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Receding Horizon Control for the Stabilization

of Nonlinear Uncertain Systems Described by

Di�erential Inclusions�
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Abstract

In this paper the stabilization problem of nonlinear uncertain

systems described by di�erential inclusions is considered. The nom-

inal system is assumed to be a�ne in the control variable. For the

stabilization of the nominal system, a variant of the receding hori-

zon control method is proposed which is based on the solution of a

certain Bolza problem. The results are illustrated by an example.
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1 Introduction

In the past one and a half decades, a great deal of interest has been de-
voted to the design of stabilizing controllers for uncertain deterministic
systems; see [2,5-7,9-10] and the references therein. In this context, the
uncertainty is meant in a deterministic sense: it arises as a result of ap-
proximation, imprecision, or imperfect knowledge introduced during the
modelling procedure. Moreover, realistic processes are frequently subject
to extraneous disturbances with unknown statistical characterization but
with known structural properties and with known bounds. They lead also
to some uncertainty in the model of the system. In the present paper,
similarly to [9], the uncertain system is de�ned by a di�erential inclusion,
the right-hand side of which is a known multifunction (t; x; u) 7! F(t; x; u),
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�E. GYURKOVICS

but in contrast to [9], the nominal system (i.e., the system in the absence
of uncertainties) is not assumed to be linear; instead, it is allowed to be
nonlinear and a�ne in the control. The literature contains two main ap-
proaches for the stabilization of control-a�ne nonlinear uncertain systems,
the min-max controller discussed by Gutman and Palmor [10] and the
Corless-Leitmann approach [7]. Both of these approaches assume that the
nominal free system (i.e., the system with u(t) � 0) is uniformly asymptot-
ically stable or, at least practically stable, with known Lyapunov function
V the gradient of which is used in constructing the stabilizing feedback.
There exist relatively few methods for designing stabilizing feedback con-
trollers for nonlinear systems. This paper proposes a variant of the receding
horizon control method which may serve as a starting point for the design
of the controller of uncertain systems.

The notion of receding horizon control is not new; it goes back to an
early publication of Kleinman [12]. The method has been since revisited by
other authors, e.g. [14], [13], [18] for linear time-varying systems. Recently,
Mayne and Michalska [15], [16] have established the stability properties of
nonlinear systems with receding horizon control. In these works, a �xed-
time Lagrange-type optimal control problem is solved at every instant of
time under the terminal constraint x(t1) = 0. This constraint can be
interpreted in the terminology of [13] as the case of in�nite �nal weighting.
The present paper applies a �nite but not zero �nal weighting solving a
Bolza problem at every instant of time for �nding a stabilizing controller.
This approach can be considered as the generalization for nonlinear systems
of the method proposed in [13]. Our assumptions, similarly to that of the
work [15], are necessarily very strong, since they ensure the continuous
di�erentiability of the value function. At the same time, these conditions|
except Assumption A3|can be veri�ed relatively simply in advance.

Standard notation is adapted. In particular, the Euclidean scalar prod-
uct and the induced norm are denoted by h�; �i and k � k, respectively.
The transpose of a vector or a matrix X is denoted by X 0. BY de-
notes the closed unit ball of the space Y . For a compact set K 6= ;,
�(K) := maxfkvk : v 2 Kg and �(;) = 0. Finally, for x 2 Rn and S � Rn,
� x; S �:= fhx; si : s 2 Sg � R.

2 Problem and Assumptions

Consider a system described by

_x(t) 2 F(t; x(t); u(t)) (2.1)

where F : R�Rn �Rm
; Rn is a known multifunction with nonempty

values. For a given control function u : I ! Rm, with I � R, x : I ! Rn
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is a trajectory of (2.1) if it is absolutely continuous and satis�es (2.1) al-
most everywhere on I . The fundamental problem to be studied is that
of stabilization (2.1) by feedback. To make the problem statement more
precise, we have to impose certain assumptions concerning the multifunc-
tion F and the admissible class of feedbacks. We will require the following
assumptions.

A1. There exist (known) functions f : Rn ! Rn, B : Rn ! Rn�m and
a multifunction G : R �Rn

�Rm
; Rn, G(t; x; u) = F(t; x; u) �

f(x)�B(x)u with the following properties:

A1.1. f and B are locally Lipschitz continuous, di�erentiable func-
tions and there exists a constant M > 0 such that kf(x)k+
kB(x)k �M(1 + kxk). Moreover, f(0) = 0.

