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Abstract

In this paper, some results of feedback stabilization on compacta

for a nonlinear control system are obtained by using an invariant

manifold approach. In particular, a class of globally nonminimum

phase systems are treated. Issues such as high gain feedback sta-

bilization on compacta vs. peaking phenomenon, and globally ex-

ponentially minimum phase vs. globally asymptotically (critically)

minimum phase are also discussed.
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1 Introduction

In the past few years there have been quite a few papers dealing with

global and/or on compacta (or semiglobal, as is used by some authors)

feedback stabilization for nonlinear control systems, for example, [4, 17,

19]. For nonlinear systems, global feedback stabilization, as we know, is

in general di�cult to achieve and a solution normally calls for a full state

nonlinear feedback scheme. On the other hand, for many nonlinear control

systems, it is possible to �nd feedback control laws, which only require

partial knowledge of the state variables, such that on one hand, they only

render the equilibrium point locally, not globally in general, asymptotically

stable, and on the other hand, they contain a gain parameter whose value

can be set in such a way that any a priori given bounded set of initial

conditions can be contained in the domain of attraction. In this paper,

we will use the invariant manifold for a singular perturbation model to

�Received January 31, 1995; received in �nal form May 6, 1995. Summary appeared

in Volume 6, Number 2, 1996.
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study the problem of nonlinear feedback stabilization on compacta (the

precise de�nition will be recalled a little later), which is di�erent from the

approaches in [4, 17].

We consider the following system:

_x = f(x; �)

_� = F (x; �) +G(x; �)u

y = h(�)

(1.1)

where y is the output of the system and u the input. x 2 Rn; � 2 Rq; y 2

Rm; u 2 Rm. The mappings f; F; G and h are smooth and f(0) =

0; F (0) = 0, and h(0) = 0.

Let us assume that a high gain control law u = k�(x; �), where k can

be tuned according to initial conditions, solves stabilization on compacta

for (1.1). Then, the closed loop system becomes:

_x = f(x; �)

_� = F (x; �) +G(x; �)k�(x; �):
(1.2)

Let � = 1
k
, we have

_x = f(x; �)

� _� = �F (x; �) +G(x; �)�(x; �):
(1.3)

It is well known that under some hypotheses, locally the stability of (1.3)

is determined by that of the 
ow on an invariant manifold of (1.3), which

makes the analysis much easier. In fact, this is also true for the \on com-

pacta" case. This issue will be discussed in Section 2.

Let us now recall the de�nition of feedback stabilization on compacta:

De�nition 1.1. System (1.1) is said to be stabilizable on compacta by

smooth feedback control laws, if for every bounded set P of the values of

the state variables, there is a smooth feedback law such that the equilibrium

point of the corresponding closed-loop system is asymptotically stable and

the domain of attraction contains P .

In this paper we also consider the following type stabilization problem: a

feedback control law is required only to render the system have a bounded

trajectory, the state vector does not necessarily tend to the equilibrium

point. A practical footnote for this is that frequently disturbances in the

system make it impossible that the state vector decays to the equilibrium.

A bounded trajectory is the best one can expect. For this purpose we de�ne
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De�nition 1.2. System (1.1) is said to be bounded-state (BS for short)

stabilizable on compacta by smooth feedback control if given a bounded initial

data set P , there exists a smooth feedback control law such that the state

trajectories of the closed loop system are uniformly bounded with respect to

P.

The paper is organized as follows. In section 2, we review some results

about invariant manifolds for a singular perturbation model and prove sev-

eral results of stability on an invariant manifold. In section 3, we give

our results on nonlinear feedback stabilization on compacta, in particular,

we give a result for the case where the zero dynamics is not globally sta-

ble. In section 4, we discuss high gain feedback stabilization on compacta

vs. peaking phenomenon and globally exponentially minimum phase vs.

globally asymptotically (critically) minimum phase.

In this paper the standard notations will be followed. Throughout we

use \j � j" to denote the (induced) Euclidean norm.

2 Preliminaries

Let us consider the following singular perturbation model:

_x = f(x; z; �)

� _z = F (x; z; �) x 2 Rp; z 2 Rq
(2.1)

where � is a small positive parameter and f and F are C3, f(0; 0; �) =

0; F (0; 0; �) = 0, fx(x; z; �), fz(x; z; �), Fx(x; z; �) and Fz(x; z; �) are all

uniformly bounded for 0 < � < �0 when (x; z) is in a bounded set, and

there exists a solution z = �(x) for F (x; z; 0) = 0, where � is C3; �(0) = 0

and Dom � = Rp. We also assume

H1: Re �
�
@F (x;�(x);0)

@z

�
� C�; 8 x 2 Rp.

For (2.1), we have the following result:

Proposition 2.1 Under the above assumptions, given a p > 0, and Bp =

fx : jxj � pg there exists an �0 > 0 such that when � � �0 there exists an

invariant manifold for (2.1) described by z = �(x) +  (x; �), for x 2 Bp,

� < �0, where,

j (x; �)j < M(�);M(�)! 0 as �! 0 8 x 2 Bp:

j (x1; �)�  (x2; �)j < `(�)jx1 � x2j; `(�)! 0 as �! 0 8 x1; x2 2 Bp
(2.2)
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Proposition 2.1 can be found in [20] and a simpler case where
@F (x;�(x);0)

@z

is assumed to be constant, can be found in [5]. However, in [20] there

are some serious errors in the proof in estimating certain state transition

matrices. Because the result is also of independent interest, we give a

complete proof of Proposition 2.1 in the appendix.

