1

1
5

) K, =P —Fp (P).

(6)

O

In the remaining section we consider, for any v € V, x = (0,z1,...) =
X%, (v)and z = (0,21,...) = Zgg, (v). We have the following results.

Proposition 5 Consider the hypothesis of Lemma 1. For every i > 0,

1P i I, — 1P 215, = —Ilzill o + 8% [lvill3,

— 52

11

D*PD\'? (K, ?
(-282)" (o)

”
(7)



O.L.V. COSTA AND C.S. KUBRUSLY

Proof: Recalling that ||PY/2z;41||3, = tr(PQ;11) we get from (2)
1P 22117, = tr (PQit1) = tr (P (Fpi, (Q:)

+ E(FBKua:i o Dvi) + E(FBKumi o Dvi)* + DRlD*)) .

From [13] we have

tr(P}'BKu(Qi)) — tr (fﬁ,(u (P)Qi) .

Since
1P 2|3, = tr (PQi),
D*PD
5<<I — —) Kvl’i;’l)i> = (D*PFBKul‘i; vi)H’
6 HI
=tr (PE(FBKuxi o D’UZ)) R
and

lville = tr (Ra),
(4) yields to

1P i I3, = 1P a3, = tf((fﬁmm -P)@

+ P (E(FBKul'z o D’UZ) + E(FBKul'i o D’Ui)* + DRZD*)>

D*PD

+ PE FBK wloD'ul +PE(FBK :CZOD’UZ)

D*PD
I- ) > + 62 ||vi |3y

(||M1/21'z||7-l + | Ky mZHH”

_ D*PD\'” ’

Hf

<<I b PD) K ml,vl> +6<vl,( - D PD) Kv:vi>
H' 6 H'

2
D* PD
(1 ) Y TS

H!

2
D*PD\'? [ K,
= _“Zi”%-[”’ + 62“'01”%_[1 - 62 (I - 6—2> (T.'Ifl - 'Ui)

H!

12
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Recalling that zo = 0 and ||z;||» — 0 as i — oo (indeed, r((]—’ﬁK”)) <1
and from Proposition 2, ||x[|3 = Y0 [|2ill3, < o0, so that ||z;||3 — 0 as
i — 00), we get from (7) that

(1P 22 3, = 1P 213, ) =

N
i=0

= [P en 1l S 1P v 3 — 0 as N — oo.

D*PD\'"? (K,
I — 62 Twl — V;

Thus

2

o0
0= | ~llaliden + &lloilly - &2

i=0 H!
that is,
lzllZ = 6> (VI = lIrll5) (8)
where r = (79,71, ...) € V is defined as
p*PD\'"’ (K _
r; = (I - T) (Tva:l - vi> , i>0. (9)

Remark 2 From equation (8) we get || Z% || < 6, since

2 2
VI VI
and the “maximizing” disturbance sequence would be in the feedback form
v; = %mi (r; = 0). Since zg = 0, this feedback disturbance would be 0
and therefore it can only be optimal asymptotically. To obtain the strict

inequality of Lemma 1, we shall need condition (iii) of Theorem to assure
the invertibility of the operator V' defined next.

Define the operator Ve B[V] as V= %KvX%Ku — I. That is, for every
veV,V(v)=v = (i,1,..) = K, X} (v) —v. We have the following
result.

Proposition 6 Consider the hypothesis of Lemma 1. Then V € GV).

Proof: Define the operators Y € B[V, X] and Vi,, € B[V)] as:
(a) for v = (v, v1,...) € V, Y(v) = (jo, 1, -..) is given by

. 1 S -
Jit1 = (Ao — BEu + 5DKy + > Ap(w; €k>> gi — Dv;,  (10)
k=1

13
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for i > 0 and g, = 0. Note that, from condition (iii) of the Theorem,
r((]—fKu)% p(—k,)) < 1, and therefore from Proposition 2, Y € B[V, X].

(b) Viw = LK, Y — I. That is, for v € V, Vine(v) = § = (50,51,...) =
%KU?(V) —v. Since Y € B[V, X], it follows that Vi, € B[V]. Notice that
from (10),

Y(v) = Xpg,(5) (11)

and B
Y(V) = Xpg, (v). (12)

Let us show that VTN/},W = f/invf/ = I. Indeed from (11),

Vi (v) = 7(6) = £ Ko X, (8) - 3
= %K,,X%Ku(é) —~ <%Kv}~/(v) —~ v>

v+ %K (X%Ku ) — ff(v)) —v

and from (12),

i V(V) = Vi (9) = %KUY(\?) 5
— %KUEN/(\?) — (%KUX%K (v) — v)

which shows that V1 = Vi, € B[V]. O
We can now proceed to the proof of Lemma 1.