A1.2. There exist an upper semicontinuous multifunction Gm : R�
Rn
; Rm with nonempty convex and compact values and

a continuous function � : R ! [0; �0], �0 < 1, such that
G(t; x; u) = B(x)[Gm(t; x) + �(t)Gc(u)] for all (t; x; u), where
Gc : R

m
; Rm, Gc(u) = kukBRm.

Remark System _x(t) = f(x(t)) + B(x(t))u(t) is called the nominal sys-

tem. The uncertainty of the system is represented by the multifunction G.
According to A1.2, it is assumed to belong to the range of the input matrix.
Such uncertainties are called to be matched (see e.g. [7]). Now, a feedback
strategy (t; x) ! H(t; x) has to be determined so that by substitution of
u(t) = H(t; x(t)) into (2.1), the resulted closed loop system

_x(t) 2 FH(t; x(t)) ; (2.2)

FH(t; x) = f(x)+B(x)H(t; x)+B(x) [Gm(t; x) + �(t)(Gc � H)(t; x)] (2.3)

is globally uniformly asymptotically stable about the origin (for a de�nition,
see e.g. [9]).

To assure the existence of solutions of (2.2) at least on small intervals,
the feedback H is assumed to be an upper semicontinuous multifunction
H : R � Rn

; Rm with nonempty, convex, compact values. In keeping
with the usage of Goodall and Ryan [9], such multifunctions will be referred
to as generalized feedbacks. The existence of local solutions can be stated
on the basis of the following proposition.

Proposition 1 [1, p.98] If FH in (2.2) is upper semicontinuous with

nonempty, convex, compact images, then, for each (t0; x0), there exists

a local solution x : [t0; �)! Rn with x(t0) = x0.

Since the sum and the composition of upper semicontinuous multifunc-
tions is again upper semicontinuous (see e.g. [1, p 41]), and the same is
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true if an upper semicontinuous multifunction is multiplied by a continuous
single-valued function, the existence of local solutions follows from propo-
sition 1, if H is upper semicontinuous and chosen so that FH is convex,
compact valued.

3 Receding Horizon Control for the Stabilization of

the Nominal System

Consider the nominal system

_x(t) = f(x(t)) +B(x(t))u(t) (3.1)

and let it be subject to the cost function

J(t0; t1; u; x0) = g(xu(t1; x0; t0)) +

Z t1

t0

[Q(xu(t;x0; t0)) +R(u(t)))] dt;

(3.2)
where xu(�; x0; t0) denotes the solution of (3.1) due to control u and with
initial condition xu(t0;x0; t0) = x0. The receding horizon control is de�ned
as follows. Fix a time length T > 0 and consider the optimization problem

P (t; x) : inf
u2Lm

1
[t;t+T ]

J(t; t+ T; u; x) ;

where Lm1[t; t+T ] denotes the class of all Lebesgue measurable and essen-
tially bounded functions v : [a; b]! Rm.

Let the minimizing solution to problem P (t; x) be denoted by û(�;x; t)
and the corresponding value of the cost function by V (t; x), i.e.

V (t; x) = J(t; t+ T; û(�;x; t); x) :

To determine the receding horizon control at every instant of time t, we
shall solve the problem P (t; x(t)) and we shall apply the control u(t) =
û(t;x(t); t).

We observe that because of the time invariance of (3.1) and (3.2),

V (t; x) = V (0; x) and û(� ;x; t) = û(� � t;x; 0)

for all t and all � � t; therefore it is enough to consider problem P (0; x). If
problem P (0; x) is solvable for any x, it is possible to de�ne the mapping
x 7! û(0;x; 0). The receding horizon feedback h : Rn ! Rm is de�ned
then by

h(x) = û(0;x; 0) for all x 2 Rn :

As a result, we obtain the closed-loop nominal system

_x(t) = f(x(t)) +B(x(t))h(x(t)): (3.3)
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STABILIZATION OF NONLINEAR UNCERTAIN SYSTEMS

The aim of this section is to show that, under some additional conditions
for problem P (0; x), system (3.3) is globally asymptotically stable.

Remark In [15], [16], another version of receding horizon control is in-
vestigated: function g in (3.2) is taken to be identically zero and the �nal
state x(T ;x; 0) is restricted to be zero.

The Hamilton function belonging to problem P (0; x) is de�ned by

H(x; p) = sup
u

fhp; f(x)i �Q(x) + hp;B(x)ui �R(u)g: (3.4)

Concerning problem P (0; x), the following assumptions will be im-
posed.

A2.1. Q is di�erentiable and for any r > 0 there is a constant LQ;r such
that jQ(x1)�Q(x2)j � LQ;rkx1 � x2k for all x1; x2 2 rBRn . More-
over, Q(0) = 0 and Q(x) > 0 if x 6= 0.

