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Abstract

In the paper \Learning Nonlinearly Parametrized Decision Re-

gions", an online scheme for learning a very general class of decision

regions is given, together with conditions on both the parametriza-

tion and on the sequence of input examples under which good learn-

ing can be guaranteed to occur. In this paper, we discuss these condi-

tions, in particular the requirement that there be no non-global local

minima of the relevant error function, and the more speci�c problem

of no attractor at in�nity. Somewhat simpler su�cient conditions

are given. A number of examples are discussed.
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1 Introduction

In [3] we presented a gradient descent based learning algorithm which was

motivated by neural network learning algorithms. We gave a deterministic

analysis of the convergence properties of the algorithm, using techniques

of dynamical systems analysis. In the course of this analysis, we derived

conditions under which the algorithm is guaranteed to learn e�ectively.

The conditions for convergence of the algorithm include restrictions on

the topological properties of an associated error surface: speci�cally that it

does not have non-global local minima, and does not produce an attractor
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at in�nity. As the error surface is de�ned by an average over all of the

training examples, it is di�cult to test conditions on the error surface. The

aim of this paper is to develop simpler su�cient conditions which are easier

to test in applications. We have had some success in this aim, particularly

with the question of attractors at in�nity, although the question of existence

of local minima remains intractable for some very simple parametrizations.

This is not surprising when one considers the value to general optimization

theory of identifying functions with no local minima. This question has

long been investigated, with few helpful results [5]. The results given in this

paper suggest considerable di�culty in analysing more complicated neural

network parametrizations. However some potentially tractable areas for

further analysis are identi�ed.

We present a number of examples of applying these results to under-

standing the behaviour of the algorithm for di�erent classes of decision

regions. We look at three di�erent parametrizations for the class of half

spaces containing the origin, and show that two of these satisfy the condi-

tions for convergence, but the third does not. The third parametrization is

shown to produce an attractor at in�nity. This is reminiscent of behaviour

observed in neural network learning, where estimate parameters may drift

o� to in�nity. This exercise shows that the large scale behaviour of the

learning algorithm is very much dependent on the choice of parametriza-

tion. The fact that such di�erent behaviour is observed strongly suggests

(but of course does not prove) that for more complex decision regions an

even wider range of behaviours may be apparent with di�erent paramet-

rizations of the decision boundary. We also look at a problem motivated

by a radar problem, where the decision regions are stripes, and at deci-

sion regions which are an intersection of two half spaces. We show that

there is no attractor at in�nity for our parametrization of an (approximate)

intersection of two half spaces.

In the following section we outline the algorithm presented in [3] and

state the conditions for convergence that we will be discussing. In section 3

we assume that the example points are uniformly distributed. Section 3.1

contains conditions under which both local minima and attractors at in�n-

ity are excluded, whereas section 3.2 focuses on the exclusion of attractors

at in�nity when local minima may or may not be present. In section 4 we

look at the application to learning half spaces, in section 5 we look at the

problem of learning stripes, and in section 6 we discuss intersections of half

spaces. In section 7 we raise the question of whether additional problems

are occur when the examples are nonuniformly distributed, and we show

that the results of section 3 must be modi�ed. Section 8 concludes.
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2 Problem Formulation and Previous Results

It is assumed that a sequence of data samples ((xk ; yk))k2ZZ+ are received,

where xk 2 X � IRn and yk 2 f�1; 1g. X is called the sample space and

yk indicates the membership of xk in some decision region � � X . If xk is

contained in � then yk = 1; otherwise yk = �1.

We assume that � belongs to a class C of subsets of X for which there

exists some parameter space A � IRm and some epimorphism (onto map-

ping) � : A! C. Moreover, it is assumed that there exists a parametriza-

tion f for C, de�ned below.

De�nition 2.1 Let C be a class of closed subsets of X with parameter

space A = IRm and some epimorphism � : A ! C. A parametrization of

C is a function f : A�X ! IR, such that for all a 2 A

f(a; x)

8<
:

> 0 if x 2 interior of �(a)

= 0 if x 2 boundary of �(a)

< 0 if x 62 �(a)

(2.1)

In addition, f(a; x) is required to be twice di�erentiable with respect to a,

on A �X; f , @f
@a

, and @2f
@a2

are to be bounded in a compact domain; and f

must be Lipschitz continuous in x in a compact domain.