Proof of Lemma 1: Consider a; > 0 such that ||V "' < ay, and as > 0
such that I — 2282 > o31. Since (1/cq)||lv]ly < IVH7H vy < [V(V)Ilv
for any v € V, we conclude from (9) that

D*PD 1 1
<I - 5—2> (gKvwi - Ui) ; <5Kvmi - Ui) >H,

2
1
—Kvl‘i — V;

0

o0

HEEDY

i=0

S

&

Il
=)

2
05

i H
2
~ ~ @
IVl = S IVIE > S IVIE, (13)
1

I
S
™

-
Il
o

14
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and replacing (13) in (8) we obtain, for every v # 0 in V,

VIS aj

or, in other words, ||Z%x || < 6. O

7 Necessary Condition

In this section we shall prove the necessity part of the Theorem, which
reads as follows.

Lemma 2 For 6 > 0 fized, suppose that (M,F) is detectable (cf [3]) and
there exists K € , g such that ||Z% || < 6. Then there exists P € B*[H|
satisfying conditions (i), (i) and (iii) of Theorem.

From the Theorem in [3], there exists a unique L € BT[H] such that

M =L-F#(L)+F'LB(I+B*LB) 'B*LF =L — Fj,, (L) — K} Ky,
(14)

where
Kr=(I+B*LB) 'B*LF €, p. (15)

For any q = (qo,q1,--) € U, xg € Xp and v = (vg,v1,...) € V, we set
throughout this section

x = (zo, 21, ...) = XK, (%0,V,q) (16.a)

and
z = (20,21,.-) = Zpk, (o, v,q)- (16.D)

Set J =Xo®V ®dU (as we shall see in the proof of Proposition 9 below,
J will play the role of Hy in Proposition 7) and, for (zo,v,q) € J,

o0
I(wo,v,a) = Y (IMY 223 3 + sl — 8loili)
i=0

= 1ZBKk. (zo,v,Q)l|Z — &[|V]]5-

In order to prove Lemma 2 we follow a dynamic game approach similar
to the one used for the linear deterministic case, and solve the following
minimax problem:

J(xo) = sup inf J(xzg,v,q) for every xzp € Xp.
vey aeU

15
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This minimax problem will be solved by using twice the following result,
due to Yakubovich [24], which was presented in [9, p.11].

Proposition 7 Consider a Hilbert space Hy and a quadratic form J({) =
(S¢;¢), ¢ € Hy with S € B[Hy], S = S*. Let My be a closed subspace of
Hy and M a translation of My by an element m € Hy (i.e., M = Mo+m).
Suppose that the following condition is satisfied:

o (5GQ)
inf
ceMo (G0)
Then there exists a unique element { € M such that J({) = infeeprs J(C),

where Z is given by ( = p+ m with p € My and p = Gm for some
G € B[Hy].

> 0.

We shall now solve the first of the minimax problem, that is,

J(xo,v) = 0111615 J(xg,v,q) forevery =z € Xp,vE V.

The solution to this problem will follow as an application of Proposition 7.
But before using Proposition 7 we need to establish the next result which
ensures that the hypothesis of Proposition 7 are satisfied.

Proposition 8 Consider the hypothesis of Lemma 2. Let L, K1, be as in
(14) and (15) respectively. For every xo € Xy and q € U,

o0
1Z5k, (20,0, @)l = 3 (1M 2l + uill,)
=0

o0
* 1/2
= 1LY 22013, + Y (I + B*LB)'? g3, (17)
=0

Proof: Set V; = E(q; 0q;). By using similar arguments as those in Propo-
sition 5 and from (15) we get

tr (LFai, (Q0) = tr (Fhx, (L)Q:)
ILY 2213, = tr (LQ)
lgil3, = tr (Vi)
(Krwi;qi)nr = (I + B"LB)Kpwi; qiywr — (B"LBK 335 ¢i)nr
= (B*LFuxi;q:)3 — (B*LBK 2 ¢;)1r
=(B*LFpKk,x;;qi)n = tr (LE(Fpk,x; o Bg;)).