The invariant manifold is actually a center manifold on compacta. Let

us change the time scale � = t
�
and consider � as a variable, then (2.1)

becomes

�0 = 0

x0 = �f(x; z; �)

z0 = F (x; z; �):

(2.3)

As in the local case, the stability of system (2.1) about the equilibrium

point can be determined by that of the 
ow on the center manifold:

w0 = �f(x; �(x) +  (x; �); �): (2.4)

Proposition 2.2 If the hypotheses in Proposition 2.1 hold and F (x; z; 0)

is linear as a function of z, then the following statements are true: (a) If

the 
ow on the center manifold (2.4) is unstable, then the equilibrium point

of (2.1) is also unstable. (b) For any given p, if the solution to (2.4) w(t) is

uniformly bounded for all w(0) such that jw(0)j � p and for all su�ciently

small �, then for all x(0) with jx(0)j � p and all z(0) with jz(0)j � d, where

d is any given positive number, when � is su�ciently small,

x(�) = w(�) +O(e�
� )

z(�) = �(w(�); �) +O(e�
� )
(2.5)

or

x(t) = w(t) +O(e�

t
� )

z(t) = �(w(t); �) +O(e�

t
� )

(2.6)

where 
 > 0.

Remark: (b) holds even if the equilibrium point of (2.4) is unstable but

the system has a bounded attractor contained in the set jwj � p.

Proposition 2.2 can be shown by �rst mimicking the proof of Theorem

2.2 in [5], then using an argument in the proof of Theorem 7.3 in [4].

In preparation for studying nonlinear feedback stabilization on com-

pacta, we also want to give the following two results.

Proposition 2.3 If x = 0 of _x = f(x) is globally asymptotically stable,

then given a Lipschitz  (x; �) with j (x; �)j � M(�; p)jxj in fx : jxj � pg,

where lim�!0M(�; p) = 0,

_x = f(x) +  (x; �)
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is BS stable on compacta, i.e. given a bounded set fx : jxj � pg, there is

�p > 0 such that when � < �p, the solution to the perturbed system, when

initialized in fx : jxj � pg, is uniformly bounded.

Proof: Since the solution to

_x = f(x)

is globally asymptotically stable, by the converse theorem to asymptotic

stability test [8, 19], we can �nd a di�erentiable positive de�nite decrescent

Liapunov function v(x) with a negative de�nite total derivative globally,

i.e.

�1(jxj) � v(x) � �2(jxj)

_v � ��(jxj)

where �1; �2; � are functions of class K1 (see [19]). We say a func-

tion � : R�0 ! R�0 belongs to class K1 if it belongs to class K and

limr!1 �(r) =1.

Now for the initial data set fx : jxj � pg choose a number � > 0 such

that ��12 (�) > p, then for all points �x satisfying the equation v(�x) = �, we

have

p < ��12 (�) � j�xj � ��11 (�)

and

_v(�x) � ��(��12 (�)):

Now denote x (t) the solution to the perturbed system. for all initial points

jx0j � p, we have v(x0) < �, and if v(x (t)) = � for some x0 and t,

_v =
@v

@x
f(x ) +

@v

@x
 (x ; �)

� ��(��12 (�)) +K(��11 (�))M(�; ��11 (�)):

(2.7)

When � is su�ciently small, we would have

_v � �
1

2
�(��12 (�)) < 0

which implies v(x (t)) < � when jx0j � p. Then

jx (t)j < ��11 (�):

Proposition 2.4 If x = 0 of _x = f(x) is globally exponentially stable, then

for all Lipschitz  (x; �) with j (x; �)j � M(�; p)jxj for all jxj � p, where

lim�!0M(�; p) = 0,

_x = f(x) +  (x; �)

is exponentially stable on compacta, i.e. given a bounded set fx : jxj � pg,

there is �p > 0 such that when � < �p x = 0 of the perturbed system is also

exponentially stable and the domain of attraction contains fx : jxj � pg.
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Proof: From the previous proposition, we know that for the perturbed

system, when initialized in P = fx : jxj � pg,

jx (t)j < ��11 (�):

From the converse of a Liapunov stability theorem for exponential stability

[8], we also know that there exists a Liapunov function v(x) for the solution

of _x = f(x) such that the following estimates are valid on fx : jxj �

��11 (�)g:

a1(�)jxj
2 � v(x) � a2(�)jxj

2

_v(x(t)) � �a3jx(t)j
2; j

@v

@x
j � a4(�)jxj

for certain positive constants a1; :::; a4.

Remark: In general, one can not exclude the possibility that the positive

constants a1; a2 and a4 may depend on � and a1 may even tend to 0 as

� !1.

Then for the perturbed system, when initialized in P , (for simplicity,

we use x for x )

_v =
@v

@x
(f(x) +  (x; �))

� �a3jxj
2 + a4M(�; ��11 (�))jxj2

= �(a3 � a4M(�; ��11 (�)))jxj2:

(2.8)

When � is su�ciently small, we have a3 � a4M(�; ��11 (�)) > 1
2
a3. Since

jx(x0; t)j < ��11 (�) when x0 2 P , then

jx(x0; t)j
2 <

a2

a1
jx0j

2e
� 1

2

a3
a2
t
:

Therefore, the solution to the perturbed system is exponentially stable and

the domain of attraction contains P .