The algorithm proposed in [3] is as follows:

Algorithm 2.2

Step 0: Choose the stepsize : � 2 (0;1).

Choose a boundary sensitivity parameter: " 2 (0;1).

Choose an initial parameter estimate: a0 2 A.

Step 1: Commencing at k = 0, iterate the recursion below:

ak+1 = ak � �
@f

@a

����
(ak;xk)

(g(ak; xk)� yk); (2.2)

where

g(a; x) :=
2

�
arctan

�
f(a; x)

"

�
: (2.3)

In [3], algorithm 2.2 is be shown to be a perturbation of stepwise gradient

descent of the cost function

J(a)=

lim
K!1

1

K

K�1X
k=0

�
f(a; xk)(g(a; xk)� g(a�; xk))�

"

�
ln

�
1+

f(a; xk)
2

"2

��

(2.4)
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where a� 2 A is the true parameter vector. Based on this fact, we derived

in [3] two sets of conditions, either of which guarantees that the estimate

parameters ak asymptotically enter and remain in a neighbourhood of the

parameters of the true decision region. This implies that after su�ciently

many iterations, the misclassi�ed region is very small.

One of the conditions in the �rst set (assumption B2 in [3]) is that the

cost function J has a unique critical point in A. If a = a� then each term

in the sum @J
@a

is zero. Therefore the true parameter a� is always a critical

point of J , and B2 says that a� is the only critical point of J .

Assumption B2 cannot hold when there is more than one a for which

f(a; �) � f(a�; �). This occurs in many important examples where there

is symmetry in the parametrization. We say there is more than one true

parameter value. In [3] we showed that B2 is not necessary for e�ective

learning, and it is su�cient to replace it with two conditions in the second

set: (C3) local minima of J only occur at the points where f(a; �) � f(a�; �)

and (C4) for all a0 2 A, the solution of the initial value problem (IVP)

_a(t) = ��
@J

@a

����
a(t)

; a(0) = a0 (2.5)

does not cross the boundary of A, where A is assumed to be compact. That

is, a(t) 2 A for all t � 0.

For many interesting examples, A = IRm for some m > 0, in which case

C4 says that, for all a0 2 A the solution of (2.5) is bounded for all t � 0.

We say in that case that there is no attractor at in�nity for the ordinary

di�erential equation in (2.5). If C4 is violated, the estimate parameters

generated by algorithm 2.2 may drift o� to in�nity as the algorithm up-

dates. This undesirable behaviour has been observed in neural network

learning, and in practice it would be good to anticipate this divergence,

and avoid it if possible.

For a given parametrization, it is not clear how to test conditions on the

cost function J . This is due in part to the averaging involved in de�ning J ,

and partly due to the application of the arctan squashing function to the

parametrization before taking the di�erence between f(a; �) and f(a�; �).

3 Results

In this section we ignore the in
uence that di�erent input sequences can

play in the learning. This is achieved by assuming that the input exam-

ples (xk)k2ZZ+ cover the sample space X . By this we mean that for any

integrable function f : X ! IR,

lim
K!1

1

K

K�1X
k=0

f(xk) =
1

vol X

Z
X

f(x)dx: (3.1)
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Here vol X =
R
X
dx. This is essentially a deterministic way of saying that

the input examples are uniformly distributed. In particular, this means

that

J(a) =
1

vol X

Z
x

�
f(a; x)(g(a; x) � g(a�; x)�

"

�
ln

�
1+

f(a; x)2

"2

��
dx:

(3.2)

3.1 Local minima

First we deal with condition B2, that the cost function J has a unique

critical point a�. This is guaranteed if J is strictly increasing along rays

originating at a�. That is, the directional derivative at any point a in the

direction a� a� should be positive.

De�nition 3.1 The directional derivative of J : A ! IR at point a 2 A

and in direction b 2 A, is

DbJ(a) :=

�
dJ

da

����
a

�>
b: (3.3)

Similarly, the directional derivative of f : A�X ! IR with respect to a 2 A

at point (a; x) 2 A�X, in direction b 2 A, is

Dbf(a; x) :=

 
@f

@a

����
(a;x)

!>
b: (3.4)

Note that D0J(a) = D0f(a; x) = 0 for any values of a and x. Theorem 3.2

and corollary 3.3 use the directional derivative to give su�cient conditions

that B2 is satis�ed. For brevity, we use the notation

F(a; x) := Da�a�f(a; x)(f(a; x) � f(a�; x)) (3.5)

J (a; x) := Da�a�f(a; x)(g(a; x) � g(a�; x)); (3.6)

where g is de�ned by (2.3). Note that F(a�; x) = J (a�; x) = 0. For any

a 2 IRm we partition X into the two subsets Sa := fx 2 X : F(a; x) � 0g

and Ta := XnSa.