16
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Hence, from (2), (14) and recalling that ||L*/2z;1||3, = tr (LQit1), we
conclude

1LY 2wl = 1212 ill3,

=tr (L (-7:BKL (Q,) + E(FBKLmi o Bql) + E(FBKLmi o qu)* + B%B*))

—tr(LQi) = tr ((Fhx, (L) = L) Q) + (Kpasiaidr

+ (s Kpwi)rer + tr (I + B*LB)V;) — tr(Vi)

= —tr (M + K1 K1) Qi) + (Kpzi; gi)re + (qi; Kpzi)ne

I+ B LB Pl = il = = (1M il + | K il

+ (K pwis gi)rer + (@3 Kpwi)we + ||(1+ B*LB) qil 3,0

~lailier = = (1M 2ill, + as — Kol )

FI0 + B LB Pl = = (10 il + Nl

+||(I + B*LB)"?q;||2,...
Summing up over i from 0 to oo and recalling that ||z;||x — 0 as i — oo
(since that r(]—fKL) < 1, cf. Proposition 2) we get (17). O

We can now apply Proposition 7 and solve the first of the minimax
problem.

Proposition 9 Consider the hypothesis of Lemma 2. For each x¢ € X
and v € V there exists a unique element @ € U such that J(zg,v) =
J(xo,v,q) = infqers J(x0,V,q). Moreover, there exists G € B[V, U] such
that q = Gv.

Proof: Initially note that

J(.’L'(), v, q) = (ZBKL (ZE(), v, q)v ZBKL (ZE(), v, q)>Z - ((07 62V7 0)7 (:I’.Oa v, q))]
= (ZI?KLZBKL (moavaq); (:I’.O:V:q))j - ((0762V7 0)7 (.’L'(),V, q))]
= (S(.’I}(), v, q)7 (mﬂa v, q))]:

where S(z0,v,q) = Zgg, Zpi,(%0,v,q) — (0,6°v,0). Note that J is a

Hilbert space, S € B[J] and S = S*. Set My = {(z0,v,q) € J; xp =

0,v =0} and, for z; € Xp, v € V, M = Mo +m = {(z0,v,q) € T; xo =

xy, v =v'} where m = (x5, v',0). My is a closed subspace of J and M a

translation of My by an element m. From (17) we have

(SC7C>] — inf “ZBKL(OvO:q)H% —

1n =
(Mo ((5¢)g  acu llall?,
I+ B*LB)"? q?
_ g MU 2) qllu21
acU lall?

17
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and, according to Proposition 7, there exists a unique element Z e M
such that J(¢) = infeeas J(C), where ( = p+m, p = (0,0,q) € M, and
p = G'm for some G' € B[J]. Thus G'm = G'(z(,v',0) = (0,0,q). Also
note from (17) that we must have G'(x;,0,0) = (0,0,0) and hence, for
some G € B[V,U], @ = Gv where J(z¢,v,q) = infqeyr J(z0,v,q). O

We shall now solve the second of the minimax problem. For that we
introduce the following operators X and X in B[X, & V, X] and Z and
Z in B[Xy, @V, Z]: for 9 € Xy and v = (vg,v1,...) € V, )?(xo,v) =
Xk, (z0,v,GV), Z(z0,v) = ZpK, (x0,v,GV),

X(CE(),V) = (fo,fl, ) = XBK(CE(),V,O),

and

Z(l‘g,V) :(20,21,...):ZBK(1’0,V,0), (18)

where K is as in Lemma 2. Set D = Xy @& V which, in the proof of Propo-
sition 11, will play the role of Hy in Proposition 7. The following result is
needed in order to use Proposition 7 to solve the second minimax problem.

Proposition 10 Consider the hypothesis of Lemma 2. For (z¢,v) € D,
1Z(z0,V)IIZ = 8 [IVIS < [ Z(0, V)% = 6% [IVIS-
Proof: For any q € U,
1Z(z0,¥)Z = 8®IVIF < 1ZBK, (20, v, @)lIZ — 8 [IVI[3:

and, choosing q = (qo, q1, ...) as ¢; = Kpz;— Kz;, i > 0, where z; is defined
as in (16), we get x; = T;, ¢ > 0, where T; is defined as in (18), and thus

ZgK; (ro,v,q) = Z(xg,v). Note that indeed q € U. O

From the hypothesis of Lemma 2, K € , g is such that for every v # 0
in V, || 2% (v)l|z < 8||v]ly, and hence we can find o > 0 such that