A2.2. Function R is convex, and there exists a constant c > 0 such that
R(u) � ckuk2. Moreover 5R exists and it is a di�eomorphism from
Rm to itself.

A2.3. g 2 C1(Rn), g(0) = 0, g(x) > 0 if x 6= 0 and limkxk!1 g(x) =1.

A2.4. g satis�es the inequality H(x;�5 g(x)) � 0 for all x 2 Rn, where
H is given by (3.4).

Remark 1 Under the Assumption A2.2, there exists a unique u for which
the supremum is achieved, namely,

u = u(x; p) = (5R)�1(B(x)0p) :

Remark 2 Assumption A2.4 is very restrictive: on the one hand, it
implies that a continuous stabilizing controller may directly be constructed
by means of function g, and it is known that many nonlinear systems cannot
be stabilized with continuous feedback. On the other hand, it is not always
easy to determine a function satisfying A2.4. Moreover, the controller
proposed here needs an additional optimization process. Nevertheless, it
may be useful, among the others, when the magnitude of the control is
important.

The value function for problem P (0; x) can be de�ned as V 0 : [0; T ]�
Rn ! R,

V 0(s; x) = inf J(s; T; u; x) ; (s; x) 2 [0; T ]�Rn :

Clearly, V 0(0; x) = V (0; x).
Let us now make the following additional assumption.
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A3. For all (t0; x0) 2 [0; T ]�Rn, there exists a unique x(�) trajectory of
(3.1) for which

V 0(t0; x0) = g(xu(T ;x0; t0)) +

Z T

t0

�
Q(xu(s;x0; t0)) +R(u(s))

�
ds ;

where u(�) is a corresponding control.

In [3] it has been shown, that under the Assumptions A1 and A2.1-
A2.3, the statement of A3 is equivalent to the continuous di�erentiability
of V 0 on [0; T ]�Rn. It is well-known (see e.g. [17]), that at every point
(s; x), where V 0 is di�erentiable, it satis�es the Hamilton-Jacobi-Bellman
equation:

�
@V 0

@s
(s; x) +H(x;�

@V 0

@x
(s; x)) = 0 ; (3.5)

with the �nal condition
V 0(T; x) = g(x) : (3.6)

The optimal solution to problem P (0; x(t)) can be given by

û(s;x(t); 0) = (5R)�1
�
�B(xû(s;x(t); 0)

� @V 0

@x

�
s; xû(s;x(t); 0)

�
: (3.7)

Since all of the functions on the right-hand side of (3.7) are continuous in
s, û(�;x(t); 0) is continuous.

The Hamilton-Jacobi-Bellman equation (3.5)-(3.6) can be investigated
by the method of characteristics, i.e., by means of the following system of
ordinary di�erential equations

dx

dt
=

@H

@p
(x; p) ; x(T ) = xT ; (3.8)

�
dp

dt
=

@H

@x
(x; p) ; p(T ) = �5 g(xT ) ; (3.9)

dpn+1
dt

= 0 ; pn+1(T ) = �H(xT ;�5 g(xT )) ; (3.10)

dV

dt
= h�p;

@H

@p
(x; p)i � pn+1 ; V (T ) = g(xT ) : (3.11)

Lemma 1 Suppose that the Assumptions A1{A3 are valid, 5H is locally

Lipschitz continuous and system (3.8)-(3.9) is complete. Then

@V 0

@s
(0; x) � 0 for all x 2 Rn : (3.12)
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Proof: Similarly to [3], we can introduce the set

Mt = f(x(t); p(t)) : 9xT 2 Rn such that (x(�); p(�)) is (3.13)

the solution of (3:8)� (3:9)g:

In [3] it has been proved that, under the Assumption A1, A2.1{A2.3, As-
sumption A3 is equivalent to the existence of a mapping �(t; �) : Rn

! Rn

such that Mt = graph(��(t; �)). This means that the mapping xT 7! x(t),
where (x(�); p(�)) is a solution of (3.8)-(3.9) is one to one. Thus, using the
method of characteristics, for any x, an xT can be shown such that

pn+1(0) = �
@V 0

@t
(0; x) = �H(xT ;�5 g(xT )):

Then (3.12) follows by Assumption A2.4.
Let us consider now the function

V̂ (x) = V 0(0; x) = V (0; x) : (3.14)

We want to show that V̂ can be used as a Lyapunov function to system
(3.3).