As a direct application of the results presented in this section, we study

the feedback stabilization on compacta for the following state input control

system:

_x = f(x; z; u; �)

� _z = F (x; z; u; �) x 2 Rp; z 2 Rq; u 2 Rm:
(2.9)

Assume f and F are C3; f(0; 0; 0; �) = 0; F (0; 0; 0; �) = 0. We also assume

that when � is set to zero, one is able to solve the second equation of (2.9)

to obtain:

z = �(x; u)
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where � is C3 and

Re �

�
@F (x; �(x; u); 0)

@z

�
� C�; 8 x 2 Rp u 2 Rm:

Since z are faster time scale transients, our main interest here is the sta-

bilization of x modes. The existence of a slow manifold provides us such

possibility. Substituting �(x; u) to the �rst equation of (2.9), we get

_x = f(x; �(x; u); u; 0) (2.10)

which is usually called \the reduced system" or sometimes the \rigid body

model".

It is obvious that a rigid body model is much easier to establish and

analyze than a model which involves, say, elastic forces. An interesting

question is if a stabilizing control law designed based on the reduced model

of a system (2.9) is still valid for the original system. We show that the

same control law can still be used to stabilize the 
ow on a slow manifold

of (2.9).

Proposition 2.5 Suppose the above hypotheses hold for system (2.9), if

there exists a smooth feedback control u0(x) which exponentially stabilizes

the following reduced system globally:

_x = f(x; �(x; u); u; 0)

then u0(x) also exponentially stabilizes the invariant manifold

z = �(x; u0(x)) +  (x; �)

of (2.9) in any bounded region Bp when � is su�ciently small. If

F (x; z; u; 0) is linear as a function of z, then the overall closed-loop system

is also exponentially stable on compacta.

The proof of this proposition is just an application of Proposition 2.4.

3 Nonlinear Feedback Stabilization on Compacta

In this section, we consider the problem of stabilization on compacta for

system (1.1) by state feedback control. We will use the normal form pro-

posed by Byrnes and Isidori to develop our results:

7
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_z = f0(z; �
1
1 ; :::; �

m
1 )

_�i1 = �i2

...

_�iri = fi(z; �
1
1 ; : : : ; �

m
1 ) +

mX
j=1

gij(z; �
1; : : : ; �m)uj

yi = �i1 i = 1; : : : ;m

(3.1)

where z 2 Rn; � 2 Rq ; y 2 Rm; u 2 Rm, fi(0) = 0; i = 1; : : : ;m and

f0(z; 0) = 0 implies z = 0.

The zero dynamics of (3.1) can be easily characterized by

_z = f0(z; 0):

Remark: For the sake of simplicity, we assume in (3.1) that fi (i =

1; :::;m) does not contain the derivatives of the outputs. One may have

also noted that in (3.1), besides z, only �i1; i = 1; :::;m appear in f0. This

is actually a nonpeaking condition. As is widely appreciated, the solution

of stabilization on compacta for (1.1) by high gain feedback control laws

can be quite subtle for the case of relative degree bigger than 1 due to

the so called peaking phenomenon [17]. And some form of a nonpeaking

condition typically needs to be assumed. A set of coordinate free conditions

are given in [4] so that (1.1) can be transformed into (3.1).

In this section we assume that

H2: the matrix G = (gij(z; �
1; : : : ; �m))m�m is nonsingular at every point.

Under the hypothesis, Byrnes and Isidori are able to render the subman-

ifold M� = f�1 = 0; :::; �m = 0g globally invariant by using an appropriate

nonlinear state feedback law. If additionally the zero dynamics of the sys-

tem is globally asymptotically stable, they are able to use a high gain state

feedback law to render the system asymptotically stable on compacta. Our

method is di�erent. While not necessarily maintaining the manifold M�

invariant (which means less information about the state variables is needed

to generate the control law), we are able to use a high gain feedback law to

obtain the BS stabilization on compacta for (3.1) in general, and in some

cases, even asymptotic stabilization.

Let us denote pri(s) = ari�1s
ri�1 + � � �+ a0 (i = 1; :::;m) and prik (s) =

kari�1s
ri�1 + � � �+ kria0.

Theorem 3.1 Assume H2 holds for (3.1). If the zero dynamics is globally

asymptotically stable, then for any Hurwitz polynomials sri + prik (s) (i =

8
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1; :::;m), the following high gain control law

uk = G�1

0
B@
�pr1k (

d
dt
)y1

...

�prmk ( d
dt
)ym

1
CA

where the gain k can be tuned according to the initial condition set, BS

stabilizes system (3.1) on compacta.

Proof: Set � = 1
k
and

~�ij = �j�1�ij ; j = 1; :::; ri; i = 1; :::;m

when a high gain control law in the theorem is used, the closed loop system

becomes

_z = f0(z; ~�
1
1 ; :::;

~�m1 )

�
_~�i1 =

~�i2

...

�
_~�iri = �fi(z; ~�

1
1 ; :::;

~�m1 )� pri(~�i(�)) (i = 1; :::;m)

(3.2)

where pri(�i
(�)
) = ari�1�

i
ri
+ :::+ a0�

i
1. By Proposition 2.1. we know there

exists a slow manifold for (3.2):

~� = �(z; �)

with j�(z; �)j ! 0 uniformly as � ! 0. By Proposition 2.2, the stability

behavior of system (3.3) is decided by that of the 
ow on the slow manifold:

_w = f0(w; �
1
1(w; �); :::; �

m
1 (w; �))

= f0(w; 0) +  (w; �)
(3.3)

where  (w; �) = f0(w; �
1
1(w; �); :::; �

m
1 (w; �)) � f0(w; 0). since the zero dy-

namics of system (3.1) is globally asymptotically stable, by Proposition

2.3, (3.3) is BS stable on compacta. Then (3.2) is BS stable on compacta,

which implies, of course, the closed-loop system (3.1) is also BS stable on

compacta.

