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Abstract

The internal subspace of a Markovian realization is characterized

using tools from geometric control theory. Zeros of spectral factors

are studied and it is shown that the forward and backward spec-

tral factors of a Markovian realization have the same zero structure.

Moreover, it is shown that the number of zeros|including zeros at

in�nity and all zeros counted with multiplicity|of the spectral fac-

tor corresponding to a realization is equal to the dimension of the

internal subspace. Finally, the forward and backward zero-dynamics

operators are introduced, being stochastic counterparts of certain

feedback matrices appearing in geometric control theory.
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1 Introduction

Given a stationary process y, obtained by passing white noise through a

linear system with transfer function W (z), what information is carried by

the zeros of W (z)?

Moreover, supposing y has a Markovian realization with forward model�
x(t+ 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t);
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corresponding to the spectral factor W (z) = C(zI �A)�1B +D, to which

extent can we solve for x given y?

More speci�cally, if we let H0 be the space generated by y de�ned as

H0 = span fa0y(t) : a 2 Rm ; t 2 Zg;

and X be the splitting subspace de�ned as

X = fa0x(0) : a 2 Rng;

can we then characterize the internal subspace X \ H0 of the realization

in terms of the parameters (A;B;C;D)? In other words, which linear

functionals of the form a0x(0) can we estimate exactly given the output y?

In this paper we characterize X \H0 using tools from geometric control

theory. The internal subspace can be written as a direct sum X \ H0 =

X \H� +X \H+; where H� and H+ are the past and future spaces of y

respectively. We show that

X \H� = fa0x(0) : a 2 V�
s
(A0; C0;B0;D0);

where V�
s
(A0; C0;B0;D0) is a certain subspace of the maximal output-nulling

subspace of the control system de�ned by (A0; C 0; B0; D0). Moreover, let

( �A; �B; �C; �D) be the matrices of a minimal backward model for X , then it

holds that

X \H+ = fa0�x(0) : a 2 V�
s
( �A0; �C0; �B0; �D0);

where V�
s
( �A0; �C0; �B0; �D0) is a certain subspace of the maximal output-nulling

subspace of the control system de�ned by ( �A0; �C 0; �B0; �D0).

We study zeros of spectral factors, and in particular we show that the

dimension of X \H0 is equal to the number of zeros of the spectral factor

W (z), where the zeros (�nite and in�nite) are counted with multiplicity.

We also show that for a �xed Markovian realization of y; the forward and

backward spectral factors have the same zero structure.

Moreover, we show that certain closed-loop system matrices appearing

in geometric control theory have abstract counterparts in stochastic realiza-

tion theory, called the zero-dynamics operators. In particular it turns out

that the zeros of W (z) are related to the eigenvalues of the zero-dynamics

operators.

Similar results were obtained for continuous-time coercive stochastic

systems by Lindquist, Michaletzky and Picci in [8]. However, the discrete-

time problem of this paper has some interesting features not present in the

continuous-time case. For example, it is necessary to consider both the

backward and forward models of a Markovian realization to characterize

X \H0 completely.
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Let us mention that zeros of discrete-time spectral factors were studied

in the regular case, i.e., when the spectral density of y is positive de�nite

on the unit circle and at in�nity, by Michaletzky in [11].

In a very recent paper by Michaletzky and Ferrante [12], zeros of acausal

spectral factors are studied (including zeros at in�nity) and a state-space

de�nition of zeros and (generalized) zero directions is given. We show that

the notion of zero directions is consistent with geometric control theory in

the sense that the set of generalized zero directions is in one-one correspon-

dence with the set of generalized left eigenvectors of the induced mapping

(A+ BF )jV�=R� , where V� is the maximal output-nulling subspace, R� is

the maximal reachability subspace and F is a friend of V�.

The paper is organized as follows. In Section 2 we recall some facts from

stochastic realization theory and geometric control theory. In Section 3 we

discuss zeros of spectral factors and show that the forward and backward

spectral factors have the same zero structure. In Section 4 we characterize

X \ H0, and in Section 5 we introduce the zero-dynamics operators. In

Section 6 we summarize the results of this paper.

2 Preliminaries

In this section we recall and derive some facts from geometric control theory

and stochastic realization theory. We also introduce, and comment on, our

assumption about the spectral density of y.

2.1 Some results from geometric control theory

In this paper we shall make extensive use of geometric control theory for

minimal systems of the form�
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t);
(2.1)

with k inputs and m outputs. Moreover, to avoid trivialities we shall

assume that
�
B0 D0

�0
has full column rank.

The monograph by Wonham [16] is a standard reference on the subject,

but it deals almost exclusively with systems for which D = 0. Geometric

control theory in the general case, i.e., when D 6= 0, was developed by

Anderson in [2]. The paper by Aling and Schumacher [1] summarizes de�-

nitions and theorems for the general case. We here recall some de�nitions

and results.

A subspace V is said to be output-nulling if there is a feedback matrix

F such that

(A+BF )V � V � ker(C +DF):
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Any such F is called a friend of V . In terms of subspace inclusion there is

a maximal output-nulling subspace denoted V�(A;B; C;D).

The concept of an output-nulling subspace has the following interpre-

tation. Under the feedback law u = Fx the system (2.1) becomes�
x(t+ 1) = (A+BF )x(t)

y(t) = (C +DF )x(t):

If now x(0) 2 V�(A;B; C;D); then x(t) 2 V�(A;B; C;D) and y(t) = 0 for

t � 0.

The map (A + BF )jV�(A;B;C;D) will be of special interest; let

V�
s
(A;B; C;D) denote its stable eigenspace and let V�

a
(A;B; C;D) denote

its antistable eigenspace. If (A + BF )jV� has no eigenvalue on the unit

circle, then

V
� = V

�
s
+ V�

a
;

where the vector sum is direct.

The following lemma will be needed. A proof of the lemma can be found

in [14].

Lemma 2.1 If for a given input fu(t) : t � 0g the corresponding output

fy(t) : t � 0g of the system (2.1) is zero, then the state trajectory fx(t) :

t � 0g is in V�(A;B; C;D).

The set of states that can be reached from the origin while keeping the

output zero is called the maximal reachability subspace R�(A;B; C;D) and

is given as

R
� = hA+ BFj Im (BjkerD) \ V

�
i;

where F is any friend of V�(A;B; C;D). The map induced in V�=R� by

(A+BF ), denoted (A+BF )jV�=R� , will be of great interest in this paper.

The map is independent of the particular choice of F .

The following lemma collects some results from geometric control theory

that will be used in the following. A proof of the lemma can be found in

[14].

Lemma 2.2 Consider the system (2.1), assuming D 6= 0. Decompose the

input space U and output space Y as the direct sums U = U1 + kerD and

Y = Im D + Y2: With respect to these decompositions the system (2.1)

takes the form8><
>:

x(t+ 1) = Ax(t) +B1u1(t) +B2u2(t)

y1(t) = C1x(t) +D1u1(t)

y2(t) = C2x(t);

(2.2)

where D1 is invertible. Now, de�ning A2 := A � B1D
�1
1 C1, V

�
2 :=

V�(A2;B2; C2; 0) and R
�
2 := R�(A2;B2; C2; 0) it holds that
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(i) V�(A;B; C;D) = V�2

(ii) R�(A;B; C;D) = R�2

(iii) with respect to the decomposition (2.2), a friend of V�(A;B; C;D) can

be taken to be of the form

F :=

�
�D�1

1 C1

F2

�
;

where F2 is a friend of V�2.

