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Abstract

In this paper we use the information-state approach to obtain so-

lutions to risk-sensitive quadratic control problems. Speci�cally we

consider the case of tracking a desired trajectory. Results are pre-

sented for linear discrete-time models with Gaussian noise, and also

for �nite-discrete state, discrete-time hidden Markov models with

continuous-range observations. These results give insight to more

general information-state methods for nonlinear systems. Using such

methods the tracking solution is obtained without appealing to a

certainty equivalence principle. Limit results are presented which

demonstrate the link to standard linear quadratic Gaussian control.

Also presented is a discussion on achieving zero steady state error

with risk-sensitive control policies. Simulation studies are presented

to show some advantages of using the risk-sensitive approach.
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1 Introduction

Recently there has been much interest in risk-sensitive control techniques.

Such control policies lead to an optimal solution, similar to the case for lin-

ear quadratic Gaussian (LQG) control, however, with a risk-sensitive policy

the controller's sensitivity to risk can be varied. One application area for

risk-sensitive control has been in economics where risk-sensitivity is termed

hedging or risk-aversion, for example Karp [9] and Caravani [5]. In these
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papers it is seen that advantages can be gained from the risk-sensitive

approach, for problems such as dynamic trading and futures market pre-

diction.

The particular risk-sensitive control policy we consider in this paper

involves an exponential in the cost function. This approach was �rst taken

by Jacobson [6], when considering the risk-sensitive LQG problem with

state feedback. Jacobson demonstrated a link between exponential perfor-

mance criteria and deterministic di�erential games. He showed that the

risk-sensitive approach provides a method for varying the the robustness

of the controller and noted that in the case of no risk, or risk-neutral, the

well known LQG solution [3] would result.

The risk-sensitive linear quadratic Gaussian (LQG) output feedback

control problem was �rst solved by Whittle [12], where use was made of a

risk-sensitive version of the certainty equivalence principle. This allowed

the state estimation and control optimisation to be decoupled, solved sep-

arately and then re-coupled. The continuous-time case was solved by Ben-

soussan and van Schuppen [4] using a di�erent technique, one which gener-

alises to the nonlinear case. Recent developments in risk-sensitive control

have included a solution to the output feedback control problem for nonlin-

ear systems using information-state techniques (James, Baras and Elliott

[7]). The solution is of course in�nite dimensional, but does not require the

use of a certainty equivalence principle.

In this paper we present the output feedback risk-sensitive LQG solu-

tion derived via the methods in [4, 7]. Speci�cally, we consider the case

of tracking a desired trajectory. We show that the equations are consis-

tent with those presented in [12] (although the tracking results here are

in a much more intuitive form), and that in the \risk-neutral" case, the

standard LQG solution results. The solution to the discrete-time hidden

Markov model (HMM) risk-sensitive tracking problem is also presented.

This system results in a �nite-dimensional information-state, with an in-

�nite dimensional dynamic programming task. However, it is possible to

discretize that information-state space and thus obtain approximate solu-

tions. Also discussed are methods for achieving zero steady state error for

tracking with risk-sensitive control policies.

The key to the technique used in this paper is that an information- state

is chosen in such a way that it represents both a state estimate and the

cost incurred to the time of the estimate. A change of reference probability

measure is used to arrive at a linear recursive update equation for the

information-state. Then dynamic programming methods are employed to

obtain the solution to the control problem, having been re-formulated in

terms of the information-state. This derivation is fundamentally di�erent

to Whittle's approach [12], being more closely linked to Bensoussan and

van Schuppen [4].
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An important feature of this paper is that it presents a �nite dimen-

sional solution to the risk-sensitive output feedback control problem in the

LQG case. It therefore provides a �nite-dimensional example of the quite

general in�nite-dimensional controllers derived in [7], and gives insight to

the nonlinear control solution. The presentation of results for tracking with

hidden Markov model systems demonstrates a nonlinear situation where a

�nite dimensional information state can be derived. The dynamic pro-

gramming solution is in�nite dimensional, but can be approximated, as

discussed later in Section 3.4.

Simulation studies are presented in an e�ort to demonstrate the e�ect of

variations in the controller's sensitivity to risk. Various tracking problems

are considered to show the advantages of the risk-sensitive approach.

2 Linear Systems

In this section we consider the risk-sensitive tracking problem for discrete-

time linear systems. The case of time-invariant systems is presented, how-

ever in this �nite-time framework the result is equally applicable to time-

varying systems.