If the zero dynamics is globally exponentially stable, instead of being

just critically asymptotically stable, we actually exponentially stabilize the

system:

Theorem 3.2 Suppose H2 holds for (3.1). If the zero dynamics is globally

exponentially stable, then for any Hurwitz polynomials sri + prik (s) (i =

9
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1; :::;m), the following high gain control law

uk = G�1

0
B@
�pr1k (

d
dt
)y1

...

�prmk ( d
dt
)ym

1
CA

exponentially stabilizes system (3.1) on compacta.

Proof: If the zero dynamics is globally exponentially stable, then the 
ow

on the slow manifold governed by (3.3) is exponentially stable on compacta

by Proposition 2.4. Therefore the whole system is exponentially stable on

compacta by Proposition 2.2.

Remark: Once again we want to emphasize that our control law does not

cancel the terms fi; i = 1; :::;m in (3.1).

The following result was �rst proven in [4], which can also be proven

by our method.

Corollary 3.3 Suppose H2 holds for (3.1) and fi = 0 i = 1; :::;m at all

the points. If the zero dynamics is globally asymptotically stable (uniformly

bounded), then for any Hurwitz polynomials sri + prik (s) (i = 1; :::;m), the

following high gain control law

uk = G�1

0
B@
�pr1k (

d
dt
)y1

...

�prmk ( d
dt
)ym

1
CA

asymptotically (BS) stabilizes system (3.1) on compacta.

Proof: In this case, �(z; �) = 0 is a slow manifold. The 
ow on the slow

manifold is governed by:

_w = f0(w; 0):

By the hypothesis, it is globally asymptotically stable (uniformly bounded).

Then the system is asymptotically (BS) stable on compacta by Proposition

2.2.

The high gain feedback control we use depend on G and is in general

nonlinear. If the following additional hypothesis holds for (3.1):

H3: the matrix G in H2 depends only on z and either of the following two

cases is true: G(z) is diagonal and �(G(z)) � C� or G(z) is diagonal and

�(G(z)) � C+ 8z 2 Rn,

then, we can actually use a linear high gain feedback control only depending

on � to stabilize the system:

10
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Theorem 3.4 If H2 and H3 hold, then there exists a linear high gain feed-

back control in the form of

uk = s

0
B@
�pr1k (

d
dt
)y1

...

�prmk ( d
dt
)ym

1
CA (3.4)

which BS stabilizes system (3.1) on compacta, where s = 1 if �(G(z)) � C+

and s = �1 if �(G(z)) � C�.

Proof: Set � = 1
k
and

~�ij = �j�1�ij ; j = 1; :::; ri; i = 1; :::;m

when the linear high gain control law is plugged in, the closed loop system

becomes

_z = f0(z; ~�
1
1 ; :::;

~�m1 )

�
_~�i1 =

~�i2

...

�
_~�iri = �fi(z; ~�

1
1 ; :::;

~�m1 )� gi(z)p
ri(~�i(�)) (i = 1; :::;m)

(3.5)

where pri(�i
(�)
) = ari�1�

i
ri
+ ::: + a0�

i
1, and without loss of generality, we

assume G(z) is diagonal and �(G(z)) � C+, so s = 1 and 0 < rp � gi(z) �

Rp 8jzj � 2p.

In order to make use of the slow manifold results, we need to show that

the eigenvalues corresponding to the linearized terms of ~� can be assigned

to the left half plane by appropriate choices of pri(s) i = 1; :::;m. Namely,

we need to show that there are pri(s) (1 � i � m) such that sri+gi(z)p
ri(s)

are Hurwitz polynomials for each jzj � p. From the root locus analysis, it

is easy to see that when a pri0 (s) is Hurwitz, the closed loop loci for
p
ri
0
(s)

sri

are all located in the open left half plane when the gain is su�ciently large.

Therefore, we can �nd a positive constant L such that Lpri0 (s) satis�es our

requirement (because gi(z) is bounded below from zero). From now on, we

can just follow the proof of Theorem 3.1.

By using the linear high gain control (3.4), similarly we have the fol-

lowing corollaries:

Corollary 3.5 Suppose H2 and H3 hold for (3.1). If the zero dynamics

is globally exponentially stable, then there exists a linear high gain control

(3.4) which exponentially stabilizes system (3.1) on compacta.
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Corollary 3.6 Suppose H2 and H3 hold for (3.1) and fi = 0 i = 1; :::;m

at all the points. If the zero dynamics is globally asymptotically stable

(uniformly bounded), then there exists a linear high gain control (3.4) which

asymptotically (BS) stabilizes system (3.1) on compacta.

Before presenting a result for the nonminimum phase case, for the sake

of simplicity we assume r1 = r2 = � � � = rm = r. If H2 holds, after a

feedback transformation (3.1) becomes

_z = f0(z; �1)

_�1 = �2

...

_�r = u

y = �1:

(3.6)

We also assume

H4: In (3.6), f0(0; �1) = 0 and
@f0(z;�1)

@�1@z
jz=0 = 0 8�1 2 R

m.

Remark: for a general a�ne nonlinear control system, H4 can be stated

in a coordinate free fashion (see [11]).

Theorem 3.7 Suppose H4 hold for (3.6) and there exists a Cr map q:

Rn ! Rm such that

_z = f0(z; q(z))

is globally exponentially stable, then there exists high gain control uk(z; �)

which exponentially stabilize (3.6) on compacta. In particular, we can take

the control as

uk(t) = �prk(
d

dt
)(y �

kjzj2

1 + kjzj2
q(z)) + (

d

dt
)r(

kjzj2

1 + kjzj2
q(z))

(3.7)

where sr + prk(s) = sr + kbr�1s
r�1 + � � � + krb0; k > 0, is a Hurwitz

polynomial.