Lemma 2 Suppose that the Assumptions A1{A3 are valid, 5H is locally

Lipschitz continuous and system (3.8)-(3.9) is complete. Then V̂ (0) = 0,
V̂ (x) > 0 if x 6= 0 and

d

dt
V̂ (x̂(t)) � �[Q(x̂(t)) +R(h(x̂(t)))] ; (3.15)

where x̂(�) is a trajectory of system (3.3).

Proof: Because of Assumptions A2, J(0; T; x; u) � 0; therefore V̂ (x) � 0.
If x = 0, then J(0; T; 0; 0) = 0, thus V̂ (0) = 0. If x 6= 0, then there is an
interval [0; �) of positive length such that xû(s;x; 0) 6= 0 for s 2 [0; �). Since
V (0; x) = J(0; T; x; û) �

R �
0
Q(xû(s;x; 0))ds, V̂ (x) > 0 follows immediately

from A2.1.
Let us estimate now the time derivative of V̂ along the trajectories of

system (3.3). To be short, we introduce the notation

F (x) := f(x) +B(x)h(x): (3.16)

Since V̂ is continuously di�erentiable, it is locally Lipschitz. Therefore,

d

dt
V̂ (x̂(t)) = lim

�!0+

1

�

h
V̂ (x̂(t) + �F (x̂(t)))� V̂ (x̂(t)))

i
=

= lim
�!0+

1

�

�
V 0(�; xû(� ; x̂(t); 0))� V 0(0; x̂(t))

�
+
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+ lim
�!0+

1

�

�
V 0(0; xû(� ; x̂(t); 0))� V 0(�; xû(� ; x̂(t); 0))

�
+

+ lim
�!0

1

�

h
V̂ (x̂(t) + �F (x̂(t)))� V 0(0; xû(� ; x̂(t); 0)

i
:(3.17)

We know that V 0 is di�erentiable and it satis�es the Hamilton-Jacobi-
Bellman equation (3.5)-(3.6); thus

lim
�!0+

1

�

�
V 0(�; xû(� ; x̂(t); 0))� V 0(0; x̂(t))

�
=

=
@V 0

@s
(0; x̂(t)) +

@V 0

@x
(0; x̂(t)) �

dxû(s; x̂(t); 0)

ds

����
s=0

=

=
@V 0

@s
(0; x̂(t)) +

@V 0

@x
(0; x̂(t)) [f(x̂(t)) +B(x̂(t))û(0; x̂(t); 0)] =

= �Q(x̂(t)) �R(h(x̂(t))) : (3.18)

Using again the continuous di�erentiability of V 0, the mean value theorem
gives

lim
�!0+

1

�

�
V 0(0; xû(� ; x̂(t); 0))� V 0(�; xû(� ; x̂(t); 0))

�
=

= lim
�!0

�
@V 0

@s
(��; xû(� ; x̂(t); 0)) = �

@V 0

@s
(0; x̂(t)) � 0 ; (3.19)

where the last inequality follows from Lemma 1. Since V 0 is locally Lips-
chitz continuous, we have

lim
�!0+

1

�

h
V̂ (x̂(t) + �F (x̂(t))) � V 0(0; xû(� ; x̂(t); 0)

i
�

� lim
�!0

LV 0

�
kxû(� ; x̂(t); 0)� x̂(t)� �F (x̂(t))k �

� lim
�!0

LV 0

�

Z �

0

k[f(xû(s; x̂(t); 0)) +B(xû(s; x̂(t); 0)û(s; x̂(t); 0)]�

�[f(x̂(t)) +B(x̂(t))û(0; x̂(t); 0)]kds = 0 ; (3.20)

for the integrand is continuous in s = 0. From (3.17)-(3.20), (3.15) follows
immediately.

Theorem 1 Suppose that Assumptions A1{A3 are valid, 5H is Lipschitz

continuous and system (3.8)-(3.9) is complete. Then system (3.3) is locally

asymptotically stable about the origin.

Proof: We take as a Lyapunov function the optimal value function V̂ .
The assertion follows by Lemma 2 and by Lyapunov's second theorem [8,
p. 240].
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To show global asymptotic stability we need an additional assumption
on the rate of growth of the right hand side of (3.1).

A4. There exist constants K > 0 and � > 0 such that

kf(x)+B(x)uk � K(Q(x)+R(u)) for every (x; u) 62 �BRn�Rm :

Lemma 3 Suppose that Assumptions A1-A4 are satis�ed. Then V̂ is

radially unbounded, i.e. V̂ (x)!1 if kxk ! 1.