2.1 State space model

Consider the following discrete-time system on the probability space

(
;F ; P ) with complete �ltration fFkg

xk+1 = Axk +Buk + vk

yk+1 = Cxk + wk

zk+1 = Dxk

(2.1)

over the �nite time interval k = 0; 1; : : : ; T . The state of the system is

represented by the process x. The observable part of the system is rep-

resented by the process y. In this paper we will consider the problem of

output tracking, and denote the desired trajectory by ~z. The process which

is to follow ~z is de�ned by z. The random variables vk and wk have normal

densities  � N(0;�) and � � N(0;�) respectively, where � and � are

n � n and p � p positive de�nite matrices. The control, u, takes values

in IRm. The complete �ltration generated by (y0; : : : ; yk) is denoted by

Yk, and the admissible controls u are the set of IRm-valued fYkg adapted

processes. We write Uk;l for the set of such control processes de�ned on

the interval k; : : : ; l.

In order to reformulate the system model (2.1), a new probability mea-
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sure, P , can be de�ned by setting

�0;k =
dP

dP

����
Fk

=

kY
`=1

�` ; (2.2)

where

�k =
 (xk �Axk�1 �Buk�1)�(yk � Cxk�1)

 (xk)�(yk)
: (2.3)

Here, �0;k is an Fk martingale and E[�0;k] = 1. Now under P , xk and yk
are two sequences of independent, normally distributed random variables

with densities  and � respectively. This reformulated model results in a

linear recursion for the un-normalised information-state, as in Section 2.3.

2.2 Cost

The cost function for the risk-sensitive control problem is given, for any

admissible control u 2 U0;T�1, by

J(u) = E

�
exp �

�
	0;T�1 +

1

2
x
0
TMTxT

��
(2.4)

= E

�
�0;T exp �

�
	0;T�1 +

1

2
x
0
TMTxT

��
; (2.5)

where

	j;k
4
=

kX
`=j

1

2
[x0`Mx` + u

0
`Nu` + (~z`+1 �Dx`)

0
Q(~z`+1 �Dx`)] : (2.6)

Here, � > 0 is a real number and represents the amount of risk in the

control policy. For small values of �, approaching zero, the e�ect is to

make control decisions assuming the stochastic disturbances are acting in

an average manner. For larger values of �, the control is e�ectively more

conservative, or in other words, has a higher sensitivity to risk.

2.3 Information-state

In this section we present �nite dimensional recursions for the information-

state which, as the name suggests, provides information about the state of

the system [10] p. 81. In the case of risk-sensitive control, it is convenient

to also include a component of the cost in the information-state. For the

formulation presented here, the information-state is a probability distribu-

tion (it can be compared to the `past stress' in [12]). For small values of �,

approaching zero, the mean and variance of the information-state become

the state and covariance estimates for the linear Kalman �lter.
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For any admissible control u, consider the measure

�k(x)dx
4
= E[�0;k exp(�	0;k�1)I(xk 2 dx)jYk ] (2.7)

where I(:) is the indicator function.

Lemma 2.1 The information-state �k(x) as de�ned in (2.7) obeys the fol-

lowing recursion

�k+1(x) = �
�1(yk+1)

Z
IRn

�(yk+1�C�) exp(�	k;k) (x�A��Buk)�k(�)d�

(2.8)

Proof:

�k+1(x)dx = E[�0;k+1 exp(�	0;k)I(xk+1 2 dx)jYk+1 ]

= E[�k+1�0;k exp(�	k;k) exp(�	0;k�1)I(xk+1 2 dx)jYk+1]

�k+1(x) =
R
IRn : : :

R
IRn

�(yk+1�Cxk)

�(yk+1)
exp(�	k;k) (x�Axk �Buk)

�0;k exp(�	0;k�1)dP (x0; : : : ; xk)

= �
�1(yk+1)

R
IRn �(yk+1 � C�) exp(�	k;k)

 (x�A� �Buk)�k(�)d�

Theorem 2.1 The information-state �k(x) is an un-normalised Gaussian

density given by

�k(x) = �k(x; �k) = Zk exp(�1=2)[(x� �k)
0
R
�1
k (x� �k)] (2.9)

where �k = (�k; Rk; Zk), and �k, R
�1
k and Zk are given by the following

algebraic recursions

�k+1 = Rk+1

�
��1Buk

+��1Aa�1k (R�1k �k �A
0��1Buk + C

0��1yk+1 � �D
0
Q~zk+1)

�
R
�1
k+1 = ��1 ���1Aa�1k A

0��1

Zk+1 = Zkj�j
� 1
2 jakj

� 1
2 exp

�
� 1

2

� �

k � �

0
k+1R

�1
k+1�k+1

�
(2.10)

where

ak = C
0��1C � �(M +D

0
QD) +A

0��1A+R
�1
k (2.11)


k = u
0
k(��N +B

0��1B)uk + �
0
kR

�1
k �k � �~z0k+1Q~zk+1

�(�0kR
�1
k � u

0
kB

0��1A+ y
0
k+1�

�1
C � �~z0k+1QD)a

�1
k

(R�1k �k �A
0��1Buk + C

0��1yk+1 � �D
0
Q~zk+1) (2.12)

under the condition that ak and Rk be positive de�nite for all k.
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Proof: Due to the linearity of the dynamics, and the fact that vk and

wk are independent and normally distributed, we know that �k(x) is an

un-normalised Gaussian density. The recursions for �k, R
�1
k and Zk are

obtained by evaluating the integral in (2.8). The details are omitted.