Theorem 3.2 Assume X � IRn is compact and (xk) covers X. Let f :

IRm
�X ! IR be a parametrization of some class of decision regions, and

assume a� 2 IRm.

If, for any a 2 IRm, there exists a set Ra � Sa such that

inf
x2Ra

F(a; x) vol Ra >

 
1 + sup

x2Ra

�
f(a; x)

"

�2
!

sup
x2Ta

jF(a; x)j vol Ta; (3.7)

then @J
@a

��
a
= 0 if and only if a = a�, where J is de�ned by (2.4).

5



K.L. BLACKMORE, R.C. WILLIAMSON, I.M.Y. MAREELS

The proof of this theorem is given in the appendix.

The regions Sa and Ta can be interpreted as \good" and \bad" re-

gions respectively. If the current estimate parameter is ak, and xk falls in

Sak , then gradient descent on the instantaneous cost, f(ak; xk)(g(ak ; xk)�

g(a�; xk))�
"
�
ln
�
1 +

f(ak;xk)
2

"2

�
, will cause an update which brings the es-

timate closer to the true parameter vector. Thus if xk 2 Sak (and � is

su�ciently small), then kak+1�a�k � kak�a�k, where ak+1 is determined

by (2.2). However, if xk is chosen in Tak , then the estimate parameters

will move away from the true parameters. Averaging relies on the idea

that the e�ect of the erroneous updates is negligible. This requires that for

any a 2 A = IRm, the volume of Ta is small compared to that of Sa, and

updates made when xk falls in Ta are not signi�cantly larger than when xk
falls in Sa. The following corollary deals with the special case where the

volume of Ta is zero.

Corollary 3.3 Assume X � IRn is compact and (xk) covers X. Let f :

IRm
�X ! IR be a parametrization of some class of decision regions, and

assume a� 2 IRm.

If, for any a 2 IRm, there exists a set Ua � X such that the closure

of Ua is X and F(a; x) > 0 for all x 2 Ua then @J
@a

��
a
= 0 if and only if

a = a�, where J is de�ned by (2.4).

Proof: From the de�nition of Sa, it is clear that Ua � Sa � X , but the

closure of Ua is X , so Sa = X . Therefore vol Sa = vol X and vol Ta = 0

for all a 2 IRm. Because F(a; x) > 0 for all x 2 Ua, there exists a set

Ra � Ua such that vol Ra > 0 and infRa F(a; x) > 0. Thus Theorem 3.2

applies.

The above results rely on showing that J is strictly increasing along

rays in parameter space originating at a�. If this is relaxed to J being

nondecreasing along the rays, we may have critical points of J which are

not at a�, so B2 is violated. However, provided J is not constant along

the rays, the behaviour of the algorithm will not be signi�cantly altered by

this relaxation, because the critical points will not be local minima of J ,

and all solutions of the IVP (2.5) will be bounded for all t � 0. That is,

assumptions C3 and C4 will be satis�ed. As shown in [3], this is su�cient

for convergence of the algorithm.

To this point, we have only considered situations where there is a unique

true parameter vector. If this is not the case, B2 cannot hold, and there

must be regions where the directional derivative of J along rays originating

at any of the true parameter vectors will be negative. In this case it is

much more di�cult to test for local minima. We may have some success

if the true parameter vectors are isolated and countable, and IRm can be
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partitioned into convex sets �i, each containing exactly one true parameter

vector, a�i. Then if the directional derivative along all rays originating at

a�i is positive at all points in �i, for all possible i, then there cannot be

any local minima of J , and there is no attractor at in�nity. Thus C3 and

C4 are satis�ed. In practice, it is generally di�cult to determine the sets

�i, so this is probably not a useful result.

3.2 Attractors at in�nity

Even when local minima of the cost function exist, it is useful to know that

there is no attractor at in�nity.