Remark: Here we do not assume q(0) = 0, otherwise it is a trivial result.

First we should notice the fact that if _z = f(z; q(z)) is globally exponen-

tially stable, then the zero dynamics of (3.6) must be locally exponentially

stable due to H4 (if H4 holds, q(z) can not change the linear part of the

zero dynamics equation).

Proof: First, suppose r = 1.

12
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Let ~y = y �
kjzj2

1+kjzj2
q(z), then the control law in (3.7) can be expressed

as

u = �k~y +
d

dt
(

kjzj2

1 + kjzj2
q(z)):

By setting � = 1
k
, we can write the closed-loop system of (3.6) as:

_z = f0(z; ~y +
jzj2

�+ jzj2
q(z))

� _~y = �~y:

(3.8)

Obviously (3.8) satis�es the assumptions in (2.1) and in Proposition 2.1.

Therefore, by Proposition 2.2, the stability of (3.8) is determined by that

of the 
ow on the invariant manifold ~y = 0:

_z = f0(z;
jzj2

�+ jzj2
q(z)): (3.9)

We rewrite (3.9) as:

_z = f0(z; q(z)) + f0(z;
jzj2

�+ jzj2
q(z))� f0(z; q(z)):

Since

_z = f0(z; q(z))

is globally exponentially stable, in order to show (3.9) is exponentially

stable on compacta, we only need to show that

 (z; �) = f0(z;
jzj2

�+ jzj2
q(z))� f0(z; q(z))

satis�es the growth condition in Proposition 2.4.

When H4 is satis�ed, it is easy to show that for all z in P = fz : jzj � pg,

jf0(z;
jzj2

�+ jzj2
q(z))� f0(z; q(z))j � �M(p)jzj2

jq(z)j

�+ jzj2
�Mq(p)

�jzj

�+ jzj2
jzj:

A straight forward computation shows

�jzj

�+ jzj2
�

1

2
�
1
2 :

Therefore, by Proposition 2.4, z = 0 of (3.9) is exponentially stable and

the domain of attraction contains P . Since p can be any positive value, by

Proposition 2.2 we conclude that for (z; y) in any bounded set, the origin

13
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of (3.8) of is exponentially stable and the domain of attraction contains

the set.

For the case r > 1, we �rst do a coordinate change:

~�i = �i�1�i � (�
d

dt
)i�1(

jzj2

�+ jzj2
q(z)); i = 1; :::; r

where � = 1
k
. Then in new coordinates (3.6) becomes

_z = f0(z; ~�1 +
jzj2

�+ jzj2
q(z))

�
_~�1 = ~�2

...

�
_~�r = �br�1~�r � � � � � b0~�1:

(3.10)

Obviously,
~�i = 0; i = 1; :::; r

is a slow manifold for (3.10). Therefore the stability of (3.10) is determined

by that of the 
ow on the slow manifold:

_z = f0(z;
jzj2

�+ jzj2
q(z)):

From now on, we can follow the proof for the case r = 1.

Example 3.1 Consider

_z = �z + 3z2 � yz2

_y = u:
(3.11)

If we take q(z) = 3, the hypotheses of Theorem 3.4 are satis�ed. In fact,

we can use

u = �k(y �
3kz2

1 + kz2
)�

6k(z2 � 3z3 + yz3)

(1 + kz2)2

to solve feedback stabilization on compacta.

4 Feedback Stabilization on Compacta and Peaking

Phenomenon

It is widely understood that when using high gain control for the purpose

of stabilization on compacta, one has to take into consideration the possi-

ble \peaking" phenomenon (see, for example, [17, 18] ) when the relative

14
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degree(s) of the system is greater than 1. As far as we are aware, the

normal form (3.1) is perhaps the only nonpeaking condition which can be

characterized in a coordinate free fashion. In this section our main pur-

pose is to present an interesting example. In preparation for that we �rst

give a fairly straight forward result on high gain feedback stabilization on

compacta, without assuming the nonpeaking condition (3.1).

For the sake of simplicity, we only study the case of relative degree 2:

_z = f(z; �1; �2)

_�1 = �2

_�2 = u

y = �1

(4.1)

where z 2 Rn and, without loss of generality, we assume the system is

SISO. We also assume that the zero dynamics

_z = f(z; 0)

is globally asymptotically stable.

It is well known that one can not always use the high gain control

u = �ak2�1 � bk�2 a > 0; b > 0 (4.2)

to stabilize (4.1) on compacta. A counter example was given in [18].

Now let us plug in (4.2) to (4.1):

_z = f(z; �1; �2)

_�1 = �2

_�2 = �ak2�1 � bk�2

y = �1:

(4.3)

Set � = 1
k
and ~�1 = k�1, one obtain

_z = f(z; � ~�1; �2)

�
_~�1 = �2

� _�2 = �a ~�1 � b�2

y = �1:

(4.4)

By using the slow manifold approach, one can easily show that (4.4) is

asymptotically stable on compacta. However, since

�1 = � ~�1

15
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the original closed-loop system is not necessarily asymptotically stable on

compacta. As a matter of fact, one can see precisely when the high gain

control (4.2) might go wrong: when the closed-loop system initiates at a

point with large values both in �1 and z or �2. For example, in the counter

example in [18], it is shown that the set z�1 > 1 is invariant.

Let us now consider the following modi�ed high gain control:

u = �ak�1 � bk�2 + c�1 a > 0; b > 0; c > 0: (4.5)

The di�erence with the high gain control (4.5) is that the associated poly-

nomial only has one root, instead of two as in the case of (4.2), tend to

in�nity as k tends to in�nity.