Further matrix manipulations yield the following, more familiar, ex-

pressions

�k+1 = A�k +Buk +A ~Kk

�
C
0��1(yk+1 � C�k

���(C 0)�1D0
Q~zk+1) + �(M +D

0
QD)�k

�
~Kk

4
= (R�1k + C

0��1C � �(M +D
0
QD))�1

Rk+1 = �+A ~KkA
0

(2.13)

which can be compared to the result presented in [12] for the case where

Q = 0. When Q 6= 0 (that is, for tracking), the equations here are in a

much more intuitive form than the tracking result in [12].

2.3.1 Limit result

Equations (2.13) can be re-expressed in the following form

�k+1 = A�kjk +Buk

�kjk
4
= �k +Kk[yk+1 � C�k

��(�(C 0)�1D0
Q~zk+1 � �(C 0)�1(M +D

0
QD)�k)]

Kk
4
= (R�1k � �(M +D

0
QD))�1C 0

[C(R�1k � �(M +D
0
QD))�1C 0 + �]�1

Rk+1 = �+ARkjkA
0

Rkjk
4
= Rk �KkCRk

(2.14)

In the case when � approaches zero, it can easily be seen that the equations

in (2.14) reduce to the standard Kalman �lter equations [2] p.40.

2.4 Alternate cost representation

In this section we show that the cost function can be expressed in terms of

the information-state. This allows the optimisation problem to be solved

by dynamic programming, without any appeal to a certainty equivalence

principle.

Theorem 2.2 For any admissible control u, the risk sensitive cost can be

expressed in the form

J(u) = E [h�T (�; �T ); �T i] (2.15)

where hf(�); q(�)i =
R
IRn f(z)q(z)dz and �T (x)

4
= exp( �

2
x
0
MTx).
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Proof: We have from (2.5) that

J(u) = E
�
�0;T exp(�	0;T�1) exp(

�
2
x
0
TMTxT )

�
= E

�
E [�0;T exp(�	0;T�1)�T (xT )jYT ]

�
= E

�R
IRn �T (x)�T (x)dx

�
= E [h�T (�; �T ); �T i] :

2.5 Dynamic programming

Following [7] we know that the alternative control problem can be solved

using dynamic programming. Suppose that at some time k, 0 < k < T ,

the information-state �k is � = (�;R;Z).

The value function for this control problem is [1, 7]

V (�; k) = inf
u2Uk;T�1

E[h�k; �ki j �k = �(�)] ; (2.16)

where �k is an adjoint process de�ned by

�k(x) = E[�k+1;T exp(�	k;T�1) exp(
�

2
x
0
TMTxT )jxk = x;YT ] : (2.17)

The adjoint process can be compared to the `future stress' in [12].

Theorem 2.3 [1, 7] The value function satis�es the recursion

V (�; k) = inf
u2Uk;k

E[V (�k+1(�k; u; yk+1); k + 1)j�k = �] (2.18)

and V (�; T ) = h�T (:; �); �T i.

2.6 Dynamic programming solution

Theorem 2.4 The value function is the exponential of a quadratic in �

V (�; k) = Zk exp(�=2)[�
0
kS

a
k�k + 2Sbk

0
�k + S

c
k] ; (2.19)

and the optimal control is linear in �

u
min
k = �(N +B

0 ~Sk+1B)
�1
B
0[ ~Sk+1 ~A�k + S

b
k+1 + �K

b
k] ; (2.20)

where

~Sk+1 = ((Sak+1)
�1
� �~�k~�

0

k)
�1 ; ~A = A��1

Ka

k = (N +B0 ~Sk+1B)
�1B0 ~Sk+1 ~A ; ~M = (M +D0QD)��1

Kb

k = Sak+1
~�k�

�1(~�0kS
b

k+1 ��D0Q~zk+1) ; � = N +B0 ~Sk+1B
~�k = A ~KkC

0��1C� ; � = I � �~�0kS
a

k+1
~�k

� = [(C0�C)�1 + ��1Rk]
1=2 ; � = I � �Rk(M +D0QD)

7
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Also Sak and Sbk are given by the following recursions

S
a
k = ~M + ~A0Sak+1(I +BN

�1
B
0
S
a
k+1 � �~�k~�

0
kS

a
k+1)

�1 ~A

S
b
k = ~A0Sbk+1 � (I + � ~MRk)D

0
Q~zk+1

+ ~A0 ~Sk+1B�
�1
B
0(Sbk+1 + �K

b
k) + � ~A0Kb

k

(2.21)

under the condition that (I � �~�0kS
a
k+1

~�k) is positive de�nite for all k, and

C is positive de�nite except in the cases where C = D or D = 0.