Z[) 2
1Zex (V)% < 62— a?; (19)
VI3
%

and from Proposition 10 it follows that, for every v € V,
v < EvIE = 1120,v)I1Z < 8 IvIE — 12(0,v)]1Z

Thus

2 2 7 2
. (6 VI3 ||Z<o,v>||z> . 20)

vey IvI13

18
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Next we shall solve the second minimax problem. For (z¢,v) € D,

T(x0,v) = 1Z(xo, )|% = & [IvI3

= (Z"Z(x0,v); (0, v))D — ((0,6°V); (o, V))D

= (S(Z’O,V); (mO)V»D)

where S(zq,v) = Z*Z(xo,v) — 62(0,v). D is a Hilbert space, S € B[D]
and S = S*. The following result follows.

Proposition 11 Consider the hypothesis of Lemma 2. For each xy € Xy

~ ~

there exists a unique element Vv € V such that —J(zo) = (—J(z0,V)) =

infyep(—J(zo,v)). Moreover, for some T € B[Xy, V], v =Txy.

Proof: Set

Mo = {(z0,v) € D; o =0},
M = Mo+ i = {(z0,v) €D; x0 = o},

where m = (%,0) € D. M is a closed subspace of D and M a translation
of My by the element m. Note from (20) that

inf (—M> > a?>0

CEMop (Ca C)'D -

and, according to Proposition 7, there exists a unique element EE M such

that (=J(()) = inf _ (=J(¢)) where { = F+ i, p = (0,9) € M, and

p = Tm for some T € B[D]. Therefore, T = T(i&,0) = (0,v) and,

for some T' € B[Xy, V], Vv = Txy where (—J(x,V)) = infyeyp(—J(z0, v)).
O

We have solved the minimax problem posed initially, with Gv € U
providing the minimizing control for the minimization problem defined by

J(zg,v) above and T'zy providing the maximizing disturbance for the max-
imization problem defined by j(:rg) above. We shall now construct the
operator P € BY[H] which will satisfy conditions (i), (ii) and (iii) of The-
orem. Define the operators X € B[Xp, X] and Ze B[Xp, Z] in the follow-
ing way: for zy € Aj, )?(1’0) = )Z'(a:g,T:rg) = Xpk, (o, Tz, G(Txp)),
/Z\(l'[)) = Z(zo,Tx0) = Zpk,(ro, Tz, G(Tx)). Therefore X’(xo) and
/Z\(l'[)) give the state sequence and output sequence when the maximiz-
ing disturbance T'z¢ for v and the minimizing control G(T'zy) for q are

19
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~

used. Note that J(.) : Xy — IRy is given by

f(mg) =sup inf J(xzo,v,q)
vey qeU

= sup(||Z(z0, v)||Z = 8*[IVII3)
vey

= —‘.}Ielg(—J(l’g,V)) = J(zo,Txo)

= [ Z(x)IIZ — 8|1 Twoll}, > [1Z(20,0)]1% > 0
and indeed J(zo) > 0. Define the operators P € B*[Xy] and P € BY[H|
as follows. Set o

P =277 —6°T*T,

and let P be an operator from H into H given by

Pz = E(Px) foreach =€ H C Ap. (21)

From the properties of the expected value operator E (cf. [12]) it is easy
to verify that P in fact is a bounded linear operator. Note that for every
Ty € A,

~ ~

0 < J(x0) = (Z(x0); Z(w0)) 2 — 6%(Txo; Two)y
= ((Z*Z — 8°T*T)(z0); 20) v, = (Pzo;20) x,

and, from the definition of the expected value operator, for every = € H,

~

0 < J(x) = (Pa; 2y = E((Pa3a)) = (E(Pa)iz) = (Pa;a)

showing that indeed P > 0 and P > 0. It remains to show that P satisfies
conditions (i), (ii) and (iii) of Theorem. We shall do this by considering
a truncated minimax problem, the truncation being on the “disturbance”
space V, and then proving that the truncated problem converges to the
original one. Set

Sp={v=(v,v1,...) €EV; wvp1; =0 for >0},

and

>

Tutwo) = sup (1Z(z0, V)1 = &*[IvI})
vES,

sup (1Z5 5. (20, v, G|z = 8IIVII}) > 1 Z(x0,0)II% > 0,

20
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with g € Xy and, for every v = (vp,v1,...) € V, set g, € B[V, S,] as

gn(v) = ('U(), -y Un—1, 0707 )

Proposition 12 Consider the hypothesis of Lemma 2. For every zo € Xj,
0 < Jn(zo) T J(x0) as n — o0.

