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Outputs�
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Abstract

Motivated by an appropriate matched generalized state-space

model, a robust sliding mode control is derived which uses plant

output information in conjunction with a particular sliding mode

observer. The need for the usual structural matching constraints re-

lating the input and output spaces is circumvented. The proposed

methodology is illustrated by considering a tutorial design example.
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1 Introduction

Sliding mode observation and control schemes for both linear and nonlinear

systems have caused considerable interest in recent times. Discontinuous

nonlinear control and observation schemes, based on sliding modes, exhibit

fundamental robustness and insensitivity properties of great practical value

[10], [1]. A fundamental limitation found in the sliding mode control of

linear perturbed systems and in sliding mode feedforward regulation of

observers for linear perturbed systems involves the necessity to satisfy some

structural conditions of the \matching" type. These conditions have been

widely recognized [10], [11], [2]. Such structural constraints on the system

and the observer have also been linked to strictly positive real conditions

[11], [12]. More recently, a complete Lyapunov stability approach for the
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design of sliding observers, where the above-mentioned limitations are also

apparent, has been presented [3].

Here a di�erent approach to the problem of output feedback control

for any controllable and observable, perturbed linear system is taken. For

the sake of simplicity, single-input single-output perturbed plants are con-

sidered, but the results can be easily generalized to multivariable linear

systems. As is inherent in any sliding mode approach, the system must be

relative degree one with respect to the measured output and must also be

minimum phase with respect to that output. However, this work does not

impose any additional assumptions on the class of systems to which it may

be applied.

Using a Generalized Matched Observer Canonical Form (GMOCF),

similar to those developed in [6], it is found that, for the sliding mode

state observation problem in observable systems, the structural conditions

of the matching type are largely irrelevant. This statement is justi�ed by

the fact that a perturbation input \rechannelling" procedure always allows

one to obtain a matched realization for the given system. Such rechan-

nelling is never carried out in practice and its only possible purpose may

be to obtain a reasonable estimate (bound) of the in
uence of the per-

turbation inputs on the state equations of the proposed canonical form.

It is shown that the chosen matched output reconstruction error feedfor-

ward map, which is a design quantity, uniquely determines the stability

features of the reduced order sliding state estimation error dynamics. The

state vector of the proposed realization is, hence, robustly asymptotically

estimated, independently of whether or not the matching conditions are

satis�ed by the original system.

The sliding mode output regulation problem for controllable and ob-

servable minimum phase systems, using a combination of a sliding mode

observer and a sliding mode controller is then addressed. For this, a suitable

modi�cation of the GMOCF is proposed. The resulting matched canonical

form turns out to be, quite surprisingly, in traditional Kalman state space

representation form. The obtained Matched Output Regulator Canonical

Form (MORCF) is constructed in such a way that it is always matched

with respect to the \rechannelled" perturbation inputs. The output signal

of the system, expressed now in canonical form, is shown to be controlled

by a suitable dynamical \precompensator" input, which is physically re-

alizable. For the class of systems treated, the combined state estimation

and control problem (i.e., output regulation problem) is therefore always

robustly solvable by means of a sliding mode scheme, independently of any

matching conditions.

The above results are achieved using a discontinuous control e�ort cou-

pled with a corresponding discontinuous output error injection signal which

is applied to the observer. As such, the traditional concepts of solution of
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ordinary di�erential equations do not hold. However, several well estab-

lished concepts of solution for ordinary di�erential equations with discon-

tinuous right hand sides are available to substantiate this contribution.

The work of Fillipov [4] employs an average of the intervening vector �elds

around the discontinuity surface so that the resultant vector �eld remains

tangent to the sliding manifold, whilst Utkin [10] uses the well-known equiv-

alent control concept. These results are both theoretically rigorous and

experimentally justi�ed and, most importantly, for linear systems the con-

cepts coincide. This contribution considers systems which are linear in both

the control and injection terms and therefore, without further justi�cation,

existence of solution may be assumed a priori.