Theorem 4.1 If there exist a 
 > 0 such that

_z = f(z; �1;�
�1)

_�1 = �
�1
(4.6)

is globally asymptotically stable, then (4.1) is asymptotically stabilized on

compacta by (4.5) if a
b
= 
 and c = 
2.

Proof: Set � = 1
k
. The slow manifold is de�ned by

�2 = �
�1

and the dynamics on the slow manifold is governed by (4.6).

Now let us consider an example:

Example 4.1.

_z = �z2n+1 + 2(y1 + y31)z
4 + (y1 + y2)

2z

_y1 = y2

_y2 = u

y = y1

(4.7)

where n is a nonnegative integer. The zero dynamics of the system obvi-

ously is

_z = �z2n+1

which is globally asymptotically stable.

We show that for n = 0; 1, there is no control law which could stabilize

the system globally or on compacta; and for n � 2, one can use a linear high

gain control to stabilize the system on compacta. In other words, we will

show that as far as global or on compacta stabilization is concerned, globally

exponentially minimum phase is not necessarily a stronger hypothesis than

globally asymptotically (critically) minimum phase.

16
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Let P = f(z; y1) : p = zy1 > 1g. For all (z0; y10) in P ,

when n = 0:

_p = _zy1 + _y1z

= �y1z + 2(y21 + y41)z
4 + y1(y1 + y2)

2z + y2z

= 2(p3 � 1)p+ p(y1 + y2)
2 + (y1 + y2)z + 2p2z2

> (y1 + y2)
2 + (y1 + y2)z + 2z2 > 0

(4.8)

when n = 1:

_p = _zy1 + _y1z

= �y1z
3 + 2(y21 + y41)z

4 + y1(y1 + y2)
2z + y2z

= 2(p3 �
1

2
)p+ p(y1 + y2)

2 + (y1 + y2)z + (2p2 � p)z2

> (y1 + y2)
2 + (y1 + y2)z + z2 > 0:

(4.9)

Therefore, for the cases n = 0; 1, P is invariant forward in time. As a

matter of fact, every trajectory initialized in P has a �nite escape time.

Now for the cases of n � 2, in order to show the system is asymptotically

stabilizable on compacta by a high gain control of the type (4.5), we show

that for (4.7), (4.6) in Theorem 4.1 is globally asymptotically stable for


 = 1:

_z = �z2n+1 + 2(y1 + y31)z
4

_y1 = �y1:
(4.10)

We �rst need the following result:

Lemma 4.2 Let a > 0; ; b > 0; p > 0; q > 0 and x 2 R; y 2 R. The

following inequality:

ajxjp + bjyjq � xy � 0

with the equality held only at x = 0; y = 0, holds if

1

p
+

1

q
= 1 and (ap)

1
p (bq)

1
q > 1:

This result can be shown by using Young's inequality.

Now de�ne a Liapunov function:

V =
1

10n� 18
z10n�18 +

100

3
y61 +

100

9
y181

then

_V = �z12n�18 + 2(y1 + y31)z
10n�15 � 200y6 � 200y18

= �2(P1 + P2)

17
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where P1 =
1
4
z12n�18�y1z

10n�15+100y61 and P2 =
1
4
z12n�18�y31z

10n�15+

100y181 .

Set �z = z10n�15, one can easily see that P1 satis�es the hypotheses

of Lemma 4.2, therefore P1 > 0; 8(z; y1) 6= 0. Similarly, by setting �z =

z10n�15 and �y1 = y31 , one can show P2 > 0; 8(z; y1) 6= 0. Thus

_V � 0

and the equality holds only at z = 0; y1 = 0. Since V is obviously radially

unbounded, the origin of (4.10) is globally asymptotically stable. Therefore,

when n � 2, (4.7) can be asymptotically stabilized on compacta by a high

gain control (4.5).

It is not di�cult to show that when n � 2, the system can also be

globally stabilized by a full state feedback.

Acknowledgment The author would like to thank W. Respondek for

pointing out the subtlety in proving Proposition 2.4 during the ECC in

Groningen.

Appendix: Proof of Proposition 2.1

Proof: Rewrite the system as follows:

_x = f(x; z; �)

� _z = F (x; z; �) x 2 Rp; z 2 Rq:
(A.1)

Make a coordinate change �rst:

z = �(x) + y

then (A.1) becomes

_x = f(x; �(x) + y; �)

� _y = A(x)y +Q(x; y; �)
(A.2)

where

A(x) =
@F (x; �(x); �)

@z

Q(x; y; �) = F (x; �(x) + y; �)�
@F

@z
(x; �(x); �)y � �

@�(x)

@x
f(x; �(x) + y; �):

Suppose IB is a C1 function with the following properties:

IB(x) =

(
1; x 2 Bp;

0; jxj � 2p.