~

Proof: Since S, C Sp+1 C V it is clear that fn(xg) < fn+1(x0) < J(=xo)

and
(12 (0, 9u (T @I = 8 lgn(T (o)1)

< Ju(@o) = sup [|Z(zo, v)IIZ = 6*[IVIF
vVES,

< sup (I1Z (@0, v)I1% = 8*IvII} ) = T(a)
vey

= (120, T — I T0)I13)

Since g, (T(x0)) — T(xo) as n — oo, we have, by continuity of the norm

and of Z(xy,.), the desired result. O

Define the sequence P, € B[H], n > 0, and K,,, € B[H,H"], Ky, €
B[H,H'], n > 1, as follows:

Py=1L
Poyr =M+ (-7:;}#}(""4_1)%(Pn) + K;n+1Kun+1 - K:n+1Kvn+1 (22)

for n > 0, where

Kun+1 = (I + B*PnB)_lB*PnF% D(—Kyn+1) € B[H: H”] (23)
D*P,D 1 _,
Ko == =—5=) 15D P,Fpk,, ., € BH,H']. (24)
That is,
B*P,D D*P,D\ " o
Kuni1 = (I+B*PnB + T;‘ <I - 52” ) D*PnB>
i P,D D*P,D\ "' |
(i (1422 (1-222) " ) o).
D*P,D D*P,B i o, -t
Kyni1 = (I— 62" + 52" (I+B*P,B) 'B PnD>
D* * —1 px*
—~ (I-P,B(I +B*P,B)"'B*)P,F ), (25)
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where the inverse of the above operators will be established in the next
proposition. For each n > 0 define the operators X,, € B[Xy, X], Z, €
B[Xy, 2] and T,, € B[Xp,S,] as follows (see Remark 3 below): for every
zy € A,

o0
Tpiy1 = (Ao + ZAk(wi;ek>> Tpi + DUy + BUpi, ZTno =9, i >0

k=1
ﬁm — _Kur/zjii'\ni if n— Z -1 Z 0 i Z 0
—KrTn: otherwise
1 ~ . .
i}\m:{gKm_iwm if n—‘z—IZO i>0
0 otherwise
- MYz,
Zni = ~ 1 >0
and Tn(mﬂ) = (’\n = (E)\nﬂyanl;-")) Xn(mﬂ) = (i'\nﬂyzr\nl;-"% Zn(x[]) =
(Zno, Znt, -..) (note that for i > n, v,; = 0 and u,; = —KZ,; and since

r((]—fKL)) < 1, it follows that the linear operators T,, X, and Z, are
indeed bounded).

Proposition 13 Consider the hypothesis of Lemma 2. For each n > 0,

(a) P, € BT[H],
(b) I — 2D > o [ ( defined in (19)),
(¢) Xn(wo) = X (w0, V) = X, (o, Bn, GOp),

Zn(mﬂ) = Zn(m(];vn) = ZBKL(mﬂai)\n;Gﬁn)a

(@) Tu(wo) = [P w0l = 12013 — 82 Tu(ao)l
= | Z (a0, T ()% — 81T (o) 13-

)

Remark 3 Statement (d) says that T),(z¢) provides the maximizing dis-
turbance of the optimization problem defined by J,(zo) with J,(zq) =
||P,1/23:0 13,, while statement (c) says that jfn(l’(]) and /Z\n(l’g) give the state
sequence and output sequence when the maximizing disturbance T),(xy) for
v and the minimizing control G(T,(z¢)) for q are used.

Proof: The proof goes by induction on n.

For n = 0 we get Py = L € BY[H], Ty(xo) = 0, Xo(wo) = X(z0,0) =
XBKL(anoao)a Z()(J?()) = Z(Q?(),O) = ZBKL(J?(),O,O) and: from (17)7 it
follows that for every zy € Ay,

To(x0) = 12 (w0, 0)1Z = | ZB ik, (20, 0,0)||% = |1z |3,
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showing (a), (c¢) and (d). For any vy € Vy consider the sequence v =
(v9,0,0,...) € V and note that