Proof: By evaluating the dynamic programming equation (2.18) for

V (�; T � 1) it can be seen that the value function is the exponential of

a quadratic in �. The remainder of the proof is too long for presentation

in this paper, but is essentially an evaluation of the dynamic programming

equation (2.18), with appropriate variable transformations.

Remark: The condition that C be positive de�nite, is a manifestation of

the variable transformation used in order to present the results in a form

which more readily demonstrates the link to standard LQG results. As

can be seen from the exclusion when D = 0, the condition only applies

to the tracking part of the solution, (i.e., Sbk and K
b
k recursions). It is

possible to solve the dynamic programming problem without such a variable

transformation and thus remove the condition on C. 2

In order to demonstrate consistency with the results presented in [12],

where an appeal was made to a certainty equivalence principle, and Q � 0,

we now set

�k = S
a
k [I + �RkS

a
k ]
�1 (2.22)

and Q = 0, which results in the following recursion for �k

�k =M +A
0[��1k+1 +BN

�1
B
0 � ��]�1A (2.23)

under the condition that (I � �Rk�k) is positive de�nite for all k.

Substitution of (2.23) into (2.20), yields

u
min
k = �N�1

B
0(��1k+1 +BN

�1
B
0 � ��)�1A[I � �Rk�k]

�1
�k (2.24)

where the term [I � �Rk�k]
�1
�k is sometimes referred to as the minimum

stress estimate.

2.6.1 Limit result

In the case where � approaches zero, it can easily be seen that ~Sk+1, ~A

and ~M approach Sak+1, A and M +D
0
QD respectively, and the following

8
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equations result from manipulations to (2.20) and (2.21)

umin

k = �(N +B0Sak+1B)
�1B0[Sak+1A�k + Sbk+1]

Sak = M +D0QD +A0[Sak+1 � Sak+1B(N +B0Sak+1B)
�1B0Sak+1]A

Sbk = (A�B(N +B0Sak+1B)
�1B0Sak+1A)

0Sbk+1 �D0Q~zk+1

(2.25)

These are the standard LQG equations, as presented for example in ([3],

pages 32 and 81.)

3 Hidden Markov Models

In this section we present the risk-sensitive tracking result for Hidden

Markov Models. Such systems are discrete time and have �nite-discrete

states. By �nite-discrete we mean they have a �nite number of discrete

states. We will consider the case of continuous valued observations.

3.1 State space model

Let Xk be a discrete-time homogeneous, �rst order Markov process belong-

ing to a �nite-discrete set. The state space of X , without loss of generality,

can be identi�ed with the set of unit vectors S = fe1; e2; :::; eng; ei =

(0; :::; 0; 1; 0; :::; 0)0 2 IRn with 1 in the ith position [11]. We consider

that the process is de�ned on the probability space (
;F ; P ) with com-

plete �ltration fFkg. Suppose there is a family of generators A(u) =

(aij(u)); 1 � i; j � n where aij(u) = P (Xk+1 = ej j Xk = ei; u) so that

E[Xk+1 j Xk; u] = A0(u)Xk. These generators depend on the admissible

controls, u. Of course aij(u) � 0;
Pn

j=1 aij(u) = 1, for each i. In this pa-

per we consider the case of continuous valued observations yk, and desired

trajectories ~zk. The state space model for the HMM is given by

Xk+1 = A0(u)Xk +mk+1

yk = c(Xk) + wk

zk = d(Xk)

(3.26)

where mk+1 is a (A(u);Fk) martingale increment, in that E[mk+1 j Fk] =

0. Also, the random variable wk has normal density � � N(0;�), where �

is a p� p positive de�nite matrix.

In order to reformulate the system model (3.26), a new probability

measure, P , can be de�ned by setting

�0;k =
dP

dP

����
Fk

=

kY
`=1

�` ; where �k =
�(yk � c(Xk))

�(yk)
: (3.27)

Here, �0;k is an Fk martingale and E[�0;k] = 1. Now under P , yk is

a sequence of independent, normally distributed random variables with

9
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density �. This reformulated model results in a linear recursion for the

un-normalised information-state, as in Section 3.3.