(iv) (A+BF )jV�=R� = (A2 +B2F2)jV�
2
=R�

2

:

We shall also deal with minimal systems evolving backwards in time of

the form �
x(t) = �Ax(t+ 1) + �Bu(t)

y(t) = �Cx(t+ 1) + �Du(t);
(2.3)

with k inputs and m outputs.

The transfer function of (2.3) is W (z) = z �C(I � z �A)�1 �B + �D. The

results of geometric control theory are applicable for backward systems as

well. Note that the appropriate feedback law should now be of the form

u(t) = �Fx(t+ 1).

The following lemma is analogous to Lemma 2.1.

Lemma 2.3 Consider the backward system (2.3). If for a given input

fu(t) : t � 0g the corresponding output fy(t) : t � 0g of the system (2.3) is

equal to zero, then the state trajectory fx(t) : t � 1g is in V�( �A; �B; �C; �D).

2.2 Zeros

Research on zeros of multivariable systems has generated an extensive lit-

erature during the last decades, see e.g. the survey [15].

Intuitively, a zero is a complex number z0 such that the transfer function

W (z) looses column rank at z0, and consequently there is a nonzero input

that produces zero output. The actual de�nition of a zero is a little bit

more delicate.

In this section we recall some de�nitions and results on zeros from the

literature. Moreover, we shall present a de�nition of a zero direction pro-

posed by Michaletzky and Ferrante in [12] and show that the (generalized)

zero directions are in one-one correspondence with the (generalized) left

eigenvectors of (A+BF )jV�=R� .

Finally, we shall give the appropriate de�nition of a zero of a backward

system.
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De�nition 2.4 (Zeros) Consider the minimal realization (2.1) and let

W (z) := C(zI �A)�1B +D:

(a) Let

P (z) :=

�
A� zI B

C D

�
:

A complex number z0 is a zero of the system (2.1) if

rank P (z0) < n+min(k;m): (2.4)

(b) We say that z0 is a zero of W (z) if z0 is a zero of (2.1).

(c) A zero at in�nity of W (z) is de�ned as a zero of

T (z) :=W (
az + b

cz + d
)

at z0 = �d=c, where c 6= 0.

The matrix P (z) in De�nition 2.4 is called the Rosenbrock matrix of the

system (2.1). By the �nite zero structure of the system (2.1) we shall

refer to the nonunity invariant factors of P (z). By the zero structure at

in�nity we mean the invariant factors corresponding to z0 = �d=c of the

Rosenbrock matrix corresponding to a minimal realization of T (z).

Remark 2.5 Note that the zeros of the system de�ned by (A;B;C;D) are

equal to the zeros of the dual system de�ned by (A0; C 0; B0; D0), having the

transfer function W (z)0.

The following well-known theorem can be found in [2]. A special case

of theorem, namely for the case when D = 0, is given in [3].

Theorem 2.6 Assume
�
C 0 D0

�0
has full column rank. Then the nonunity

invariant factors of

( zI � (A+BF ) )jV�=R�

are the same as the nonunity invariant factors of P (z).

In particular, the �nite zeros of (2.1) are precisely the eigenvalues of

(A+BF )jV�=R� :

Next we shall brie
y discuss an aspect of the (generalized) zero direc-

tions of the system (2.1), as de�ned in the recent paper by Michaletzky

and Ferrante [12]. More precisely, we shall show that the de�nition of zero

directions is consistent with geometric control theory, in the sense that the

(generalized) zero directions of the system (2.1) are in one-one correspon-

dence with the (generalized) eigenvectors of the map (A+BF )jV�=R� .
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De�nition 2.7 (Zero directions) Consider the minimal realization (2.1)

having at least as many inputs as outputs.

(a) The row vector � is a (left) zero direction corresponding to the zero

z0 if

�
� m

� �A� z0I B

C D

�
=
�
0 0

�
(2.5)

for some vector m.

(b) Consider a matrix triplet (�;�;M) such that

(i) � has d linearly independent rows,

(ii) � is a d� d matrix having all eigenvalues equal to z0,

(iii) (�;�;M) is a solution of

�
� M

� �A B

C D

�
=
�
�� 0

�
; (2.6)

which is maximal in the sense that there is no other triplet

(~�; ~�; ~M) solving (2.6) such that rank ~� > rank � and ~� has

all eigenvalues equal to z0.

Then the rows of � are called the generalized zero directions corre-

sponding to the zero z0.

It easy to see that the matrix � can without loss of generality be assumed

to be in its Jordan form.

The zero directions have a straight-forward interpretation in the

stochastic case. Consider the stochastic system�
x(t+ 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t);

where w is a white noise, and suppose that

�
� m

� �A� z0I B

C D

�
=
�
0 0

�
:

It now follows that

�x(t + 1) = z0�x(t) �my(t):

Hence, �x(t) is a linear combination of the state variables that is driven by

the process y. Similarly, we obtain

�x(t + 1) = ��x(t) �My(t)

for the generalized zero directions.

The following theorem is very much related to Theorem 2.6.
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Theorem 2.8 There is a one-one correspondence between the zeros and

generalized zero directions of (2.1) on the one hand, and the eigenvalues

and generalized left eigenvectors of (A+BF )jV�=R� on the other hand.

Proof: The proof is based on ideas in the papers by Anderson [2, 3].

We �rst prove the theorem for the strictly proper case, i.e, when D = 0.

Write Im B as a direct sum Im B = (Im B \ V�) +M. If we decompose

the state space Rn as a direct sum

R
n = R

� + V�=R� +W ;

where the complement W has been chosen as an extension of M, then in

an adapted basis the matrices (A+BF;B;C) takes the form

A+BF =

2
4A11 +B1F11 A12 +B1F12 A13 +B1F13

0 A22 A23

0 0 A23 +B3F23

3
5 ;

(2.7)

B =

2
4B1 0

0 0

0 B3

3
5 and C =

�
0 0 C3

�
;

where F is a friend of V�(A;B; C;D). We shall now show that the zero

directions correspond to the left eigenvectors of (A + BF )V�=R� . To this

end, let z0 be a zero and consider the de�ning equation

�
� m

� �A� z0I B

C 0

�
=
�
0 0

�
: (2.8)

Let F be a friend of V�(A;B; C) and multiply (2.8) from the right with the

invertible matrix �
I 0

F I

�
;

which yields

�
� m

� �A+BF � z0I B

C 0

�
=
�
0 0

�
: (2.9)

Next, insert the structured matrices of (2.7), partition � as � =�
�1 �2 �3

�
and permute some columns to arrive at the equation

�
�1 �2 �3 m

�
2
664
A11 + B1F11 � z0I B1 A12 + B1F12 A13 + B1F13 0

0 0 A22 � z0I A23 0

0 0 0 A33 +B3F3 � z0I B3

0 0 0 C3 0

3
775

=
�
0 0 0 0 0

�
: (2.10)
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By construction, the pair (A11; B1) is reachable and it follows from the

so-called Popov-Belevitch-Hautus lemma that the matrix�
(A11+B1F11�z0I) B1

�
has full row rank. Hence, �1 = 0.