128k, (VIIZ = 125K, (Do, 0,0)[|Z = | Z(Dvo, 0)|1%
= |LY*Dwy |3, = (D* LDvg; v0) 34,
1Z8x(V)IIZ = 1ZBK (D20, 0,0)[1Z = [ Z(Dvo, 0)]|%,
so that, from Proposition 10, we obtain
1Z(Dvy, 0)[IZ < 1 Z(Dvo, 0)[I%

and from (19) it follows that

(D*LDuvo; vo) — 8 |JvollFy =
= | Z(Dvo,0)[|1Z — 8*||voll3y < [1Z(Dwo, 0)[1Z — 8%[|voll3y
= 1 Zpx(V)IIZ = VI < = |IvI5 = —a®lwollFe

which shows that, for every vy € H' C V),

D*LD a?
((1-Z22) ooim) = Sl

Now we shall verify that, if the assertion holds for n, then it holds for n+1.
Suppose the results holds for n. Then, for any z¢ € Xy (see [1], Theorems
2.4 and 3.1),

Tarawo) = sup inf (lzolfien — lleollde + 1PA2a 1) (26)
v EVp 90€UD
where ug = —Krxo + go and x; is as in (1). Set

W, = (I +B*P,B) € G"[H"]
Npy1 = (I + B*P,B) 'B*P,F = W, 'B*P,F

PTIL+1 = f#(Pn) +M—N;+1(I+B*PnB)Nn+1

a()(x(),’v()) = Wn_l(B*PnF.T() + B*PnDUO)
= Npp120 + W, ' B* P, Dy, o € Xy, vo € Vo (27)
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and therefore

Whiig(zo,v0) = B*PpyFx¢ + B* P, Duy.

For simplicity we set wp = wo(xo,vp). A trivial but somewhat lengthy
algebraic manipulation, similar to the one in the proof of Proposition 5,
leads to

1Py 22115, = (Phyawo; o)
— (1M 220 3 + ) + (D" PuFgsodre + (03 D" Pu Fao)e
D* P, Dvg;vo)py + (Wi (o + uo); (o + o) )¢
(D*P, BW, *B* P, D)vo; v0))re
(B*P,Fao + B*P,Duvy); W, \B* P, D)y

+
+
—{
— (W, B* P, Duvy; (B* P, Fag + B* P, Dvg))yen .

Defining
U, = D* (I - P,B(I+ B*PnB)’lB*) P, F (28)
and
D*P,D D P,B
E, = § (I 5 5 (I + B*P,B)” B*PnD> € GT[H'|
(29)
we get

1P 15, + (||M1/2930||31 + lluollzer — 52“”0“%1')

= (P11 w05 20)m — | BN vl + (En(Ey ' Unwo); vo)re

+ (v0; Bn (B} Unto))rr + (Bn(B;, ' Unao); (By, ' Unio)) 1

—(En(E _IUWTO)'( _1Un5”0)>H’ + (Wa (o + wo); (wo + ug))#r
= ((Phyy + UrE; ' Un) mo; mo)n + W2 (@o + uo) I3,

— B (vo — B ' Uno) 13-

From the above expressions it follows that the minimax problem defined in
(26) is solved with:

qo = —ﬂg + KLI'[) = —(I-l— B*PnB)ilB*Pn(Fl'g + D’U(]) + KLZ’(]

1
= EglUan = EKvn+1x0;
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and thus,
g0 = Ko — ((I + B*P,B) 'B*P,Fs D(_KM+1)) 2o = (K1, — Kuns1)2o
Moreover, for any xy € Xy,
Tni1(z0) = ((Phyy + UsE; Up) o3 20)3¢ = (Pas10; o)p¢ > 0
where, according to (25), (27), (28), (29), P,+1 > 0 is given by

Py = n+1+UE U,
= F#(P,)+ M — N}, (I + B*P,B) N1

n)

D*P D

vn+1 <I ) Kun+1
D*PnB

)

(I+B"P,B) " =

+ Kun+1 Kvn+1'

Thus,

Py — F#(P,) + Njiyy (I + B*PyB) Npia

D*P,,D
:M+Pn_Pn+1+K;n+1 <I_ 52n )KWH'I

D*P,B _y B*P,D
Tn (I +B*P,B)™" T"KUW

and (23) and Proposition 3, (c)= (b), lead to

+ Kvn+1

Pn - f]ﬁKunH (Pn) + (Nn+1 - Kun+1)* (I + B*PnB) (Nn+1 - Kun+1)
D*P,B _1 B*P,D

=Py — ngMH(Pn) + K:n+1Tn (I + B*P,B) —5  Kunh
=M+ P, — Poy1 + Kfy o Kyt + Ky <I - D}ﬁ) Koyni1
+ K;;W% (I+B*P,B)"! %KMH;