Algorithm 2.2 uses a �nite step size and gradient descent on the instan-

taneous cost, rather than the average cost J , so the estimate parameters will

jump around rather than moving smoothly to the minima of J . Moreover,

they will continue to jump around even when they are in a local minimum,

or even at the global minimum of J . Large deviations theory suggests that

estimate parameters will eventually escape from the local minima (under

some additional assumptions) [1]. They may also escape from the global

minimum, though this is harder because the size of the updates is smaller

when the value of J is closer to zero.

If there is an attractor at in�nity, large deviations theory suggests that

estimate parameters will eventually appear in the basin of attraction of

this attractor. They will then head o� to in�nity and may become so large

that no amount of jumping around will cause them to return to the basin

of attraction of the global minimum. So if there is an attractor at in�nity

then ultimately the estimate parameters will converge there, even though

the value of J at this attractor may be large.

If there is no attractor at in�nity, all local minima of J are constrained

to lie within some compact set. Parameters will not wander o� to in�nity

but will spend most of their time near a local or global minimum of J . It is

much less likely that the estimate parameters will leave a global minimum

than a local minimum (since the cost driving the algorithm will be less),

so the estimate parameters are likely to spend most of their time near the

global minimum.

A classic result dealing with attractors at in�nity gives the following

(see page 204 of [4]):

Lemma 3.4 Let J : IRm
! [0; 4) have continuous second derivatives. If

J�1([0; c]) is compact for all c 2 [0; 4), and @J
@a

��
a
6= 0 except at a �nite

number of points a�1; : : : ; a�r 2 IRm, then for all a0 2 A, the solution of

the IVP (2.5) is bounded for all t � 0.

So, under the conditions of Lemma 3.4, if A = IRm then assumption C4

is satis�ed. Using Lemma 3.4 involves determining the lower level sets
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J�1([0; c]), which is not a simple problem. Essentially the idea here is that

the cost function keeps increasing as the parameter a goes to in�nity in any

direction. We are not worried about the shape of the cost surface for �nite

parameter values, but only as the parameter becomes large. Therefore we

use the following, more easily tested result.

Lemma 3.5 Let J : IRm
! [0; 4) have continuous second derivatives and

J(a�) = 0 for some a� 2 IRm. If there exists a constant C > 0 such that

Da�a�J(a) > 0 for all a 2 IRm, kak � C then for all a0 2 A, the solution

of the IVP (2.5) is bounded for all t � 0.

Proof: Let a(t) 2 IRm. If ka(t)k � C then Da�a�J(a) > 0 so the solution

of the IVP (2.5) moves towards a�, in the sense that ka(t + ") � a�k �

ka(t) � a�k for all su�ciently small " > 0. Thus all solutions of the IVP

(2.5) enter and remain in the closed ball with centre a� and radius C.

Lemmas 3.4 and 3.5 are true for any functions J which satisfy the stated

assumptions. We can now use the ideas of the last section to determine

assumptions which are speci�c to the cost function J de�ned in (2.4).

Theorem 3.6 Assume X � IRn is compact and (xk) covers X. Let f :

IRm
�X ! IR be a parametrization of some class of decision regions, and

assume a� 2 IRm.

If there exists a constant C > 0 such that, for all a 2 IRm, kak � C,

there exists a set Ra � Sa such that

inf
x2Ra

F(a; x) vol Ra >

 
1 + sup

x2Ra

�
f(a; x)

"

�2
!

sup
x2Ta

jF(a; x)j vol Ta;

(3.8)

then for all a0 2 A, the solution of IVP (2.5) is bounded for all t � 0,

where J is de�ned in (2.4).

Proof: The proof of this result follows similar lines to the proof of Theo-

rem 3.2.

In order to show that there is no attractor at in�nity, we are only ever

interested in what happens for large kak. For some cases it may be su�cient

to only calculate the limiting behaviour of F(ca; x) as c!1, which is often

much simpler than calculating F(a; x) for �nite values of a. In particular,

if limc!1F(ca; x) exists for all a and x, is never negative, and for each a

limc!1F(ca; x) is positive for some values of x then Theorem 3.6 will hold.

Or if, for each a, F(ca; x) ! 1 for some values of x, and limc!1F(a; x)

exists for all other values of x then Theorem 3.6 will hold. Thus we have

the following results.
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Theorem 3.7 Assume X � IRn is compact and (xk) covers X. Let f :

IRm
�X ! IR be a parametrization of some class of decision regions, and

assume a� 2 IRm. If

1. limc!1F(ca; x) � 0 for all a 2 A; a 6= 0; x 2 X.