3.2 Cost

The cost function for the risk-sensitive control problem for HMMs is given,

for any admissible control u 2 U0;T�1, by

J(u) = E

�
exp �

�
	0;T�1 +

1

2
X
0
TMTXT

��
(3.28)

= E

�
�0;T exp �

�
	0;T�1 +

1

2
X
0
TMTXT

��
; (3.29)

where

	j;k
4
=

kX
`=j

1

2
[X 0

`MX` + u
0
`Nu` + (~z` � d(X`))

0
Q(~z` � d(X`))] : (3.30)

3.3 Information-state

As in Section 2.3, we again present an information-state which includes

a component of the cost. Unlike the linear case, however, for HMMs the

information-state is a �nite-dimensional probability distribution vector.

For any admissible control u, consider the measure

�k(ei)
4
= E[�0;k exp(�	0;k�1)hXk; eiijYk ]: (3.31)

Theorem 3.1 The information-state �k = (�k(e1); : : : ; �k(en))
0, as de-

�ned in (3.31), obeys the following recursion

�k+1 = BkA
0(u)Dk�k (3.32)

where

Bk = diag

�
 (yk+1 � c(e1))

 (yk+1)
; : : : ;

 (yk+1 � c(en))

 (yk+1)

�
(3.33)

Dk = diag

�
exp

�

2
[e01Me1 + u

0
kNuk + (~zk � d(e1))

0
Q(~zk � d(e1))];

: : : ; exp
�

2
[e0nMen + u

0
kNuk + (~zk � d(en))

0
Q(~zk � d(en))]

�
(3.34)

10
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Proof:

�k+1(ei) = E[�0;k+1 exp(�	0;k)hXk+1; eiijYk+1]

= E[�k+1�0;k exp(�	k;k) exp(�	0;k�1)X
0
kA(u)eijYk+1]

= E

h
 (yk+1�c(ei))

 (yk+1)�Pn

j=1hXk; eji exp
�
2
[e0jMej + u

0
kNuk + (~zk � d(ej))

0
Q(~zk � d(ej))]

�
�Pn

j=1 aji(u)hXk; eji
�
�0;k exp(�	0;k�1)jYk+1

i
=
 (yk+1�c(ei))

 (yk+1)

Pn

j=1 exp
�
2
[e0jMej + u

0
kNuk + (~zk � d(ej))

0
Q(~zk � d(ej))]

aji(u)�k(ej)

Writing this in matrix notation gives the result.

3.4 Alternate cost and dynamic programming

For the HMM case, the cost (3.29) can be expressed in a separated form,

as in Theorem 2.2, with appropriate notational changes. The dynamic

programming solution is likewise obtained from Theorem 2.3. Unfortu-

nately in this case the solution to the dynamic programming equation

is not able to be evaluated in terms of Riccati equations, as in Section

2.6. The solution for the HMM system requires a search over all possible

control values for each backwards step and for each possible value of the

information-state. Therefore the HMM case results in a �nite dimensional

information-state, but unfortunately has an in�nite dimensional solution to

the dynamic programming problem. It is possible however to make practi-

cal approximations by quantising the information-state space and solving

the approximate dynamic programming problem. This can be computa-

tionally feasible in some cases since the information state is known to have

positive elements. Also, a normalised version of the information-state can

be used in the Dynamic programming problem since the following property

is known to hold in the HMM case [8]

V (c�; k) = cV (�; k): (3.35)

In Section 5 we present an example of such an approximate dynamic pro-

gramming solution for this risk-sensitive HMM case.

4 Constant Reference Input Case

In this section we discuss the case where ~zk is a constant value. Under such

conditions it is possible to design an optimal controller with zero steady

state error. Here we consider the discrete-time linear system of section 2.

Consider the cost function given in (2.5). We note that for this general

function there exist some trade-o�s which do not allow zero steady state

11
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error to be achieved. For example, (2.6) penalises deviations of xk from

zero, while at the same time penalising deviations of Dxk from ~zk, these are

con
icting objectives. Also, the control uk is penalised for deviations from

zero when we know that, in steady state, it must be a constant non-zero

value for this constant reference input case. These considerations indicate

that the tracking problem must be reformulated.

4.1 Control integrator approach

A standard method for obtaining zero steady state error, is to introduce

an integrator in the forward path of the control loop. This technique can

be used in this risk-sensitive case with a few minor adjustments to the

control policy. Figure 1 shows the block diagram for the control system

presented in the preceding sections of this paper. By introducing an inte-

grator and augmenting the state, as in Figure 2, it is possible to obtain a

more appropriate cost function.