Moreover, the matrix

Q :=

�
A33 +B3F3 � z0I B3

C3 0

�

has full row rank, see [3, p. 590], and therefore
�
0 �2 �3 m

�
solves (2.2)

if and only if �2 is a left eigenvector of A22 with eigenvalue z0. Finally, �3
and m are uniquely determined by

�2
�
A23 0

�
+
�
�3 m

�
Q = 0: (2.11)

We now turn to the case of generalized zero directions; i.e., we shall

show that the triplet (�;M;�) is a maximal solution of (2.6), where � has

all eigenvalues equal to z0, if and only if the rows of � are in one-one corre-

spondence with the generalized left eigenvectors of (A+BF )jV�=R� , corre-

sponding to the eigenvalue z0, and � is a block-diagonal matrix consisting of

the Jordan blocks with eigenvalue z0 of the Jordan form of (A+BF )jV�=R� .

We �rst consider the 2-dimensional case when

�
� M

�
=

�
�11 �12 �13 m1

�21 �22 �23 m2

�
and � =

�
z0 1

0 z0

�
:

Note that �2 is a zero direction, which implies that �21 = 0. The vector �1
is a generalized zero direction.

In the same way as we obtained (2.2) we get

�
�11 �12 �13 m1

0 �22 �23 m2

�
2
664
A11 +B1F11 B1 A12 +B1F12 A13 +B1F13 0

0 0 A22 A23 0

0 0 0 A33 +B3F3 B3

0 0 0 C3 0

3
775

=

�
z0�11 0 z0�12 + �22 z0�13 + �23 0

0 0 z0�22 �23 0

�
: (2.12)

It now follows from the reachability of (A11; B1) that �11 = 0. Moreover,

�12(A22 � z0I) = �22;

i.e., �12 is a generalized left eigenvector of (A+BF )jV�=R� . Finally, recall-

ing that �23 is determined by (2.11), we �nd that �13 and m1 are uniquely

determined by �
�13 m1

�
Q = �23 � �12A23:
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The 2-dimensional case is now complete, and the general case follows by

induction.

Finally, for the proper case, i.e., when D 6= 0, we invoke Lemma 2.2.

Without loss of generality we can assume that the system has the form8<
:

x(t+ 1) = Ax(t) +B1u1(t) +B2u2(t)

y1(t) = C1x(t) +D1u1(t)

y2(t) = C2x(t);

(2.13)

where D1 is invertible.

By Lemma 2.2, there is a friend of V�(A;B; C;D) having the form

F =

�
�D�1

1 C1

F2

�
:

It is now straight-forward to show that (2.6) can be rearranged as

�
� M2 M1

�24A2 +B2F2 B2 B1

C2 0 0

0 0 D1

3
5 =

�
�� 0 0

�
;

where A2 := A�B1D
�1
1 C1. Moreover, by Lemma 2.2

(A+BF )jV�=R� = (A2 +B2F2)jV�
2
=R�

2

;

where V�2 := V�(A2;B2; C2; 0), R
�
2 := R�(A2;B2; C2; 0) and F2 is a friend

of V�2, and it follows from the analysis for the strictly proper case that

(�;M2) is in one-one correspondence with the eigenstructure of

(A+BF )jV�=R� , corresponding to the eigenvalue z0: Finally,M1 is uniquely

determined by the equation �B1 +M1D1 = 0: 2

The following theorem by Antsaklis [4, p. 48] will be important to our

purposes.

Theorem 2.9 Consider a system de�ned by (A;B;C;D), for which the

transfer function W (z) = C(zI � A)�1B + D is of full rank. If m � k,

i.e., the number of outputs is greater than or equal to the number of inputs,

then dimR�(A;B; C;D) = 0:

Next we de�ne zeros for the backward system (2.3) and the transfer

function W (z) = z �C(I � z �A)�1 �B + �D.

De�nition 2.10 Consider the minimal realization (2.3) and let

W (z) := z �C(I � z �A)�1 �B + �D:

10
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(a) Let

�P (z) :=

�
z �A� I �B

z �C �D

�
:

A complex number z0 is a zero of the system (2.3) if

rank �P (z0) < n+min(k;m): (2.14)

(b) We say that z0 is a zero of W (z) if z0 is a zero of (2.3).

(c) A zero at in�nity of W (z) is de�ned as a zero of

T (z) :=W (
az + b

cz + d
)

at z0 = �d=c, where c 6= 0.

We shall call the matrix �P (z) the backward Rosenbrock matrix of the

system (2.3). By the �nite zero structure of the backward system (2.3) we

shall refer to the nonunity invariant factors of �P (z). By the zero structure

at in�nity we mean the invariant factors corresponding to z0 = �d=c of

the backward Rosenbrock matrix corresponding to a minimal realization of
�T (z).

2.3 Some results from stochastic realization theory

In this section we recall some facts from stochastic realization theory. The

subject has a vast literature, see the papers by Lindquist, Picci and Pavon

[9], [10], [13], and references therein.

One of the fundamental problems of stochastic realization theory is

the following. Given an m�dimensional stationary process y de�ned on

the integers having the rational spectral density �(z), �nd all minimal

stochastic realizations of y of the form�
x(t+ 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t);
(2.15)

where A is a stability matrix, x is a wide-sense Markov process, and w is

a normalized white noise. The realization (2.15) is a forward model in the

sense that w(t) is uncorrelated to x(s) for t � s.

To each realization (A;B;C;D) there corresponds a stable spectral fac-

tor

W (z) = C(zI �A)�1B +D

such that W (z)W (1=z)0 = �(z). Note that in general the spectral factor

is rectangular, having more inputs than outputs.

11
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We emphasize that for a �xed process y there is in general a family

of minimal stochastic realizations; with a particular choice of basis each

of them can be taken to have the same A and C matrices. The family of

realizations can be parameterized by the set P of solutions of the positive-

real lemma equations associated with �(z), see e.g. [13].

Many aspects of stochastic realization theory, such as minimality, are

best understood in terms of Hilbert space geometry. To each realization

of y we can assign the n�dimensional space of random variables X :=

fa0x(0) : a 2 Rng. This space is a subspace of an ambient space H of the

model (2.15), de�ned as

H := spanfa0w(t) : a 2 Rk ; t 2 Zg;

where the closure is taken in the topology of the inner product (�; �) :=

E ��.

The ambient space H is naturally equipped with the unitary shift U

induced by w, having the property that Uwi(t) = wi(t+ 1).

De�ning the past and future output spaces as

H� := spanfa0y(t) : a 2 Rm ; t < 0g

and

H+ := spanfa0y(t) : a 2 Rm ; t � 0g

respectively, it is well established in the literature that X is a minimal

Markovian splitting subspace for H� and H+. In particular, H� and H+

are conditionally orthogonal given X .

Moreover, let H0 be the vector sum of H� and H+, i.e.,

H0 := H�
_H+:

If X � H0 we say that the realization is internal, which happens if and

only if W (z) is square [13, p. 169].