In Section 2, a matched Generalized Observer Canonical Form, based on

the input{output description of the given system, is proposed. In Section

3 a sliding mode control policy is presented for the matched Generalised

Observer Canonical Form. It is shown that the chosen system realisation

permits matching of the input with the disturbance. It is demonstrated in

Section 4 that an observer which robustly estimates the required states may

also be constructed. A robust closed-loop controller/observer pair is thus

de�ned. A tutorial design example demonstrates the results of this paper

in Section 5. Section 6 contains conclusions and suggestions for further

research.

2 A Generalised Canonical form for Robust Sliding

Mode Control using State Reconstruction

Consider the following input-output representation of a linear time-invariant

perturbed system

y(n) + kny
(n�1) + � � �+ k2 _y + k1y = �0u+ �1 _u+ � � �+ �mu

(m)

+
0� + 
1 _� + � � �+ 
q�
(q) (2.1)

where � represents the bounded external perturbation signal and the integer

q is assumed to satisfy q � n� 1.

The Generalized Matched Observer Canonical Form (GMOCF) of the

above system is given by the following generalized state representation

model [6]

_�1 = �k1�n + �0u+ �1 _u+ � � �+ �mu
(m) + �1�

_�2 = �1 � k2�n + �2�

...

_�n�1 = �n�2 � kn�1�n + �n�1� (2.2)
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_�n = �n�1 � kn�n + �

y = �n

where � is an \auxiliary" perturbation signal, modelling the in
uence of

the external signal � on every equation of the proposed system realization.

The relation existing between the signal � and its generating signal �,

is obtained by computing the input output description of system (2.2) in

terms of the perturbation input �. The input-output description of the

hypothesized model (2.2) is then compared with that obtained for the orig-

inal system (2.1). This procedure results in a scalar linear, time invariant,

di�erential equation for � which accepts as an input the signal �.

The model presented below constitutes a realization of such an input-

output description.

_z1 = z2

_z2 = z3
... (2.3)

_zn�1 = ��1z1 � �2z2 � � � � � �n�1zn�1 + �

� = (
0 � 
n�1�1)z1 + (
1 � 
n�1�2)z2 + � � �

+(
n�2 � 
n�1�n�1)zn�1 + 
n�1�

where 
n�1 = 0 for q < n� 1.

Assumption 2.1 Suppose the components of the auxiliary perturbation

distribution channel map �1; :::; �n�1, in equation (2.2), are such that the

following polynomial in the complex variable s is Hurwitz

pr(s) = sn�1 + �n�1s
n�2 + � � �+ �2s+ �1: (2.4)

Equivalently, assumption 2.1 implies that the output of system (2.3)

which generates the auxiliary perturbation � is a bounded signal for every

bounded external perturbation signal �. If, for instance, � satis�es j � j< N;

then, given N , the signal � satis�es j � j � M for some positive constant

M . An easy to compute, although conservative, estimate forM is given by

M = sup
!2[0;1) j G(j!) j N where G(s) is the Laplace transfer function

relating � to � in the complex frequency domain.

Remark It should be stressed that the purpose of presenting the state

space model for the auxiliary perturbation signal �, which accepts as a

forcing input the signal �, is to show how an estimate, through �, of the

in
uence of � on the proposed state realization (2.2) of the original system

(2.1) may be obtained. It should be noted that in terms of controller

implementation, the model (2.3) plays no part.

The development of a sliding mode control strategy for the system re-

alisation (2.2) will now be explored.
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3 A Robust Sliding Mode Control Policy

In order to formulate the closed-loop control procedure, further considera-

tion must be given to the system representation (2.1). Here it is assumed

that the control objective is to force the system output y to zero in �nite

time. This objective will be realised by inducing a sliding mode upon y = 0.