INFORMATION
STATE

z~

(A,B,C,D) x

K

K Σ
u

b

a

µ
y

Figure 1: Block diagram for standard control policy

In this section we choose the control uk to be an extra state, and de�ne

a new control ~uk. The state of the augmented system is then given by

~xk =

�
xk

x
c
k

�
(4.36)

where xck = uk =
Pk

i=1 ~uk. This augmented state is an un-normalised

Gaussian density, and is given from equations (2.10) to (2.12), with

12
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STATE

z~

u~

Kb

INFORMATION

Augmented Plant

Σ

z

Σ

µ

(A,B,C,D) x

-1

y

cx  = u

Ka

Figure 2: Block diagram for constant reference input case

appropriate re-de�nitions for the augmented system, by

~xk+1 =

�
A B

0 I

�
~xk +

�
0

I

�
~uk +

�
I

0

�
vk

yk+1 = ( C 0 )~xk + wk

zk+1 = ( D 0 )~xk

(4.37)

The cost function to be considered is now given, for ~zk = ~z, by (2.5) where

	j;k is re-de�ned as

	j;k
4
=

kX
`=j

1

2
[~u0`N ~u` + (~z � (D 0)~xk)

0
Q(~z � (D 0)~xk)] : (4.38)

It can easily be seen that for this cost function there are no con
icting

objectives, and as such zero steady state error can be achieved.

Unfortunately, however, there exist some hidden problems. The �rst is

that the new state ~xk has zero state noise and as such results in a singular

�ltering problem. This can be overcome by assuming there exists some

noise of variance � and then taking the limit of the information-state, as

� approaches zero. As can be seen from (2.13), the limit exits with ~Kk

re-de�ned as

~Kk
4
= Rk(I + C

0��1CRk � �(M +D
0
QD)Rk)

�1
: (4.39)

The second problem is that in the case of modelling errors, even with the

augmented system, zero steady state error is not necessarily achieved. This

13
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is due to the fact that there exists a term in the optimal control law (2.20),

which is not proportional to the state estimate �k. If this term is not

calculated correctly, as would be the case with modelling errors, then the

control ~uk would drive the output zk to an incorrect steady state value.

Although zero steady state error may not be achieved in certain cases,

there is still an advantage to applying the integrator approach. In the risk-

sensitive case, when modelling errors are present, it is possible to achieve a

lower minimum variance cost than for the case of LQG control (as can be

seen in Section 5). One problem however is that the step response can be

undesirable for values of � which are too large. By augmenting the system

with an integrator, the step response will be smoothed out, resulting in a

risk-sensitive policy which has both a lower minimum variance cost and an

acceptable step response.

4.2 Reference model integrator approach

An extra point to note is that in the scheme presented so far, it is necessary

to have prior knowledge of the constant reference input signal, ~z. An

approach for removing this assumption, commonly used in LQG tracking

systems, is to model the reference ~z by a �rst order integrator,

x
r
k+1 = x

r
k + v

r
k

~zk+1 = ~Dxrk :

(4.40)

This would of course slow the response of the system, but would have the

advantage of zero-steady state error in conditions of uncertain models. The

augmented state vector is given by

~xk =

0
@ xk

x
c
k

x
r
k

1
A : (4.41)

This new augmented state is again an un-normalised Gaussian density, and

is given from equations (2.10) to (2.12), with appropriate re-de�nitions for

the augmented system, by

~xk+1 =

0
@ A B 0

0 I 0

0 0 I

1
A ~xk +

0
@ 0

I

0

1
A ~uk +

0
@ vk

0

v
r
k

1
A

yk+1 = ( C 0 � ~D )~xk + wk

zk+1 = ( D 0 � ~D )~xk

(4.42)

The cost function to be considered is given by (2.5) where 	j;k is re-de�ned

as

	j;k
4
=

kX
`=j

1

2

�
~u0`N ~u` + ~x0k( D 0 � ~D )0Q( D 0 � ~D )~xk

�
: (4.43)
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In this case there are no terms in (4.43) which are linear in ~xk, and as such

the optimal control will be proportional to the state estimate �k and have

no extra terms (i.e., Sbk and Kb
k will not appear). In fact the solution to

the dynamic programming problem for this augmented system is given in

Theorem 2.4 with the following substitutions (in addition to those for the

augmented system representation (4.42))

~M = ( D 0 � ~D )0Q( D 0 � ~D ) ; ~Q = 0 (4.44)

Due to the purely proportional feedback nature of this solution, it can

now be seen that it is possible to obtain zero steady state error even in

the case of modelling errors, as there is no longer a constant o�set term

contributed by Kb
k. Unfortunately, however, the initial transient will su�er

due to the fact that the controller is no longer able to anticipate the step

in the reference input, as it is now assumed to be unknown.

One �nal point to note is that this second augmentation can be used

without the �rst augmentation, and zero steady state error will result for

the case where N = 0, (this is termed cheap control). However, undesir-

able oscillations in the transient response will increase, compared to the

situation where an integrator is present in the forward path.