Actually, a coordinate free description of a Markovian realization of y

is given by the triplet (H;U;X), since given this we can introduce a basis

for X and derive a model for y of the form (2.15). However, we can equally

well derive a model evolving backwards in time of the form�
�x(t) = �A�x(t+ 1) + �B �w(t)

y(t) = �C�x(t+ 1) + �D �w(t);
(2.16)

where �A is a stability matrix and �w is a normalized white noise. The

transfer function

W (z) = z �C(I � z �A)�1 �B + �D

of (2.16) is called a backward spectral factor of �(z). The realization (2.16)

is a backward model in the sense that �w(t) ? �x(s) for s � t+ 1.
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Note that the noises w and �w are di�erent, but x(0) and �x(0) de�ne the

same splitting subspace X . Therefore, it is more appropriate to speak of

(H;U;X) as the stochastic realization of y, and refer to (2.15) and (2.16)

as the forward and backward model respectively, of (H;U;X).

If we agree to set �x(t) := P�1x(t), there are formulas in closed form

relating (A;B;C;D) to ( �A; �B; �C; �D) (see the book by Caines [5, p. 237]).

We here mention that a Markovian realization is minimal if and only if

both (C;A) and ( �C; �A) are observable pairs. More on this can be found in

[10] and [13].

A Markovian splitting subspace can be represented as the intersection

X = S\ �S of a pair (S; �S) of subspaces of the ambient spaceH which satisfy

S � H� and �S � H+, the invariance properties U �S � �S and U�S � S,

and intersect perpendicularly in the sense that H = S? �X � �S?, where

the complements are taken with respect to H . We shall write X � (S; �S)

to refer to this representation.

Finally, we state as a lemma a result from [8, p. 17]. Although the

paper [8] deals with the continuous-time case, the proof, which is completely

geometric, shows that the lemma is valid in the discrete-time case as well.

Lemma 2.11 Suppose the vector sum H0 = H�+H+ is direct, and let X

be a splitting subspace. Then

X \H0 = (X \H�) + (X \H+);

where the sum is direct.

2.4 Assumption on the spectral density

In this paper we assume that the spectral density �(z) is rational, full rank,

and positive de�nite for jzj = 1, i.e., �(ei!) is coercive. This implies that

the spaces H� and H+ are linearly independent [7], i.e., H�\H+ = 0, and

that H0 = H� +H+, where + denotes direct vector sum. Furthermore, it

follows that each element � 2 H� has a representation of the form

� =

1X
k=1

u(k)0y(�k);

where the sequence u is square-summable. Similarly, an element � 2 H+

can be represented as

� =

1X
k=0

u(k)0y(k):

The fact that �(z) is positive de�nite on the unit circle also implies

that no minimal spectral factor of �(z) has zeros on the unit circle.

13
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The assumption that the spectral density be positive de�nite on the

unit circle is common in stochastic systems theory. The continuous-time

counterpart of this assumption, employed by Lindquist, Michaletzky and

Picci in [8], is that the spectral density be coercive on the imaginary axis.

However, the discrete-time problem has some interesting features not

present in the continuous-time case, even though we assume that the spec-

tral density is coercive. In the continuous-time case the coercivity of the

spectral density implies that no spectral factor has zeros at in�nity; this is

not true in the discrete-time case. As a consequence, the characterization

of X \H0 di�ers from that in continuous time.

Moreover, in continuous time the D-term of each realization satis�es

DD0 = �(1) > 0;

and thus we have full row rank. In the discrete-time case the D-term varies

over the set of realizations, and cannot be be assumed to be of full rank for

an arbitrary realization. As a consequence, di�erent techniques are needed

in the proofs of some of the theorems.

3 Zeros of Spectral Factors

In this paper we only consider minimal spectral factors. From Theorem 2.6

it follows that the �nite zeros of the spectral factor W (z) are precisely the

eigenvalues of (A+BF )jV�=R� ; where F is a friend of V�(A;B; C;D).

Note that for a minimal spectral factor of a full rank spectral density, the

number of inputs is greater than, or equal to, the number of outputs. Now,

since W (z) and W (z)0 have the same zeros, we can combine Theorem 2.6

and Theorem 2.9 to conclude that the �nite zeros of W (z) are precisely the

eigenvalues of

(A0 + C 0F 0)jV�(A0;C0;B0;D0);

where F 0 is a friend of V�(A0; C0;B0;D0).

In this paper we shall sometimes suppress the dependence of the sys-

tem matrices in V� and R�; it should be clear from the context whether

(A;B;C;D) or (A0; C 0; B0; D0) is referred to. However, if backward quan-

tities are involved, we shall indicate this with a bar.

The next theorem is a backward version of Theorem 2.6. Note, however,

that now the nonzero zeros (including z = 1) of W (z) correspond to

the inverses of the eigenvalues of ( �A + �B �F )j�V�= �R� ; where �F is a friend of
�V�( �A; �B; �C; �D).

Theorem 3.1 The nonzero zeros (including z =1) of the backward sys-

tem (2.3) are precisely the inverses of the eigenvalues of ( �A+ �B �F )j�V�= �R�,

where 1=0 :=1.

14
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Proof: If z0 is nonzero and �nite, the backward Rosenbrock matrix looses

rank at z0 if and only if "
�A� ( 1

z0
)I �B

�C �D

#

looses rank. From Theorem 2.6 it now follows that this happens if and only

if 1=z0 is an eigenvalue of ( �A+ �B �F )j�V�= �R� .

For z0 =1 we proceed as follows. By theorem Theorem 2.6 the eigen-

structure at the origin of ( �A+ �B �F )j�V�= �R� is given by the matrix�
�A �B
�C �D

�
: (3.1)

To reveal the zero structure at in�nity of W (z), we may consider the zero

structure at z= 1 of the transfer function

T (z) =W (
1

z�1
):

Since A is a stability matrix, �A1 := �A + I is invertible, and by using the

matrix-inversion lemma, T (z) can be written

T (z) = � �C �A�11 [
1

z
I � �A�11 ]�1 �A�11

�B + ( �D � �C �A�11
�B);

and thus has the backward realization

( �A�11 ; �A�11
�B; � �C �A�11 ; �D � �C �A�11

�B): (3.2)

The backward Rosenbrock matrix of (3.2) is"
z �A�11 � I �A�11

�B

�z �C �A�11
�D � �C �A�11

�B

#
;

and the zero structure at z = 1 of (3.2) is given by the matrix"
�A�11 � I �A�11

�B

� �C �A�11
�D � �C �A�11

�B

#
: (3.3)

The matrix (3.1) can be written�
�A1 � I �B
�C �D

�
; (3.4)

and since the matrices (3.4) and (3.3) are related as�
�A1 � I �B
�C �D

��
� �A�11 � �A�11

�B

0 I

�
=

"
�A�11 � I �A�11

�B

� �C �A�11
�D � �C �A�11

�B

#

15
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the conclusion follows. 2

The next theorem states that for a �xed Markovian realization (H;U;X)

of a process y the forward and backward models have the same zero struc-

ture; in particular, W (z) and W (z) have the same zeros. For this theorem

we do not assume that the spectral density is positive de�nite on the unit

circle. The analogous result for the continuous-time case was shown by

Green in [6], and Lindquist and Picci in [9].