2. For all a 2 IRm; a 6= 0, there exists a set Va � X and a constant

r > 0 such that vol Va 6= 0 and limc!1 infx2Va F(ca; x) � r.

then for all a0 2 A, the solution of IVP (2.5) is bounded for all t � 0,

where J is de�ned in (2.4).

Proof: Choose a 2 IRm such that kak = 1. De�ne

�a :=
r vol Va

2 vol X
�
1 + supc>0 supx2Va

f(ca;x)2

"2

� : (3.9)

The �rst assumption implies that supx2Tca jF(ca; x)j ! 0 as c ! 1, so

there exists a constant C�a such that

sup
x2Tca

jF(ca; x)j < �a 8c � C�a : (3.10)

Assumption 2 implies that there exists a constant Ca such that

inf
x2Va

F(ca; x) �
r

2
8c � Ca: (3.11)

Let C = supkak=1fC�a ; Cag.

For any a 2 IRn, we can write a = cnan, where cn = kak and an = a
kak .

By equation 3.10, if kak > C then

sup
x2Tcnan

jF(cnan; x)j <
r vol Ra

2 vol X

�
1 + sup

c>0

sup
x2Ra

f(can; x)
2

"2

� (3.12)

(3.13)

where Ra = Van . By de�nition, vol Ta � vol X , so equation 3.11 implies

that

sup
x2Ta

jF(a; x)j <
infx2Ra F(a; x) vol Ra

vol Ta

�
1 + supx2Ra

f(a;x)2

"2

� : (3.14)

Thus Theorem 3.6 holds.
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Theorem 3.8 Assume X � IRn is compact and (xk) covers X. Let f :

IRm
�X ! IR be a parametrization of some class of decision regions, and

assume a� 2 IRm. If, for all a 2 IRm; a 6= 0,

1. There exists ra > 0 such that limc!1F(ca; x) � �ra for all x 2 X.

2. There exists a set Va � X such that vol Va 6= 0 and

limc!1 infx2Va F(ca; x) =1.

then for all a0 2 A, the solution of IVP (2.5) is bounded for all t � 0,

where J is de�ned in (2.4).

Proof: The proof follows along similar lines to Theorem 3.7, the main

di�erence being that here we can choose infx2Ra F(a; x) as large as we

wish, whereas in Theorem 3.7 we can choose supx2Ta jF(a; x)j as small as

we wish.

Converse results, giving conditions under which solutions of (2.5) are

unbounded (J has an attractor at in�nity), can also be given. Theorem 3.8

will be used in sections 5 and 6 to show that for particular parametrizations

of a stripe and the (approximate) intersection of two half spaces there is

no attractor at in�nity.

4 Application | Learning a Half Space

We consider decision regions which are half spaces in IRn containing the

origin. Three di�erent parametrizations will be discussed. The �rst is

the natural choice of parametrization, and there appears to be no good

reason why either of the other two would be chosen. However, for more

complicated classes of decision regions, it can be di�cult to �nd a suit-

able parametrization, and given two candidate parametrizations it is not

immediately apparent which one is preferable. By looking at di�erent par-

ametrizations for a half space, we illustrate some of the issues that must

be considered in choosing a parametrization.

The natural choice for a parametrization of the halfspace a>x + 1 > 0

is

f1(a; x) = a>x+ 1; (4.1)

where the parameter space A = IRn. This is the parametrization used in

single node arti�cial neural networks. In this case, the directional derivative

satis�es

F1(a; x) = ((a� a�)>x)2; (4.2)

10
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which is never negative, so Corollary 3.3 holds. It turns out that the cost

function J1 induced by f1 is convex.

Another suitable parametrization is

f2(a; x) = 1� e�p(a
>x+1): (4.3)

Note that in this case the magnitude of f2(a; x) will be much larger for

points x outside the decision region than for those an equal distance inside

the decision region. Nonetheless, the decision regions de�ned by f1(a; �)

and f2(a; �) are identical. Taking the directional derivative, we see that

F2(a; x) = p(a� a�)>x(ep(a�a
�)>x

� 1)e�2p(a
>x+1); (4.4)

which is again never negative, since ez > 1 () z > 0. Again, Corollary

3.3 shows that the cost function induced by f2 has a unique critical point.

Figure 1: The cost function J3 induced by f3 when a� = �3, X = [�1; 1],

" = 0:001 and example points (xk) cover X . The average was determined

by simple numerical integration.