5 Simulation Studies

We now present simulation studies to demonstrate the e�ect of variations

to the risk-sensitive parameter �.

One practical motivation for a risk-sensitive approach is when high order

systems are to be optimally controlled by standard PID controllers. In this

case, higher order controllers can be represented by low order controllers

(by appropriate model reduction) while the risk-sensitive parameter can be

used to, in e�ect, robustify the model order reduction. It is partly for this

reason that we concentrate our simulation studies on second order systems.

However, higher order systems are straightforward extensions in this vector

framework.

An important point to mention is that classical controllers can be de-

signed for the control problem considered in the �rst three examples, how-

ever the classical techniques do not perform an optimisation of any criterion

(as such control energy can be restrictively high), and they rely to a large

extent on the designer placing poles and zeros in `good' locations, often

via iterative techniques, rather than the optimal LQG and risk-sensitive

policies which are entirely structured, once the cost criterion is speci�ed.

Therefore we focus our attention, in this section, on comparing the stan-

dard LQG results with those of the risk-sensitive tracker developed in this

paper.
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In Example 4, a two-input two-output system is considered, for which

a classical controller is not easily derived. In contrast, the risk-sensitive

controller for such a system is generated by a straight forward extension of

the single-input single-output case considered in the �rst three examples,

and therefore demonstrates another of the features of this risk-sensitive

approach, namely expandability to higher order systems.

Example 1: In this example we demonstrate a case where modelling

errors are present. The true system is given by the following parameters

A =

�
�0:2 1

�0:2 0

�
B =

�
0:9

�0:6

�
C = [1 0]

D = [1 0]
M =

�
1 0

0 1

�

T = 100 � =

�
0:01 0

0 0:01

�
N = 0:1

Q = 100
� = 0:01

and the trajectory to be followed, ~zk, is a unit step at k = 20. The modelling

error is introduced by assuming in the design that A is given by

A =

�
�0:8 1

�0:8 0

�
:

Table 1 gives values of the LQG, minimum variance, cost function (i.e.,

	0;T�1 + 0:5x0TMTxT ) averaged over 100 simulation runs. It can be seen

that in the case where no modelling error is present, of course � = 0 gives

lowest cost. However, when the error is introduced, a higher value of �

gives a lower minimum variance cost. This example displays an advantage

of the risk-sensitive approach in the presence of modelling errors.

Unfortunately, the sample path properties may not improve with a lower

minimum variance cost, as one would wish, especially if � is too large. Here,

too large will depend on the type of modelling error, and will of course be

unknown to the designer. Figure 3 shows a typical sample run for the

case of no modelling errors. It shows that the cost function chosen for

the tracking task considered, results in little di�erence in tracking errors

between the LQG and risk-sensitive policies. Figure 4 shows a typical

sample run for the case where modelling errors are present. Even though

the minimum variance cost is lower for the risk-sensitive policy, the tracking

performance might not be as desirable, having much greater oscillations in

the transient response. The conservative risk-sensitive controller places

more emphasis on correcting for large errors, therefore the initial response

is faster, resulting in more oscillations. It is thereby making a trade-o�

between a lower variance cost, and adding more oscillations. Therefore the

desirability of a risk-sensitive approach cannot be measured purely by the

minimum variance cost.

Example 2: In this example we demonstrate the case of a constant

reference input, where an integrator is added in the forward path of the
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control design. The system is the same as in Example 1, but with M =

03�3. When no modelling errors are present, zero steady state is achieved.

When errors are introduced to the model it is not possible to have zero

steady state error, however Figures 5 and 6 demonstrate that there are

still advantages to the integrator approach. The modelling error in these

�gures is the same as that in Example 1. As can be seen from the �gures,

the addition of an integrator e�ectively increases the usable range of risk-

sensitive parameter values, �, by smoothing the step response.

Example 3: In this example we demonstrate the case of a constant

reference input, where an integrator is added in the forward path of the

control design as well as using a model for the reference. As can be seen

from Figure 7 zero steady state error is achieved for both modelling er-

rors and no modelling errors, however it is at the expense of the speed of

transient response, (especially in the LQG case). The other point to note

from this example is that the bene�t from a risk-sensitive control policy is

reduced when integrators are added. This is due to the fact that integra-

tors have the e�ect of adding robustness to the controller, and as such the

robustness gain from the risk-sensitive policy is seen to reduce. This can

also be seen by the fact that the LQG cost function is much smaller when

zero steady state error is achieved, compared to when it is not achieved.

The result is that the e�ect of varying � is less, as the variation is over a

less steep region of the exponential curve.