Theorem 3.2 Let y be a process with rational spectral density. If (H;U;X)

is a Markovian realization of y with forward and backward spectral factors

W (z) and W (z) respectively, then W (z) and W (z) have the same zero

structure.

Proof: We �rst show that W (z) and W (z) have the same �nite zero struc-

ture. This amounts to showing that

P (z) =

�
A� zI B

C D

�
and �P (z) =

�
z �A� I �B

z �C �D

�

are equivalent; i.e.,

P (z) = S(z) �P (z)T (z);

where S and T are some unimodular matrices. Without loss of generality

we can choose basis in X such that P = E x(0)x(0)0 = I . Then x(0) = �x(0)

and the parameters of the backward model can be expressed in terms of

(A;B;C;D) as8>><
>>:

�A = A0

�B = �(I +A0)(I +A)�1B
�C = CA0 +DB0

�D = D � �C(I +A)�1B � C(I +A)�1B;

(3.5)

see e.g. Caines [5, p. 237]. Conversely, (A;B;C;D) can be obtained from

( �A; �B; �C; �D) as8>><
>>:

A = �A0

B = �(I + �A0)(I + �A)�1 �B

C = �C �A0 + �D �B0

D = �D � C(I + �A)�1 �B � �C(I + �A)�1 �B:

(3.6)

Letting

A1 := I +A

we can write

�P (z) =

�
zA01 � zI � I �A01A

�1
1 B

zCA01 � zC + zDB0 D �DB0A�11 B � CA01A
�1
1 B

�
:

16
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De�ne

S(z) :=

�
�A1(A

0
1)
�1 0

�DB0(A01)
�1 � C I

�
and

T (z) :=

�
I 0

�B0(A01)
�1 � zB0(A01)

�1 I

�
:

It is now straight-forward to verify that

P (z) = S(z) �P (z)T (z):

In establishing this, it is useful to note that (A1�BB0)(A01)
�1 = A, which

is a consequence of the Lyapunov equation I = AA0 +BB0:

In particular, we have shown that W (z) and W (z) have the same zero

structure at the origin, i.e.,�
A B

C D

�
�

�
�I �B

0 �D

�
: (3.7)

Next, we show that W (z) and W (z) have the same zero structure at

in�nity. To this end, let T (z) := W (�1 + 1=z ). The zero structure at

in�nity of the forward model is now given by the zero structure at the

origin of T (z). Since

T (z) =W (�1 +
1

z
) = C(

1

z
I � (A+ I))�1B +D

= C(
1

z
I �A1)

�1B +D

= �CA1(zI �A�11 )�1A�11 B + [D � CA�11 B];

where the last equality follows from the matrix-inversion lemma, T (z) can

be realized as

(A�11 ; A�11 B; �CA�11 ; D � CA�11 B):

Hence, the zero structure at the origin of T (z) is given by the matrix�
A�11 A�11 B

�CA�11 D � CA�11 B

�
;

which is equivalent to �
�I B

0 D

�
(3.8)

since �
A�11 A�11 B

�CA�11 D � CA�11 B

�
=

�
A�11 0

�CA�11 I

��
�I B

0 D

��
�I 0

0 I

�
:

17
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Moreover, from Theorem 3.1 it follows that the zero structure at in�nity

of W (z) is given by �
�A �B
�C �D

�
: (3.9)

Hence, we must �nally show that the matrices (3.8) and (3.9) are equivalent,

but this equivalence is just a \dual" version of (3.7), and can therefore be

derived in a similar way. 2

Combining Theorem 3.1 and Theorem 3.2 we obtain the following corol-

lary.

Corollary 3.3 The stable zeros of W (z) are precisely the stable eigenval-

ues of

(A+BF )jV�=R� ;

where F is a friend of V�(A;B; C;D), and the antistable zeros of W (z) are

precisely the inverses of the stable eigenvalues of

( �A+ �B �F )j�V�= �R� ;

where �F is a friend of �V�( �A; �B; �C; �D).

Since W (z) and W (z)0 have the same zeros, there is a dual version of

the preceding corollary.

Corollary 3.4 The stable zeros of W (z) are precisely the stable eigenval-

ues of

(A0 + C 0F 0)jV� ;

where F 0 is a friend of V�(A0; C0;B0;D0), and the antistable zeros of W (z)

are precisely the inverses of the stable eigenvalues of

( �A0 + �C 0 �F 0)j�V� ;

where �F 0 is a friend of �V�( �A0; �C; �B0; �D0).

4 Characterization of X \H0

In this section we characterize the internal part X \ H0 of a Markovian

realization. In [8] it was shown that in the continuous-time case X \H0 =

fa0x(0) : a 2 V�(A0; C0;B0;D0)g. In the discrete-time case this result does

not hold in general, as is shown in the example below. However, one of the

inclusions remains valid.

Note that a minimal spectral factorW (z) of a full rank spectral density

has at least as many inputs as outputs and that the converse holds for

18
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W (z)0 and the dual quadruple (A0; C 0; B0; D0). From Theorem 2.9 it now

follows that

R
�(A0; C0;B0;D0) = 0;

and therefore, by Theorem 2.6, the number of �nite zeros ofW (z) (counted

with multiplicity) is equal to the dimension of V�(A0; C0;B0;D0).

Example 4.1 Consider the scalar spectral density

�(z) =
z

(z � a)(1� az)
;

where jaj < 1. The two stable minimal scalar spectral factors are

W+(z) =
1

z � a
and W�(z) =

z

z � a
=

a

z � a
+ 1:

Note that W+(z) has no zero, whereas W�(z) has a zero at the origin, i.e.,

a stable zero.

Letting (A;B+; C;D+) and (A;B�; C;D�) be minimal realizations of

W+(z) and W�(z) respectively, it follows from Theorem 2.6 and Theo-

rem 2.9 that

V
�(A0; C0;B0+;D

0
+) = 0;

whereas V�(A0; C0;B0�;D
0
�) is one-dimensional. Since the spectral factors

are square, the realizations are internal and dim(X� \ H0) = dim(X+ \

H0) = 1, where X� and X+ are the minimal splitting subspaces corre-

sponding to W�(z) and W+(z) respectively. Hence, the characterization of

X \H0 di�ers from that in the continuous-time case.

Proposition 4.2 Let y be a stationary process on Z and suppose the

stochastic system �
x(t+ 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t)
(4.1)

is a minimal realization of y. If a 2 V�
s
(A0; C0;B0;D0) then a0x(0) 2 X\H�,

and if a 2 V�
a
(A0; C0;B0;D0); then a0x(0) 2 X \H+.