Now consider the parametrization

f3(a; x) = (a>x+ 1)e�(a
>x+1)2 : (4.5)

For a particular a, the decision region identi�ed by f3 is identical to that

identi�ed by f1. However in most simulations using this parametrization,

estimate parameters drift o� towards in�nity. This suggests that there

11
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is an attractor at in�nity generated by the parametrization (4.5). The

directional derivative satis�es

F3(a; x) = (a� a�)>x(1� 2(a>x+ 1)2)e�(a
>x+1)2�

(a>x+ 1)e�(a
>x+1)2

� (a�>x+ 1)e�(a
�>x+1)2

�
: (4.6)

So for any a 2 IRn, in the limit c!1,

F3(ca; x) ! 2c3(a�>x+ 1)(a>x)3e�c
2(a>x)2�(a�>x+1)2

! 0 (4.7)

for all x 2 X such that a>x 6= 0. Thus in the limit c!1, Sca = fx 2 X :

(a�>x + 1)a>x � 0g and Tca = fx 2 X : (a�>x + 1)a>x < 0g. We could

try to prove there is an attractor at in�nity by �nding opposite bounds to

those in Theorem 3.6. That is, we would try to show that for any a 2 IRm

there exists a set Wa � X and a constant r > 0 such that vol Wa 6= 0 and

limc!1F3(ca; x) � �r for all x 2Wa. But (4.7) shows that no such r can

be found in this case. Thus we have not been able to prove that there is

always an attractor at in�nity. However, for any one dimensional or two

dimensional example, the cost function J3 induced by f3 can be plotted.

Figure 1 shows the plot of J3 for a particular one dimensional case. It

can be seen from the �gure that J3 has one non global local minimum and

furthermore is decreasing (albeit slowly) as kak goes to in�nity.

5 Application | Learning a Stripe

Next consider the parametrization

f4(a; x) = � � (a>x+ 1)2; (5.1)

where a; x 2 IRn and n > 0 is some �xed constant. The decision regions

identi�ed by f4 are \stripes" in IRn, where �(a) is of width
2
p
�

kak and is

normal to a. Such decision regions arise in a radar problem. At a, the

directional derivative is

F4(a; x) = 4((a� a�)>x)2(a>x+ 1)

�
1

2
(a+ a�)>x+ 1

�
: (5.2)

This is nonnegative if (a>x + 1)( 1
2
(a + a�)>x + 1) � 0, and negative oth-

erwise. Figure 2 depicts the regions Sa and Ta for a particular choice of

estimate parameter a and true parameter a�, when X � IR2 and A = IR2.

In the limit C !1,

F4(ca; x) ! 2c4(a>x)4 ! 0 (5.3)

12
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for all x 2 fx 2 X : a>x 6= 0g and if a>x = 0 then

F4(a; x) = �4(a�>x)2
�
1

2
a�>x+ 1

�
: (5.4)

Compactness of X implies that s� = supx2X a�>x exists, so assumption 1

of Theorem 3.8 is satis�ed, with ra = 4s�2( 1
2
s�+1). Setting Va = fx 2 X :

ja>xj � "g for some " > 0, it is clear that assumption 2 of Theorem 3.8 is

also satis�ed, so there is no attractor at in�nity for this parametrization.

1

2
(a+a*)  x+1= 0T

XSTa

Σ(

a  x+1= 0T

a)Σ(
 a*)

a

Figure 2: The \good", and \bad" regions Sa and Ta for a particular choice

of a and a�. Here the sample space is X = [�1; 1]2, the true parameter

vector is a� = (0; 4), the estimate is a = (2; 0), and the width is determined

by � = 0:04. The dark shaded region is the true decision region, and the

light shaded region is the estimate decision region. Ta is the diagonally

hashed area, and Sa is the rest of X .

As an aside, note that if the input sequence (xk) consists entirely of

positive examples (yk = +1), then X = �(a�). Then Sa is much larger

than Ta for any choice of a, while the size of the integrand is of the same

order in both Sa and Ta. This is interesting because it explains why in

simulations the estimate parameters converge much more smoothly if only

positive examples are used in training. This property is a special feature

of this particular class of decision regions, and certainly does not apply

in general. Generally one would probably not get convergence at all with

solely positive examples.