18
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De�ne

fB(x; y) = f(xIB(x); (�(x) + y)IB(x); �):

Evidently fB(x; y) agrees with f(x; y; �) when x 2 Bp. Now de�ne a col-

lection of mappings on B2p := fx : jxj � 2pg:

Y `M = fY (x; �) : jY (x; �)j �M(�); jY (x; �)� Y (�x; �)j � `(�)jx� �xjg

with kY k = sup
x2B2p

jY (x; �)j. And consider the di�erential equation:

_x = fB(x; Y (x; �)) Y (x; �) 2 Y `M
x(0) = x0 x0 2 B2p

(A.3)

Since fB(x; Y (x; �)) = 0 when jxj � 2p, the solution xY (t; x0; �) to (A.3)

will stay in B2p, i.e.

jxY (t; x0; �)j � 2p; for any x0 2 B2p; Y (x; �) 2 Y
`
M ; �1 < t <1

we can formally write:

xY (t; x0; �) = x0 +

Z t

0

fB(xY ; Y (xY ; �))dt

then,

jxY1(t; x
1
0; �)� xY2(t; x

2
0; �)j

� jx10 � x20j+ j

Z t

0

jfB(xY1 ; Y1(xY1 ; �)� f(xY2 ; Y2(x2; �)j d� j

� jx10 � x20j+M1j

Z t

0

(jxY1 � xY2 j+ jY1(xY1 ; �)� Y2(xY2 ; �)j) d� j

� jx10 � x20j+M1j

Z t

0

(jxY1 � xY2 j+ jY1(xY1 ; �)� Y2(xY1 ; �)j+

+ jY2(xY1 ; �)� Y2(xY2 ; �)j) d� j

� jx10 � x20j+M1j

Z t

0

[(1 + `(�))jxY1 � xY2 j+ kY1 � Y2k] d� j

(A.4)

where kY k = sup
x2B2p

jY (x; �)j.

By the Gronwall-Bellman inequality:

jxY1(t; x
1
0; �)�xY2(t; x

2
0; �)j � jx10�x

2
0je

M1(1+`(�))jtj+
kY1 � Y2k

1 + `(�)
eM1(1+`(�))jtj

Now, we estimate the state transition matrix of:

�
dp

dt
= A(xY (t; x0; �))p (A.5)
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where A is de�ned in (A.2). Since B2p is closed, then Re �(A(x)) � �2r,

r > 0, 8 x 2 B2p, when � is su�ciently small.

Lemma A.1 [1] Consider the system � _x = A(t)x. If jA(t)j and j _A(t)j are

bounded, and Re �(A(t)) < �2r, r > 0 8 t, then, when � is su�ciently

small, the state transition matrix is bounded by jU(t; s)j � Ke�
r
�
(t�s) t �

s.

So, the state transition matrix of (A.5) is bounded by:

jUxY (t; s; �)j � Ke�
r
�
(t�s) t � s

when � is su�ciently small. Then, the solution of

� _y = A(xY (t; x0; �))y +Q(xY (t; x0; �); y; �)

can be written as

y(t) = UxY (t; 0; �)y0 +
1

�

Z t

0

UxY (t; s; �)Q(xY (s; x0; �); y(s); �) ds:

Now de�ne an operator on Y `M :

(TY )(x0) =
1

�

Z 0

�1

UxY (0; s; �)Q(xY (s; x0; �); Y (xY (s; x0; �); �)) ds:

Recall that:

Q(x; y; �) = F (x; �(x) + y; �)� Fz(x; �(x); �)y � ��x(x)f(x; �(x) + y)

and F (x; �(x); 0) = 0, then

jQ(xY ; Y (xY ; �); �)j �M2jY (xY ; �)j
2 + �M3

�M2M
2(�) + �M3

(A.6)

then

j(TY )(x0)j �
1

�

Z 0

�1

jUxY jjQj ds

�
1

�

Z 0

�1

Ke
r
�
s(M2M

2(�) + �M3) ds

=
K

r
(M2M

2(�) + �M3)

(A.7)

by proper choice of M(�), we may have K
r
(M2M(�) + �M3

M(�)
) < 1, when � is

su�ciently small, i.e.

K

r
(M2M

2(�) + �M3) < M(�):
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Now:

j(TY1)(x
1
0)� (TY2)(x

2
0)j

�
1

�

Z 0

�1

[(jUxY1 (0; s; �)� UxY2 (0; s; �)j)jQ(xY1 ; Y1(xY1 ; �); �)j+

+ jUxY2 jjQ(xY1)�Q(xY2)j]ds:
(A.8)

We �rst need to estimate jUxY1 (t; s; �)� UxY2 (t; s; �)j (s � t) when � is

su�ciently small. Since

�
@

@t
(UxY1 (t; s; �)� UxY2 (t; s; �))

= A(xY1 (t))UxY1 (t; s; �)�A(xY2 (t))UxY2 (t; s; �)

= A(xY1 (t))(UxY1 (t; s; �)� UxY2 (t; s; �)) +

+ (A(xY1 (t))�A(xY1(t)))UxY2 (t; s; �)

(A.9)

jUxY1 (t; s; �)� UxY2 (t; s; �)j

=
1

�
j

Z t

s

UxY1 (t; �; �)(A(xY1 (�)) �A(xY1 (�)))UxY2 (�; s; �)d� j

�
1

�

Z t

s

Ke�
r
�
(t��)M4jxY2(�) � xY1(�)jKe

� r
�
(��s)d�

�
K2M4

�

Z t

s

e�
r
�
(t�s)(jx10 � x20j+

kY1 � Y2k

1 + `(�)
)eM1(1+`(�))j� jd�

�
K2M4

�M1

e�
r
�
(t�s)�M1(1+`)s(eM1(1+`)(t�s) � 1)(jx10 � x20j+ kY1 � Y2k)

�
K2M4(1 + `(�))

�
e�

r�2�M1(1+`(�))

�
(t�s)(t� s)(jx10 � x20j+ kY1 � Y2k)

�
2K2M4

r � 2�M1(1 + `(�))
e�

r�2�M1(1+`(�))

2�
(t�s)(jx10 � x20j+ kY1 � Y2k)
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Here we assume r � 2�M1(1 + `(�)) > 0. Then