Proof: In the proof we shall need the (backward) dual control system�
z(t) = A0z(t+ 1) + C 0u(t)

v(t) = B0z(t+ 1) +D0u(t):
(4.2)

Using the system equations (4.1) and (4.2), we get

z(t+ 1)0x(t+ 1)� z(t)0x(t) = v(t)0w(t) � u(t)0y(t): (4.3)
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To prove the �rst claim, let a 2 V�
s
(A0; C0;B0;D0). Expanding (4.3)

backwards gives

z(0)0x(0)� z(t)0x(t) =

�1X
k=t

v(k)0w(k) �

�1X
k=t

u(k)0y(k):

Letting u(t) = F 0z(t+ 1), where F 0 is a friend of V�(A0; C0;B0;D0), gives

z(t) = (A0 + C 0F 0)z(t+ 1);

and if z(0) = a then z(t) 2 V�
s
(A0; C0;B0;D0) for t � 0 and

v(t) = (B0 +D0F 0)z(t+ 1) = 0

for t � �1. By the stability of (A0 + C 0F 0)jV�
s
it follows that z(t) ! 0 as

t! �1 and we get

z(0)0x(0) = �

�1X
k=�1

u(k)0y(k) 2 H�:

Hence, a0x(0) 2 X \H�.

To prove the second claim, let a 2 V�
a
(A0; C0;B0;D0). Expanding (4.3)

forwards gives

z(t)0x(t) � z(0)0x(0) =

t�1X
k=0

v(k)0w(k) �

t�1X
k=0

u(k)0y(k):

Letting u(t) = F 0z(t+ 1), where F 0 is a friend of V�(A0; C0;B0;D0), gives

z(t) = (A0 + C 0F 0)z(t+ 1):

Since (A0+C 0F 0)jV�
a
has no eigenvalue at the origin, it is invertible and we

have the invariance

[(A0 + C 0F 0)jV�
a
]�1V�

a
� V

�
a
: (4.4)

Hence, with the initial condition z(0) = a the closed-loop system can be

iterated forwards in time, and due to the invariance (4.4) it follows that

z(t) 2 V�
a
(A0; C0;B0;D0)

and v(t) = 0 for t � 0. By the stability of [(A0 + C 0F 0)jV�
a
]�1, it follows

that z(t)! 0 as t!1 and we get

z(0)0x(0) =

1X
k=0

u(k)0y(k) 2 H+:
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Hence, a0x(0) 2 X \H+. 2

The following proposition gives the converse of the �rst claim of the

preceding proposition. Recall, as was shown in Example 4.1, that the

converse of the second claim is false. The proof of the proposition also

explains why the dual quadruplet (A0; C 0; B0; D0) enters the analysis.

Proposition 4.3 Let y be a stationary process on Z and suppose the

stochastic system �
x(t+ 1) = Ax(t) +Bw(t)

y(t) = Cx(t) +Dw(t)
(4.5)

is a realization of y. Then X \H� = fa0x(0) : a 2 V�
s
(A0; C0;B0;D0)g.

Proof: By Proposition 4.2 it follows that

a0x(0) 2 X \H�

if

a 2 V�
s
(A0; C0;B0;D0):

To show the converse, let � = a0x(0) 2 X \H�. Since � 2 X , solving the

�rst of the equations (4.5) gives

� =

�1X
k=�1

a0A�k�1Bw(k) =

1X
k=�1

f(�k)0w(k); (4.6)

where

f(k) :=

(
B0(A0)k�1aif k � 1

0 if k � 0:
(4.7)

The spectral-domain equivalent of (4.6) is

� =

Z �

��

f̂(ei�)0dŵ(�): (4.8)

Since � 2 H� and �(ei!) is coercive, � has a time-domain representation

� =

1X
k=�1

u(�k)0y(k);

where u is square summable and u(k) = 0 if k � 0, and a spectral-domain

representation

� =

Z �

��

û(ei�)0dŷ(�) =

Z �

��

û(ei�)0W (ei�)dŵ(�); (4.9)
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whereW (z) = C(zI�A)�1B+D. By comparing (4.8) and (4.9), it follows

from the uniqueness of spectral representations that

f̂(ei�) =W (ei�)0û(ei�): (4.10)

The equation (4.10) suggests the introduction of the (forward) dual control

system �
z(t+ 1) = A0z(t) + C 0u(t)

v(t) = B0z(t) +D0u(t)
(4.11)

having the transfer function W (z)0 = B0(zI �A0)�1C 0+D0. Transforming

(4.10) into the time domain gives

f(t) =

t�1X
k=�1

B0(A0)t�k�1C 0u(k) +D0u(t): (4.12)

Comparing (4.7) and (4.12) for t � 1, using the fact that u(t) = 0 for t � 0,

gives

t�1X
k=1

B0(A0)t�k�1C 0u(k) +D0u(t) = B0(A0)t�1a;

i.e.,

B0(A0)t�1(�a) +B0
t�1X
k=1

(A0)t�k�1C 0u(k) +D0u(t) = 0

(4.13)

for t � 1. Equation (4.13) can be interpreted as that the input u is output-

nulling for the dual system (4.11) initialized at z(1) = �a. By Lemma 2.1

it follows that a 2 V�(A0; C0;B0;D0).

It remains to show that a 2 V�
s
(A0; C0;B0;D0). Since

V
�(A0; C0;B0;D0) = V

�
s
(A0; C0;B0;D0) + V�

a
(A0; C0;B0;D0);

where the sum is direct, we can write

a = a1 + a2;

where a1 2 V
�
s
(A0; C0;B0;D0) and a2 2 V

�
a
(A0; C0;B0;D0). Consequently,

a0x(0) = a01x(0) + a02x(0); (4.14)

and by Proposition 4.2 it follows that a01x(0) 2 X \ H� and a02x(0) 2

X \H+. Now rearrange (4.14) as

(a� a1)
0x(0) = a02x(0): (4.15)
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The left-hand side of (4.15) is in X \ H� and the right-hand side is in

X \ H+. Recall that by Lemma 2.11 the spaces X \H� and X \H+ are

linearly independent, and therefore

(a� a1)
0x(0) = 0:

Finally, since the components of x(0) form a basis in X it follows that

a = a1 and a 2 V
�
s
(A0; C0;B0;D0). 2

The next step is to characterize X \H+. Since Proposition 4.3 states

that X \ H� and V�
s
(A0; C0;B0;D0) are isomorphic it is natural to utilize

the backward model ( �A; �B; �C; �D) of X and try to show that

X \H+ = fa0�x(0) : a 2 �V�
s
( �A0; �C 0; �B0; �D0)g:

Proposition 4.4 Let y be a stationary process on Z and suppose that the

backward stochastic system�
�x(t) = �A�x(t+ 1) + �B �w(t)

y(t) = �C�x(t+ 1) + �D �w(t)
(4.16)

is a realization of y. Then

X \H+ = fa0�x(0) : a 2 �V�
s
( �A0; �C 0; �B0; �D0)g:

Moreover, if a 2 �V�
a
( �A0; �C 0; �B0; �D0) then a0x(0) 2 X \H�.

The proof Proposition 4.4 is similar to the proofs of Proposition 4.2 and

Proposition 4.3 and is therefore omitted.

Combining Proposition 4.2, Proposition 4.3 and Proposition 4.4 we ob-

tain the following corollary.

Corollary 4.5 Choose a basis in X such that E x(0)x(0)0 = I (which im-

plies that x(0) = �x(0) ). With this choice of basis it holds that

�V�
a
( �A0; �C 0; �B0; �D0) � V

�
s
(A0; C0;B0;D0);

and

V
�
a
(A0; C0;B0;D0) � �V�

s
( �A0; �C0; �B0; �D0):

We summarize the results on the characterization of X \H0 as a theorem.