that is,

D*P,D
Pn - ngunJrl(P ) + Kvn+1 <T2n - I) Kvn+1

=M+ Pn — Pn+1 + K;n+1Kun+l
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and from (24) and Proposition 3, (¢)= (a), it follows that
Prj1 — (-7:1?3&1(”“)% D(—KMH)(Pn) =M+ K;:n-l—lKU?H-l - K5n+1Kvn+1
which shows that P, satisfies (22), proving (a), (c), (d) for n+1. Consider

now (16) with o = 0 and v = (vo,v1,...) € V, @ = (go,q1,-.-) € U given
by: qo = 0,’0[) € VO)

qi:{(KL_Ku'rH»Zfi)xi if n+;l—i20, i>1
0 otherwise
v = { %Kvn+2—ixi if n —|—.1 -1 >0, i>1
0 otherwise

In other words, at time ¢ = 0, we take g = 0 and consider any distur-
bance vy € Vy, and for i > 1, we conside/g the maximizing disturbance
Th+1(Dvyg)) for the optimization problem J,41(Dwvg) and the minimizing
control G(T,,+1(Dvg)) (note that this idea had already been applied for
n = 0 above). We get

1ZBK, (0,v,Q)lIZ = &IV},
= || Zns1 (Do) ||z — 8| Tt (Do)l — 6% l|vo I3,
= (Pn+1(Dvo); (Dvo))r — 6%|lvoll3¢

and from Proposition 10,

| Zni1(Dvo)|% = 82| Trs1 (Dwo) |3
= || Z(Dvy, Tr(Dvo))|% — 82| Tn(Dvo) I3
< |1Z(Dvo, Tn(Dvo)) % — 61T (Do) 13-

Equation (19) leads to

1Z(Dvo, T (Dvo)lIZ = 81 Tu(Dvo) 5 — 8% [[voll7

=120,v)IIZ = &[Iv[ < —e®|IvIl}; < —a®|lwollFy
and thus, for every vy € H',
((D*Pay1D)vo; v0) — 6 [lvoll” < —a®|lvol|?,

which implies that

1, a? )
I— 6_2D Pn+1D Vo, Vo Z 6—2“’00”
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concluding the induction and the proof of the proposition. O
We can now proceed to the proof of Lemma 2.

Proof of Lemma 2: Consider P, and P as defined in (22) and (21)
respectively. We shall show that:

(I) P, 1 P strongly as n — oo and P satisfies conditions (i) and (ii) of
Theorem,

(I) By setting X () = X = (%o, 21, %2,...), %o
that T.T() =v = (60,?)\1,5)\2,...) = (%57\0,%56\1 %57\2,) = %3(\,
and GV =q = (90, 1,2, ---) = (K1 — Ku)Zo, (K1 — Ku)Z1, (K1 —
K,)Z,,...) = (K — K,)X, and

(IIT) P satisfies condition (iii) of Theorem.

= 1z, we shall prove
)

Lemma 2 will follow from (I) and (IIT). Let us prove (I) first. From
Propositions 12 and 13 we have, for each z € H,

~

0< Jn(z) = (Paz; ) < Jpi1(2) = (Popra;z) < J(z) = (Pa; z)

which shows that 0 < P, < P,41 < P. Thus {P,; n > 0} is a bounded
monotonic nondecreasing sequence of nonnegative operators, so that it con-
verges strongly to an operator P, € BT[H]| (see e.g. [21, p.79]). From
Proposition 12 it follows that, for any = € H,

(Pooz;z) = lim (P,z;z) = (Px;x)

n—oo

and thus (cf. [16, p.374]) P = P. Since for every vy € H'

1, a? 9
I—é—zD P,D ) vo;v9 ) > ﬁ”%“

1, a?
<<I_6_2D PD) ’U(];U0> 2 6—2“’00”2

which shows that (I — %D*PD) > ’g—: I. By repeating the same argu-

ments as in the proof of Lemma in [3] it follows that, as n — oo,

we get

KKy, K 5K, K! Kin,>K'K,
Ky 5Ky, K SK:, K Ky SKK,
(}—ﬁxunﬂ)% D(—Kun+1)(Pn)_s)(f§Ku)% D(—Kv)(P)'
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Thus
P =M+ (Ffx,)s p(x.)(P) + KKy - KK,

showing (I). Since v, = T),(z9) € S, C V is a maximizing sequence for
SUPycy J(z0,v) = J(x0) = J(z0,v) and ¥ is unique (Proposition 11) we
conclude, from the same arguments as in the proof of Proposition 3 in [19],
that V,, — ¥ as n — oo. From continuity of the operator X it follows that,
as n — oo,