13
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6 Application | Learning an Intersection of Two Half

Spaces

Now consider decision regions which are intersections of half spaces con-

taining the origin. If X � IRn, the natural choice of parameter space is

IR2n. As in [3], we use the parametrization

fp(a; x) = 1� e�p(n
>

1 x+1) � e�p(n
>

2 x+1); (6.1)

where a = vec(n1; n2), n1; n2 2 IRn. There are two true parameter vectors

in this case, vec(n�1; n
�
2) and vec(n�2; n

�
1), so the assumptions of Theorem

3.2 do not hold. The directional derivative satis�es

Fp(a; x) = p(n1 � n�1)
>x(ep(n1�n

�

1)
>x
� 1)e�2p(n

>

1 x+1)

+ p(n1 � n�1)
>x(ep(n2�n

�

2)
>x
� 1)e�2p(

n1+n2
2

>

x+1)

+ p(n2 � n�2)
>x(ep(n1�n

�

1)
>x
� 1)e�2p(

n1+n2
2

>

x+1)

+ p(n2 � n�2)
>x(ep(n2�n

�

2)
>x
� 1)e�2p(n

>

2 x+1): (6.2)

Due to the nonlinear, coupled nature of this equation, there appears to be

no simple way of describing the regions Sa and Ta. The �rst and last terms

are always positive, but the middle terms can be negative. All terms will be

positive if sgn (n1�n
�
1)
>x = sgn (n2�n

�
2)
>x. So if (n1�n

�
1) = c(n2�n

�
2)

for some positive constant c, then Fp(a; x) � 0 for all x 2 X . That is,

Sa = X if a 2
n
(n1;

n1�n
�

1

c
+ n�2) : c 2 IR

o
. As in the previous example, we

can not show there are no local minima, but we can show that there is no

attractor at in�nity.

Let a = vec(n1; n2) 2 IR2n, where either n1 may equal 0 or n2 may

equal 0, but not both. De�ne � := pn>1 x and � := pn>2 x. In the limit

c!1, F(ca; x) takes on the following values:

Case 1. � > 0 and � > 0

Fp(ca; x)! 2(c�e�c� + c�e�c�)! +0 (6.3)

Case 2. � < 0 and � > 0

Fp(ca; x)! �c�e�2c� ! +1 (6.4)

Case 3. � < 0 and � < 0

Fp(ca; x)! (�c�e�c� � c�ec�)(e�c� + e�c�)! +1 (6.5)

Case 4. � = 0 and � > 0

Fp(ca; x)! �pn�>1 x(e�pn
�>

1 x
� 1)e�2p � 0 (6.6)

14
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Case 5. � = 0 and � < 0

Fp(ca; x)! �c�e�2c� ! +1 (6.7)

Case 6. � = 0 and � = 0

Fp(ca; x) = �p(n�1 + n�2)
>x(e�pn

�>

1 x + e�pn
�>

2 x
� 2)e�2p (6.8)

Let s1 = supx2X n�>1 x and s2 = supx2X n�>2 x. Setting ra = �p(s1 +

s2)(e
�ps1 + e�ps2 � 2)e�2p and Va = fx 2 X : n>1 x � " or n>2 x � "g, for

some " > 0, the assumptions of Theorem 3.8 are satis�ed.

7 Nonuniformly Distributed Examples

The results and examples given so far in this paper have all assumed that

the examples are such that (xk) covers X . We have given conditions which

guarantee that there is a unique critical point of the cost function, or that

no attractors at in�nity exist. But these conditions may not be su�cient

if the examples do not cover X . From our de�nitions of the sets Sa and Ta
in section 3, we see that it is often possible to construct malicious input

sequences which will force the estimate parameters generated by algorithm

2.2 to diverge to in�nity. If the parametrization is such that Ta 6= ; for

all a 2 A, a suitable malicious sequence is achieved by choosing xk 2 Tak
for each k � 0. In a similar vein, Sontag and Sussman [7] have given an

example of a particular sequence of input examples which will cause the

error surface for a simple neural network learning problem to have non

global local minima.

These examples require special choices of the examples which vary with

k, so this is quite a large departure from our original assumption that

(xk) covers X . A smaller relaxation of the covering assumption is that the

examples are i.i.d. (independent and identically distributed) with some

nonuniform distribution. In this case the results of section 3 no longer

apply.