The objective can only be achieved if m = n�1 with �n�1 6= 0; the system

must thus have relative degree 1. In addition, the polynomial

q(s) = �n�1s
n�1 + � � �+ �1s+ �0 (3.1)

must be Hurwitz so that the system is strictly minimum phase. It should

be noted that the relative degree 1 and minimum phase assumptions are

inherent in the sliding mode approach and are not particular to this dis-

cussion. Referring to the GMOCF presented in equation (2.2) it is nec-

essary to consider the selection of a control such that the disturbance �

acts wholly within channels which are transparently implicit in the input.

This is necessary to ensure that the performance in the sliding mode will

be independent of the external disturbance. Consider the introduction of

a precompensator

~u(s)

~�(s)
=

sn�1 + �n�1s
n�2 + � � �+ �2s+ �1

�n�1sn�1 + � � �+ �1s+ �0
(3.2)

where �1; ::::; �n�1 are as de�ned in (2.4) and � is the auxiliary input to

the system obtained from the precompensator. The matched realisation

for control becomes, from (2.2),

_�1 = �k1�n + �1(� + �)

_�2 = �1 � k2�n + �2(� + �)

...

_�n�1 = �n�2 � kn�1�n + �n�1(� + �) (3.3)

_�n = �n�1 � kn�n + � + �

y = �n:

Having obtained an appropriate matched realisation, it is now necessary

to consider appropriate reachability conditions to ensure that the sliding

mode, where y = 0, is both attained and maintained. The usual expec-

tation of a sliding mode approach is the ability to specify the dynamic

performance during sliding. In other words, the designer speci�es a desir-

able reduced order dynamics for the system when sliding. Consider �rst �

de�ned by

� = �W sign y = �W sign �n (3.4)
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where W > M and M is an upper bound on the magnitude of the per-

turbation signal �. It may be shown that a sliding mode exists in the

region

�n = 0 ; j �n�1 j � W �M: (3.5)

This control signal attains a sliding mode using only output information.

However, although y = 0; the system dynamics are not prescribed in a

desirable manner. In e�ect, a sliding patch results. Consider now � de�ned

by

� = �W sign �n � �n�1 + kn�n: (3.6)

Here a global sliding mode exists on �n = y = 0 for W > M . Further

the ideal sliding dynamics using this control con�guration are determined

by the characteristic polynomial pr(s) = 0 where pr(s) as given in (2.4) is

by de�nition Hurwitz. The designer thus has the ability to specify pr(s)

to yield appropriate desirable performance. The equivalent feedforward

signal, �eq , is obtained from the invariance conditions [1]

�n = 0 ; _�n = 0: (3.7)

One obtains from (3.7) and (3.3)

�eq = ��n�1 � �: (3.8)

This is a virtual feedforward action that is not synthesized in practice, but

which helps to establish the salient features of the average behaviour of

the sliding mode regulated system. The resulting dynamics governing the

state evolution on the sliding region are then ideally described by

_�1 = ��1�n�1

_�2 = �1 � �2�n�1

... (3.9)

_�n�1 = �n�2 � �n�1�n�1

y = �n = 0:

The roots of the Hurwitz characteristic polynomial (2.4) are seen to deter-

mine the behaviour of the reduced order system (3.9) and an asymptotically

stable behaviour to zero of the state components �1; : : : ; �n�1 is therefore

achievable since the state �n undergoes a sliding regime on the relevant

portion of the \sliding surface" �n = 0.

However, the control strategy (3.6) requires knowledge of the state �n�1
which is unmeasurable. The possibilities of reconstructing, in a robust

manner, an estimate of this state will now be explored.
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4 Robust State Observation

An observer for the system realization (3.3) is proposed as follows

_̂�1 = �k1�̂n + h1(y � ŷ) + �1(v + �)

_̂�2 = �k2�̂n + �̂1 + h2(y � ŷ) + �2(v + �)

...