One �nal point to note is that the LQG design is not optimal for the

doubly augmented system, due to the fact that the reference is modelled

by an integrator (4.40) when in fact it is a deterministic signal. This can

be considered to be a modelling error in the design, and as such the LQG

solution is not optimal with this augmentation. In fact, for the example

considered, the cost is actually less for the risk-sensitive solution than for

the LQG solution, even in the case where A is known precisely (i.e., the

line labelled `no modelling error' in Figure 7).

Example 4: In this simulation study we present an example of a two-

input two-output system. The state variables, A;M; T , and � are the same

as in Example 1. The remainder of the parameters are :

B =

�
0:9 0:8

�0:6 �0:2

�
C =

�
1 0

0 1

�
D =

�
1 0

0 1

�

� =

�
0:01 0

0 0:01

�
N =

�
0:1 0

0 0:1

�
Q =

�
100 0

0 100

�

and the desired trajectory is a unit step in the �rst output and a zero

response in the second output.

The results are presented in Figure 8, which again demonstrate the

e�ect of varying the risk-sensitive parameter. These results are for the

17



I.B. COLLINGS, M.R. JAMES, J.B. MOORE

doubly augmented system, as in Example 3. It can be seen again, that

the more conservative controller, corresponding to � = 0:07 initially makes

more of an e�ort to follow the step-jump, and to achieve a lower cost,

however it also results in more oscillations. The more risky controller,

corresponding to � = �0:07, in e�ect starts by assuming the step-jump is

just extra noise, and risks ignoring it. The overall cost is higher, but the

response is smoother. Obviously a trade-o� exists, and this is where the

risk-sensitive controller, with its variable risk-sensitive parameter, becomes

extremely useful.

Example 5: In this simulation study we present an example of an

approximate solution to the risk-sensitive HMM control problem of Section

3. The system is given by the following parameters

A =

�
0:1 0:9

0:9 0:1

�
+

�
u �u

�u u

� c(Xk) = h

�
0

1

�
; Xki

d(Xk) = h

�
0

1

�
; Xki

M =

�
0 0

0 1

�
N = 0:1

Q = 0

� = 2

T = 100

and in this example there is no trajectory to be followed, (i.e., ~zk = 0).

We see from this system that in an uncontrolled situation, the output

trajectory, zk, will tend to oscillate between the values 0 and 1 at each

discrete time instant. From the de�nition of M we see that the control

objective is to force zk to the value zero.

In this example the dynamic programming problem is solved by quan-

tizing the normalized information-state, �
q
k, into six discrete values,

�
q
k 2 f(`� 0:2;m� 0:2)0g 0 � `;m � 5 `+m = 5 (5.45)

and allowing only three possible control values

uk 2 f0:1; 0:3; 0:5g: (5.46)

The dynamic programming problem is then solved by evaluating the cost

which minimizes the value function for each possible information-state, �
q
k,

at each step backwards in time, k.

In order to demonstrate the e�ect of the risk-sensitive parameter on

the control policy we present, in Table 2, the steady state control values

which result from the approximate solution to the dynamic programming

problem. It can be seen that as the risk-sensitive parameter increases, the

information-state must be increasingly more con�dent of the true state,

before the controller is willing to apply a large control value. This example

therefore demonstrates the robustness property gained from increasing the

sensitivity to risk.
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6 Conclusion

In this paper we have presented the solution to the linear risk-sensitive

quadratic Gaussian control problem. Results have been derived for the

case of tracking a desired trajectory. The solution to the dynamic program-

ming problem has been achieved without the need to appeal to a certainty

equivalence principle, and hence gives insight to the solution for nonlinear

systems. Limit results have also been presented which demonstrate the

link to standard linear quadratic Gaussian control. Also, the solution to

the problem of risk-sensitive tracking for hidden Markov models has been

presented, as well as a discussion on achieving zero steady state error with

risk-sensitive control policies. Simulation studies were presented in order

to show some advantages of the risk-sensitive approach.

�102 � = 0 (LQG) � = 0:1 � = 0:15

No model error 4.714 4.715 4.716

With model error 9.363 6.076 6.593

Table 1: Error analysis for risk-sensitive control

�q�
0

1

� �
0:2

0:8

� �
0:4

0:6

� �
0:6

0:4

� �
0:8

0:2

� �
1

0

�

0.1 0.1 0.1 0.1 0.3/0.5� 0.5 0.5

� 1 0.1 0.1 0.1 0.1 0.5 0.5

10 0.1 0.1 0.1 0.1 0.1 0.5

� control oscillates between the two values

Table 2: Risk-sensitive HMM control values
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Figure 3: No modelling errors
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Figure 4: With modelling errors
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Figure 5: Augmented system with modelling errors, � = 0:15
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Figure 6: Augmented system with modelling errors, � = 0:17
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Figure 7: Doubly augmented system � = 0:15
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Figure 8: Two-input two-output system with modelling errors
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