Theorem 4.6 Let y be stationary process with a rational coercive spectral

density. Suppose (H;U;X) is a Markovian realization of y with forward

model (A;B;C;D) and backward model ( �A; �B; �C; �D). Then

X \H� = fa0x(0) : a 2 V�
s
(A;B; C;D)g

23



J-A. SAND

and

X \H+ = fa0�x(0) : a 2 �V�
s
( �A; �B; �C; �D)g:

In particular, dim(X \H�) is equal to the number of stable zeros of W (z),

and dim(X\H+) is equal to number of antistable zeros of W (z) (including

zeros at in�nity).

We illustrate the theorem in a continuation of Example 4.1.

Example 4.7 Consider again the spectral density

�(z) =
z

(z � a)(1� az)
;

where jaj < 1, with the two minimal scalar spectral factors

W+(z) =
1

z � a
and W�(z) =

z

z � a
=

a

z � a
+ 1:

A minimal realization of W+(z) is�
x(t + 1) = ax(t) + w(t)

y(t) = x(t):
(4.17)

Since W+(z) has no zero it follows that V�(a;1;1; 0) = 0, which also can

be seen directly from V� � ker1 = 0. This agrees with X+ \H
� = 0.

The backward model corresponding to (4.17) is�
�x(t) = a �x(t+ 1) + (1� a2) �w(t)

y(t) = a=(1� a2) �x(t+ 1) + �w(t)
(4.18)

and the backward spectral factor is

W+(z) =
1

1� za
:

Since W+(z) is strictly proper, it has a zero at in�nity, i.e., an antistable

zero. From Theorem 2.9 and Theorem 3.1 it follows that �V�
s
(a; a=(1 �

a2); (1�a2); 1) is one-dimensional, which agrees with dim(X+\H
+) = 1.

A minimal realization of W�(z) is�
x(t+ 1) = ax(t) + aw(t)

y(t) = x(t) + w(t):
(4.19)

Note that the processes x and w in (4.19) are di�erent from those in (4.17).

Since W�(z) has a zero at the origin it holds that V�
s
(a;1;a;1) is one-

dimensional, which agrees with dim(X \H�) = 1.
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The backward model corresponding to (4.19) is�
�x(t) = a �x(t+ 1) + (1� a2)=a �w(t)

y(t) = a=(1� a2) �x(t+ 1);
(4.20)

and the backward spectral factor is

W�(z) =
z

1� az

with no antistable zero. Hence, �V�
a
(a; a=(1� a2); (1� a2)=a; 0) = 0, which

agrees with dim(X� \H
+) = 0.

Example 4.8 (AR(p) process) Consider the AR(p) process

y(t) = a1y(t� 1) + a2y(t� 2) + : : : apy(t� p) + e(t);

where e is a normalized white noise.

One state space model is found by letting

x(t) :=
�
y(t�1); y(t�2); : : : ; y(t�p)

�0
;

w(t) := e(t), and de�ning the matrices

A :=

2
66664
a1 a2 � � ap�1 ap
1 0 � � 0 0

0 1 � � 0 0

� � � � � �

0 0 � � 1 0

3
77775 ; B :=

2
66664
1

0

�

�

0

3
77775 ; (4.21)

C :=
�
a1; a2; : : : ; ap

�
and D := 1. The spectral factor corresponding

to this realization is

W (z) =
zp

zp � a1zp�1 � : : :� ap
;

having a zero of multiplicity p at the origin. Hence, W (z) has p stable zeros

and it follows from Theorem 4.6 that dim(X \H�) = p, as can be seen by

inspection.

Another state space model is found as

x(t) :=
�
y(t); y(t�1); : : : ; y(t�p+1)

�0
;

w(t) := e(t+1); A and B as in (4.21), C :=
�
1; 0; : : : ; 0

�
and D := 0.

The spectral factor corresponding to this realization is

W (z) =
zp�1

zp � a1zp�1 � : : :� ap
;

having a zero of multiplicity p�1 at the origin. Hence, W (z) has p�1

stable zeros and it follows from Theorem 4.6 that dim(X \H�) = p�1 and

dim(X \H+) = 1, as can be seen by inspection.
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5 The Zero-Dynamics Operators

What is the stochastic interpretation of the mappings

(A0 + C 0F 0)jV�
s

(5.1)

and

( �A0 + �C 0 �F 0)j�V�
s

? (5.2)

In this section we show that the mappings (5.1) and (5.2) have counterparts

in stochastic realization theory, called the zero-dynamics operators. In

particular, the eigenvalues of the mappings (5.1) and (5.2), i.e., the zeros

of W (z), are the eigenvalues of the zero-dynamics operators.

Recall that there are stochastic interpretations of the mappings A and
�A, and thus also the poles of W (z), see e.g. [10]. In fact, the mapping A0

is a matrix representation of the compressed shift U(X) : X ! X de�ned

as U(X) := EXU jX : In particular, it follows that the set of poles of W (z)

is equal to the spectrum of U(X). Moreover, U�(X) := EXU�jX has the

matrix representation �A0.

We now give a lemma, which is a discrete-time version of a lemma in

[8], showing that X \H� and X \H+ enjoy certain invariance properties,

analogous to controlled invariance in geometric control theory.

Lemma 5.1 Let Yt , fa
0y(t) : a 2 Rmg. If � 2 X \H� then

U� 2 (X \H�) + Y0;

and if � 2 X \H+ then

U�� 2 (X \H+) + Y�1:

Proof: Let � 2 X \ H�. Recall that X = S \ �S and U �S � �S. Thus,

� 2 X implies that � 2 �S and U� 2 �S. Moreover, � 2 H� implies that

U� 2 H� + Y0. Hence, U� 2 �S \ (H� + Y0).

We shall now show that

�S \ (H�+ Y0) = ( �S \H�) + ( �S \ Y0) = (X \H�) + Y0:

(5.3)

We �rst show the second equality of (5.3). This follows from

X \H� = �S \ S \H� = �S \H�;

where H� � S has been used, and

�S \ Y0 = Y0;
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where Y0 � H+ � �S has been used.

Next, we show the �rst equality of (5.3). Note that one of the inclusions

is trivial. Now, let � 2 �S \ (H� + Y0). Since � 2 H� + Y0, we can write

� = �+ � with � 2 H� and � 2 Y0. From � 2 �S and � 2 Y0 � H+ � �S it

follows that � 2 �S. Hence, � 2 �S \H� and � 2 �S \ Y0. 2

In view of the preceding lemma we can construct an operator acting on

X \ H�, in a way resembling the construction of the compression of the

shift. To this end, let

�� : H0 ! H�

be the oblique projection onto H� along H+. Suppose

� = a0x(0) 2 X \H�;

i.e., a 2 Vs(A
0; C0;B0;D0). From Lemma 5.1 it follows that

U� = �1 + b0y(0); (5.4)

where �1 2 X \H� and b0y(0) 2 Y0, and that the representation is unique.

Applying �� to (5.4) yields

��U� = �1:

De�nition 5.2 The operator Vf (X) : X \H�
! X \H� de�ned as

Vf (X) := ��U jX\H�

is called the forward zero-dynamics operator.