_̂�
n�1 = �kn�1�̂n + �̂n�2 + hn�1(y � ŷ) + �n�1(v + �) (4.1)

_̂�
n

= �kn�̂n + �̂n�1 + hn(y � ŷ) + (v + �)

ŷ = �̂n:

Note that we have purposefully chosen exactly the same output error

feedforward distribution map �, for the signal v, as that corresponding to

the auxiliary perturbation input signal � and to the control input distribu-

tion map in (3.3). As a consequence, the matching conditions are satis�ed

by the proposed matched canonical realization (4.1). The observer has the

following sliding mode feedforward regulated reconstruction error dynamics

_�1 = �(k1 + h1)�n + �1(� � v)

_�2 = �1 � (k2 + h2)�n + �2(� � v)

...

_�n�1 = �n�2 � (kn�1 + hn�1)�n + �n�1(� � v) (4.2)

_�n = �n�1 � (kn + hn)�n + (� � v)

�y = �n

where �i represents the state estimation error components �i � �̂i, for

i = 1; : : : ; n.

In order to have a reconstruction error transient response associated

with a preselected n th order characteristic polynomial, such as

p(s) = sn + �ns
n�1 + � � �+ �2s+ �1 ; (4.3)

the gains hi (i = 1; : : : ; n) should be appropriately chosen as hi = �i � ki
(i = 1; : : : ; n).

The feedforward output error injection signal v is chosen to be the

discontinuous regulation policy

v =W sign �y =W sign �n (4.4)

whereW is a positive constant. For a su�ciently large gainW; the proposed

choice of the feedforward signal v results in a sliding regime on a region
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properly contained in the set expressed by

�n = 0 ; j�n�1j �W �M: (4.5)

The equivalent feedforward signal, veq , is again obtained from the in-

variance conditions

�n = 0 ; _�n = 0: (4.6)

One obtains from (4.6) and the last of (4.2)

veq = � + �n�1: (4.7)

The equivalent feedforward signal is, generally speaking, dependent upon

the perturbation signal �.

The resulting dynamics governing the evolution of the error system on

the sliding region are then ideally described by

_�1 = ��1�n�1

_�2 = �1 � �2�n�1

...

_�n�1 = �n�2 � �n�1�n�1 (4.8)

�y = �n = 0:

The resulting ideal sliding error dynamics exhibit, in a natural manner,

a feedforward error injection structure of the \auxiliary output error" signal

�n�1, through the design gains �1; : : : ; �n�1. As a result, the roots of

the characteristic polynomial in (2.4) determining the behaviour of the

homogeneous reduced order system (4.8), are completely determined by a

suitable choice of the components of the feedforward vector, �1; : : : ; �n�1.

An asymptotically stable behaviour to zero of the estimation error com-

ponents �1; : : : ; �n�1 is therefore achievable as the output observation error

�n undergoes a sliding regime on the relevant portion of the \sliding sur-

face" �n = 0. The states of the estimator (4.1) are then seen to converge

asymptotically towards the corresponding components of the state vector

of the system realization (3.3).

The characteristic polynomial (2.4) of the reduced order observation er-

ror dynamics (4.8) coincides entirely with that of the transfer function re-

lating the auxiliary perturbation model signal � to the actual perturbation

input �. Hence, appropriate choice of the design parameters �1; : : : ; �n�1
not only guarantees asymptotic stability of the sliding error dynamics, but

also ensures boundedness of the auxiliary perturbation input signal �, for

any given bounded external perturbation �.

If the state �n�1 is not directly available for measurement, the pro-

posed feedback control (3.6) can be modi�ed to employ the estimated state

8
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obtained from the sliding observer (4.1) as

�̂ = kny � �̂n�1 �W sign y (4.9)

where we have used the fact that the output y is clearly available for mea-

surement. This control policy still results in a �nite time convergence of y

to zero as can be seen from the closed loop output dynamical equation

_y = (�n�1 � �̂n�1) + � �W sign y

= �n�1 + � �W sign y: (4.10)

Since �n�1 is decreasing asymptotically to zero, the output y is seen to go

to zero, in �nite time, for su�ciently large values of W >M .