~ ~ ~

Xn(.’lf()) = (L/L'\n(),fl?\nl, ) = X(Cﬂg,if\n) — Xv(mo,if\) = X(CC()) = (56\0,56\1,...)

which implies, in particular, that Z,; — Z; as n — oo for each ¢ > 0.
From strong convergence of Ky,_; to K, in B[H,H'] (implied from strong
convergence in B[H, H'], see [3]) as n — oo, we get for each i > 0,

Kvnfixni - Kvxi as n — o0,

(reason: if T, 3T and x,, — z, then 0 < || Tz, — Tz|| < [|Thzn — Thz|| +
I Twe — Tl < supp,>o Tl 120 — 2|l + (T — T)z|| — 0 as n — oo) and

thus,
G T K, . K,._. K, .
v=Txy=|—oy, —21,... | = —X.
0 § s ! 5
From continuity of G we get that Gv,, — Gv = q and, by repeating the
same arguments as above we conclude that, for each 7 > 0,
(KL - Kunfz)i'\nz - (KL - Ku)i'\l as n — o0,

which shows that

a=((Kp—K,Z, (K — Ky,)#1,...) = (K, — K,,)X

proving (II). Finally note that, for any zy € Xy, X(zo) = (20, Z1,...) € X
where

00
/x\z?l»l = <A0 + ZAk(wi;ek)> EL’\Z + Di)\l + B(a\z — KLi‘\Z)
k=1
= K
= (A() + ZAk<wi§ek>> T + DTU.%l — BK,7;
k=1
K, « ~ ~
= AU—BKU-FDT-FZAI;(W;@I;) Z;, Top = xp

k=1

and condition (iii) of Theorem follows from Proposition 1, showing (III). O
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Appendix

In this appendix we present the construction of the probability space
(2, 1), X, Xn, V, Vp, U, Uy, and Z, Z,, which lead to the independence
conditions required in section 3. Let (2, ¥, i) be a probability space. For
any family of subsets G of 2 we denote by o(G) the o- field generated by
G. We denote by [];_, 2 the product space formed by 2 (n possibly co)
and

HE‘:J{EUX...XEn; E;€X,i=0,..,n} if n<oo

o0 o0
[[E=0qEx.xEx [[ 2 Ei€Zi=0..,kk=01,.
i=0 j=k+1

if n = oo. Then (cf. [20]) there exists a unique probability measure p
defined on [];~, X' such that

1(Eo x .. x By x [[ £2) = po(Eo)-..iun(Ei)
j=k+1

for B; € £, i=0,..,k, k=0,1,.... Set 2 =T[[2,2, ¥ =[], Y and,
for every n > 0,

o0

Spn=0{Eyx..xE,x [[ @ Ee€Zi=0,..n

=0{ Ax ﬁ 2;  Ae][ficx

j=n+1 i=0

with p the unique probability measure defined on X' with the property seen
above. This defines the probability space (£2, X, u) of section 3. Consider
w € H = Ly(2, %, i; H) and define the stationary sequence of random
variables {w; € H; i > 0} (see notation in section 3) as follows: for
w = (0o, w1,...) € 2, set w;(w) = w(@;y1), i > 0. In this way, it is readily
verifiable that {w;; ¢ > 0} is an independent stationary random sequence.
Define X C I3(H) in the following way: x = (xg,1,...) belongs to X
if x € Ix(H) (ie, z; € H, ¢ > 0, and ||x||l22(H) = Y20 Elz)?) < o0)
and, for each i > 0, z; € Lo(2, X, u; H). We have that X is a closed
linear subspace of I2(H) and therefore a Hilbert space. In a similar way
we define the Hilbert spaces V C lo(H'),U C lx(H") and Z C Io(H™) by
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replacing H and H in the definition of X by H' and H', H"” and H", and
H'" and H'"' respectively. From these definitions it is easy to verify that
the independence properties of section 3 are satisfied. Finally we say that
Xp = (o, @1,y y) € Xp if x; € Lo(02,X;, u; H) for each i = 0,1, ...,n.
The definitions of V,, U, and Z,, are made in a similar way. Again it is
easy to verify from the above construction the independence properties of
section 3.
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