In a similar manner we can de�ne an operator acting on X \H+. Let

�+ : H0 ! H+

be the oblique projection onto H+ along H�. Suppose

� = a0x(0) 2 X \H+;

i.e., a 2 Vs( �A
0; �C0; �B0; �D0). From Lemma 5.1 it follows that

U�� = �1 + b0y(�1); (5.5)

where �1 2 X \ H+ and b0y(�1) 2 Y�1, and that the representation is

unique. Applying �+ to (5.5) yields

�+U
�� = �1:

De�nition 5.3 The operator Vb(X) : X \H+
! X \H+ de�ned as

Vb(X) := �+U
�
jX\H+

is called the backward zero-dynamics operator.
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The following theorem states that the mappings (5.1) and (5.2) are

matrix representations of Vf (X) and Vb(X) respectively.

Theorem 5.4 The forward and backward zero-dynamics operators have

the matrix representations

Vf (X) ' (A0 + C 0F 0)jV�
s
(A0;C0;B0;D0);

where F 0 is a friend of V�
s
(A0; C0;B0;D0), and

Vb(X) ' ( �A0 + �C 0 �F 0)j�V�
s
( �A0; �C0; �B0; �D0);

where �F 0 is a friend of �V�
s
( �A0; �C 0; �B0; �D0).

In particular, the stable zeros of W (z) are precisely the eigenvalues of

Vf (X), and the antistable zeros of W (z) are precisely the reciprocals of the

eigenvalues of Vb(X).

Proof: Suppose � = a0x(0) 2 X \H�, i.e., a 2 V�
s
(A0; C0;B0;D0). Letting

�1 = Vf (X)�, we must show that

[(A0 + C 0F 0)a]0x(0) = �1;

where F 0 is a friend of V�(A0; C0;B0;D0). Since V�
s
(A0; C0;B0;D0) is invariant

for (A0 + C 0F 0) we have

[(A0 + C 0F 0)a]0x(0) 2 X \H�;

i.e.,

a0Ax(0) + a0FCx(0) = �2; (5.6)

for some �2 2 X \H�. Adding a0Bw(0) to (5.6) yields

a0Ax(0) + a0Bw(0) + a0FCx(0) = �2 + a0Bw(0): (5.7)

Since a 2 V�
s
(A0; C0;B0;D0), we have (B0+D0F 0)a = 0, i.e., a0B = �a0FD.

Using this, (5.7) can be rearranged as

a0x(1) = �2 � a0FCx(0)� a0FDw(0)

= �2 � a0Fy(0):

Now, since a0Fy(0) 2 Y0 and �2 2 X \ H� it follows by uniqueness that

�1 = �2; and

Vf (X) ' (A0 + C 0F 0)jV�
s
(A0;C0;B0;D0):

The proof of Vb(X) ' ( �A0 + �C 0 �F 0)j�V�
s
( �A0; �C0; �B0; �D0) is completely analo-

gous. 2
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6 Conclusions

We have characterized the internal part of a stochastic realization, i.e., the

part of the stochastic state that can be determined from the output process.

The characterization is stated in terms of geometric control theory, and the

internal part is easy to compute when numerical values are given. In order

to parameterize the internal part completely, it is necessary to consider

both the forward and backward models of a �xed Markovian realization.

Moreover, we have shown that the forward and backward models of a

�xed Markovian realization have the same zero structure.

The number of stable zeros of a (possibly nonsquare) spectral factor is

equal to the dimension of the intersection between the splitting subspace

and the past of the output process. The number of antistable zeros (in-

cluding zeros at in�nity) equals the dimension of the intersection between

the splitting subspace and the future of the output process.

Finally, we have introduced the forward and backward zero-dynamics

operators, having as eigenvalues the stable zeros and the inverses of the

antistable zeros of the spectral factor. These operators are stochastic coun-

terparts of certain feedback matrices appearing in geometric control theory.

Acknowledgments

The author would like to thank: Professor Anders Lindquist at the Royal

Institute of Technology, Stockholm, Sweden, for his support during this

work; Professor Gy�orgy Michaletzky at the E�otv�os Lor�and University, Bu-

dapest, Hungary, for several interesting discussions on zeros of spectral

factors, and reading a preliminary version of the paper and his many valu-

able suggestions for the improvement of the paper; M.Sc. Daniel Bertilsson

at the Royal Institute of Technology, Stockholm, Sweden, for his help in

proving a part of Theorem 3.2; and the anonymous referee for many helpful

suggestions.

References

[1] H. Aling and J.M. Schumacher. A nine-fold canonical decomposition

for linear systems, Int. J. Control 39(4) (1984), 779{805.

[2] B.D.O. Anderson. Output-nulling invariants and controllability sub-

spaces, Proc. of the IFAC 6th World Congress, Boston, August 1975,

paper 43.6.

[3] . A note on transmission zeros of a transfer function matrix,

IEEE Transactions on Automatic Control AC-21(4) (1976), 589{591.

29



J-A. SAND

[4] P.J. Antsaklis. Maximal order reduction and supremal (A;B)-invariant

and controllability subspaces, IEEE Transactions on Automatic Con-

trol AC-25(1) (1980), 44{49.

[5] P.E. Caines. Linear Stochastic Systems. New York: Wiley, 1988.

[6] M. Green. Balanced stochastic realizations, Linear Algebra and its

Applications (1988), 211{247.

[7] E.J. Hannan and D.S. Poskitt. Unit canonical correlations between

future and past, The Annals of Statistics 16(2) (1988), 784{790.

[8] A. Lindquist, Gy. Michaletzky, and G. Picci. Zeros of spectral fac-

tors, the geometry of splitting subspaces, and the algebraic Riccati

inequality, SIAM J. Control and Optimization, to appear.

[9] A. Lindquist and G. Picci. A geometric approach to modeling and esti-

mation of linear stochastic systems, Journal of Mathematical Systems,

Estimation, and Control 1(3) (1991), 241{333.

[10] A. Linquist and M. Pavon. On the structure of state-space models

for discrete-time stochastic vector processes, IEEE Transactions on

Automatic Control AC-29(5) (1984), 418{432.

[11] Gy. Michaletzky. Zeros of (non-square) spectral factors and canonical

correlations, Proc. 11th IFAC World Congress, Tallinn, Estonia, 1990,

221{226.

[12] Gy. Michaletzky and A. Ferrante. Summary: Splitting subspaces and

acausal spectral factors, Journal of Mathematical Systems, Estima-

tion, and Control 5(3) (1995), 363-366.

[13] M. Pavon. Stochastic realization theory and invariant directions of the

matrix Riccati equation, SIAM J. Control and Optimization 18(2)

(1980), 155{180.

[14] J.-�A. Sand. Four Papers in Stochastic Realization Theory. Ph.D. the-

sis, Royal Institute of Technology, Optimization and Systems Theory,

100 44 Stockholm, Sweden, February 1994.

[15] C.B. Schrader and M.K. Sain. Research on system zeros: A survey,

Int. J. Control 50(4) (1989), 1407{1433.

[16] W.M. Wonham. Linear Multivariable Control: A Geometric Approach,

second ed. New York: Springer-Verlag, 1979.

Trygg-Hansa, Fixed Income Investments, HKF 532, 106 26 Stock-

holm, Sweden

Communicated by Anders Lindquist

30