The output observation error signal ey, and the output signal y itself,

are seen to converge to zero in �nite time. The combined reduced order

ideal sliding/ideal observer dynamics is obtained from the same invariance

conditions �n = 0, _�n = 0 as before. This results precisely in the same

equivalent control input and the same equivalent feedforward signals. The

resulting reduced order ideal sliding/ideal observation error dynamics is

still given by (3.9) and (4.8). The overall scheme is, thus, asymptotically

stable.

5 Design Example

Consider the following Kalman state-space representation of a third order

system:

_x(t) = Ax(t) +Bu(t) +D�(t) (5.1)

y = Cx (5.2)

where

A =

2
4
�6 1 30

1 0 0

0 1 0

3
5 B =

2
4

1

0

0

3
5

C =
�
0:5 3 4

�
D =

2
4

0

1

0

3
5 :

The design requirement is to regulate the system output to zero, despite

the external noise. It is assumed that the system output alone is measur-

able. The disturbance is clearly not matched to either the input or output

channels in this case. However, the system is both relative degree one and

minimum phase which suggests a sliding mode strategy is possible. The
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results presented in this paper will now be used to a�ect robust control of

the plant. Consider �rst the development of the observer which will provide

asymptotic error decay. The polynomial (2.4) which de�nes the auxiliary

perturbation distribution map is chosen to be

pr(s) = s2 + 16s+ 63: (5.3)

The rate of decay of the reconstruction error dynamics, (4.8), is determined

by the roots of the following characteristic polynomial

p(s) = s3 + 42s2 + 584s+ 2688: (5.4)

Using (5.3) and (5.4) an observer (4.1) for the system is given by

_̂�1 = 30�̂3 + 2718(y� ŷ) + 63(v + �)

_̂�2 = �̂3 + �̂1 + 585(y� ŷ) + 16(v + �) (5.5)

_̂�3 = �6�̂3 + �̂2 + 36(y � ŷ) + (v + �)

ŷ = �̂3

v = Wobssign(y � ŷ):

The following state-space realisation may be used to determine the plant

input u:

_w1 = w2 (5.6)

_w2 = �6w1 � 8w2 + 2�

u = 55w1 + 10w2 + 2�

� = �Wconsigny � �̂2 + 6y:

The magnitude of the discontinuous gain elements Wcon and Wobs were

chosen to be 10 and 50 respectively. These were tailored to provide the

desired speeds of response as well as appropriate disturbance rejection ca-

pabilities. Using a high frequency cosine to represent the system noise,

the following simulation results were obtained. It should be noted that

the output from the Kalman state-space representation (5.1) was used for

observation and control calculations. Fig. 1 shows the convergence of the

estimated output to the actual output. A sliding mode is reached whereby

y = 0 despite the unmatched disturbance which is acting upon the system.

Further this is achieved with knowledge of the system output alone.
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Figure 1: Response of the actual and estimated system outputs

6 Conclusions

In this article it has been shown that, when using a sliding mode approach,

structural conditions of the matching type, are largely irrelevant for ro-

bust state reconstruction and regulation of linear perturbed systems. In

other words, the class of linear systems for which robust sliding mode out-

put feedback regulation can be obtained, independently of any matching

conditions, comprises the entire class of controllable (stabilizable) and ob-

servable (reconstructible) linear systems which have relative degree one for

the measured output and are minimum phase with respect to this measured

output.

This result, believed to be new, is of particular practical interest when

the designer has freedom to propose a convenient state space representation

for a given unmatched system. This is in total accord with corresponding

results regarding, respectively, the robustness of the sliding mode control of

perturbed controllable linear systems, expressed in Generalized Observabil-

ity Canonical Form [7], and the dual result for the sliding mode observation

schemes based on Generalized Observer Canonical Form [9].

Sliding mode output regulator theory (i.e., one considering an observer-

controller combination) for linear systems may also be examined from an

algebraic viewpoint using Module Theory [5]. The conceptual advantages
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of using a module theoretic approach to sliding mode control have also

been recently addressed [8]. The module theoretic approach can also give

further generalizations and insights related to the results presented.
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