1

�

Z 0

�1

jUxY1 � UxY2 jjQ(xY1 ; Y1(xY1); �)j ds

�
1

�

Z 0

�1

2K2M4

r � 2�M1(1 + `(�))
e
r�2�M1(1+`(�))

2�
s(jx10 � x20j+ kY1 � Y2k)jQj ds

�
2K2M4

�(r � 2�M1(1 + `(�)))
(M2M

2(�) + �Ms)(jx
1
0 � x20j+

+ kY1 � Y2k)

Z 0

�1

e
r�2�M1(1+`(�))

2�
sds

=
4K2M4

(r � 2�M1(1 + `(�)))2
(M2M

2(�) + �Ms)(jx
1
0 � x20j+ kY1 � Y2k)

(A.10)

and since (see [20])

jQ(xY1 ; Y1; �)�Q(xY2 ; Y2; �)j

� (M5M(�) + �M6)[(1 + `(�))jxY1 � xY2 j+ kY1 � Y2k]

� (M5M(�) + �M6)[2jx
1
0 � x20je

�M1(1+`(�))s +

+ 2kY1 � Y2ke
�M1(1+`(�))s

(A.11)

We have,

1

�

Z 0

�1

jUxY2 jjQ(xY1Y1; �)�Q(xY2 ; Y2; �)j ds

�
2

�
K(M5M(�) + �M6)

Z 0

�1

e(
r
�
�M1(1+`(�)))s[jx10 � x20j+ kY1 � Y2k] ds

=
2K(M5M(�) + �M6)

r � �M1(1 + `(�))
[jx10 � x20j+ kY1 � Y2k]

(A.12)

then,

j(TY1)(x
1
0)� (TY2)(x

2
0)j �

�
4K2M4

(M2M
2(�) + �Ms)

(r � 2�M1(1 + `(�)))2
+

+
2K(M5M(�) + �M6)

r � �M1(1 + `(�))

�
�

� (jx10 � x20j+ kY1 � Y2k)

(A.13)

Set Y1 = Y2, by proper choice of `(�), we have,

j(TY1)(x
1
0)� (TY2)(x

2
0)j � `(�)jx10 � x20j:
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So, (TY )(x0) 2 Y
`
M . Set x10 = x20 and

B(�) =

�
4K2M4

(M2M
2(�) + �Ms)

(r � 2�M1(1 + `(�)))2
+

2K(M5M(�) + �M6)

r � �M1(1 + `(�))

�

then

j(TY1)(x0)� (TY2)(x0)j � B(�)kY1 � Y2k 8 x0 2 B2p:

So,

k(TY1)(x0)� (TY2)(x0)k � B(�)kY1 � Y2k:

When � is su�ciently small, T is a contraction mapping. Therefore there

exists a Ye(x0) 2 Y
`
M , such that

Ye(x0) =
1

�

Z 0

�1

UxYe (0; s; �)Q[xYe(s; x0; �); Ye(xYe (s; x0; �)); �] ds:

Now we show y = Ye(x) (jxj � 2p) is an invariant manifold for the

following system:

_x = fB(x; y)

� _y = A(x)y +Q(x; y; �):
(A.14)

Namely we show that for (A.14), if x(0) = x0; y(0) = Ye(x0), then y(t) =

Ye(x(t)).

De�ning xy(t) = x(t), we can formally write y(t) as

y(t) = Uxy(t; 0; �)y(0) +
1

�

Z t

0

Uxy (t; s; �)Q(xy(s; x0; �); y(s; x0; �); �) ds

i.e.,

y(t) = Uxy(t; 0; �)
1

�

Z 0

�1

Uxy (0; s; �)Q(xy(s; x0; �); y(s); �) ds+

+
1

�

Z t

0

Uxy (t; s; �)Q(xy(s; x0; �); y(s); �) ds

=
1

�

Z t

�1

Uxy(t; s; �)Q(xy(s; x0; �); y(s; x0; �); �) ds

=
1

�

Z 0

�1

Uxy(t; t+ �; �)Q(xy(t+ �; x0; �); y(t+ �; x0; �); �) d�

=
1

�

Z 0

�1

U txy(0; �; �)Q(xy(�; x(t); �); y(�; x(t); �); �) d�

(A.15)

23



X. HU

where U txy is the state transition matrix satisfying

@U txy(�; �; �)

@�
= A(xy(�; xy(t)))U

t
xy
(�; �; �):

Therefore y = Ye(x) (jxj � 2p) is an invariant manifold for (A.14). Since

fB(x; y) agrees with f(x; y; �) for all x 2 Bp, it is easy to see that y = Ye(x)

(x 2 Bp) is an invariant manifold for (A.2). Therefore z = �(x) + Ye(x)

(x 2 Bp) is an invariant manifold for (A.1).

Now consider the recursion formula

Yn+1(x0) =
1

�

Z 0

�1

UxYn (0; s; �)Q[xYn(s; x0; �); Yn(xYn(s; x0; �)); �] ds

where n = 1; 2; 3; : : : , Y1(x) is an arbitrary C
1 mapping in Y `M with Y1(0) =

0.

Di�erentiating the recursion formula we have

@Yn+1(x)

@x
=

1

�

Z 0

�1

@

@x
(UxYnQ(XYn ; Yn; �)) ds:

By our assumption, F , f , � are C3, which implies
@2Yn(x)

@xi@xj
(8i 8j) are uni-

formly bounded in Bp. Then,
@Yn(x)

@x
is uniformly continuous in Bp, which

implies f
@Yn(x)

@x
g contains a uniformly convergent subsequence. Therefore,

Ye(x) is also C
1 with Ye(0) = 0.

Let  (x; �) = Ye(x), our theorem is thus proved.
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