Assume that xk are i.i.d. random variables with some known distribu-

tion P (x) : X ! [0; 1]. The cost function J becomes

J(a) =

1

vol X

Z
X

�
f(a; x)(g"(a; x)� g"(a

�; x))�
"

�
ln

�
1 +

f(a; x)2

"2

��
dP (x):

(7.1)

Results similar to those in section 3 can be derived, using inf P (x) and

supP (x) on the sets Sa and Ta. Whether or not the nature of the cost

surface can be changed signi�cantly by the choice of P (�) is unclear. Do

15



K.L. BLACKMORE, R.C. WILLIAMSON, I.M.Y. MAREELS

there exist parametrizations for which there is no attractor at in�nity when

examples are uniformly distributed, but there is an attractor at in�nity

if examples are chosen according to some other distribution? If this is

the case then satisfying the conditions for uniformly distributed points

does not always guarantee good convergence if the points are nonuniformly

distributed.

8 Conclusions

In this paper we have investigated conditions guaranteeing convergence of

an algorithm for learning nonlinearly parametrized decision regions, dis-

cussed in [3]. The conditions given in [3] involve a cost function, where the

average is taken over the input examples. The conditions are hard to test

directly, so our aim here has been to develop simpler su�cient conditions

which can be tested for a particular parametrization. The approach taken

has been to relate the directional derivative of the cost function to the di-

rectional derivative of the parametrization, and integrate over the entire

sample space.

A number of examples of the application of the new conditions to partic-

ular parametrizations have been given, and some interesting insights have

been gained. We have shown that even half spaces can be parametrized

in a way which will cause the learning algorithm to fail, though for the

obvious linear parametrization, and for some nonlinear parametrizations

of a half space, the algorithm will work. We have been able to explain

why training with only positive examples gives smooth convergence for the

parametrization of a stripe. The parametrization of an intersection of half

spaces which was given in [3] has been investigated further, and it was

shown that parameters will not drift o� to in�nity if points are uniformly

distributed.

Appendix|Proof of Theorem 3.2

Let a 2 IRm. By the de�nition of a parametrization, both f and @f

@a
are

bounded on a compact domain, so infRa F(a; x) and supTa jF(a; x)j are

both �nite. In this section we write, for instance, infRa F(a; x), rather

than infx2Ra F(a; x) for the in�mum over a subset of X , and similarly for

supremum.

By (3.2), the directional derivative of J in the direction a� a� is

Da�a�J(a) =
1

vol X

Z
Sa

J (a; x)dx +
1

vol X

Z
Ta

J (a; x)dx: (A.1)

Note that the smoothness property of f , and hence g, has been used to

interchange the order of di�erentiation and integration.
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It is clear from the de�nitions of F and J that for any a 2 IRm, x 2 X ,

J (a; x) =
g(a; x)� g(a�; x)

f(a; x)� f(a�; x)
F(a; x): (A.2)

Because arctan is a strictly monotonic function, sgn (g(a; x)� g(a�; x)) =

sgn (f(a; x) � f(a�; x)). Thus for any a 2 IRm, x 2 X , sgn J (a; x) =

sgn F(a; x). In particular, for any x 2 Sa, J (a; x) is nonnegative, and for

any x 2 Ta, J (a; x) is negative.

From the intermediate value theorem, we know that for any U � X ,

inf
U

@g

@f
�

g(a; x)� g(a�; x)

f(a; x)� f(a�; x)
� sup

U

@g

@f
: (A.3)

But
@g

@f

����
(a;x)

=
2

�

"

"2 + f(a; x)2
<

2

�"
(A.4)

always, so jJ (a; x)j < 2
�"
jF(a; x)j for any values of a and x. Similarly, for

any x 2 U � X , jJ (a; x)j � 2"
�("2+sup

R
f2)
jF(a; x)j.

Now choose a 2 A, a 6= a�. From (A.1),

Da�a�J(a) vol X �

Z
Ra

J (a; x)dx +

Z
Ta

J (a; x)dx

� inf
Ra

J (a; x)

Z
Ra

dx� sup
Ta

jJ (a; x)j

Z
Ta

dx

� inf
Ra

2"

�("2 + supRa f
2)
F(a; x) vol Ra

� sup
Ta

2

�"
jF(a; x)j vol Ta

�
2

�"
inf
Ra
F(a; x) vol Ra

1

1 + supRa(f=")
2

�
2

�"
sup
Ta

jF(a; x)j vol Ta

> 0

by assumption. Therefore @J
@a

��
a
6= 0 if a 6= a� as required.
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