Proof: By Assumption A3, for any x0 there exists a unique optimal tra-
jectory x(�) for the problem P (0;x0) with the optimal control u. Hence the
following sets are well-de�ned:

N1 = fx0 2 Rn : kx(T )k �
1

2
kx0kg

N2 = fx0 2 Rn : kx(T )k <
1

2
kx0kg :

If x0 2 N2; then

1

2
kx0k < kx(T )� x0k = k

Z T

0

(f(x(s)) +B(x(s))u(s))dsk ;

therefore it can be proved in the same way as in [16] that

V̂ (x0) � K�1

�
1

2
kx0k �M�(IrB)

�
;

where IrB is the subset of [0; T ] such that (x(t); u(t)) 2 �BRn�Rm and
M = max(x;u)2�B

Rn�Rm
kf(x) +B(x)uk .

Let us consider now the case when x0 2 N1. For this we introduce
the functions �(�), �(�) and the set valued maps �1;�2 by the following

de�nitions

max
kxk� 1

2
kyk

g(x) = �(kyk) ;

�1(r) = fx 2 Rn : g(x) � �(r)g ; r > 0;

�2(r) = (�1 [ rBRn)n
1

2
rB0
Rn

; r > 0;

min
x2�2(r)

g(x) = �(r) : r > 0:

Since g is continuous, � is well de�ned and �1(r) �
1
2rBRn . Furthermore,

g(x) ! 1 if kxk ! 1; therefore �1(r) is a nonempty compact and the
same is true also for �2(r). Thus � is also well de�ned. Clearly, �(r) !1

9
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and �(r) ! 1. Now, for x0 2 N1, two cases are possible. If x(T ) 62
�1(kx0k), then g(x(T )) > �(kx0k). On the other hand, if x(T ) 2 �1(kx0k);
then necessarily x(T ) 2 �2(kx0k); therefore g(x(T )) � �(kx0k). Since
V̂ (x0) � g(x(T )), for every x0 2 Rn

1 , we obtained a lower bound for V̂
tending to in�nity with kx0k ! 1.

Theorem 2 Suppose that Assumptions A1-A4 hold true, 5H is locally

Lipschitz continuous and system (3.8)-(3.9) is complete. Then system (3.3)

is globally asymptotically stable about the origin.

Proof: The proof is an immediate consequence of Lemma 2, Lemma 3 and
the Barbashin-Krasowsky theorem [8, p. 248].

Remark The receding horizon control rede�nes the performance criterion
at every instant of time; thus it does not optimize any overall criterion.
Nevertheless, a cost function determined by Q and R can be accepted as
a measure for the performance of the process. Under the conditions of
Theorem 1, this cost has the following bounds:Z 1

t

[Q(x̂(t)) + R(h(x̂(t)))] dt � V (0; x̂(t)) � g(x̂(t)) :

In fact, it has been proved in Lemma 2 that

d

dt
V̂ (x̂(t)) � � [Q(x̂(t)) + R(h(x̂(t)))] :

Therefore,Z tf

t

[Q(x̂(t)) + R(h(x̂(t)))] dt � V̂ (x̂(t)) � V̂ (x̂(tf )) :

We know that x̂(tf ) ! 0 and V̂ (x̂(tf )) ! 0 if tf ! 1; thus the
integral on the left hand side of the above inequality is convergent and has
the upper bound

V̂ (x̂(t)) = V̂ (x̂(tf )) :

On the other hand, the assertion of Lemma 1 is valid not only for
(0; x); x 2 Rn, but for any (t; x) 2 [0; T ]�Rn ; i.e.,

@V 0

@t
(t; x) � 0 for all t 2 [0; T ]; x 2 Rn :

It follows that, for any �xed x 2 Rn

V (0; x) = V 0(0; x) � V 0(T; x) = g(x) :

The estimation above generalizes the result of [13].
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STABILIZATION OF NONLINEAR UNCERTAIN SYSTEMS

4 Generalized Feedback by Receding Horizon

In this part, we shall give the generalized feedback (t; x) 7! H(t; x) for
which system (2.2)-(2.3) is globally uniformly asymptotically stable about
the origin.

Consider the receding horizon feedback law x 7! h(x) de�ned in the pre-
vious section and let (t; x) 7! �(t; x) be any continuous function satisfying
the inequality

�(t; x) � �0(t; x) :=
1

1� �(t)
f�(t)kh(x)k+ �(Gm(t; x))g ; (4.1)

where � and Gm are given in A1. De�ne the multifunction D : Rm
; Rm

by

D(u) =

�
u=kuk; if u 6= 0,
BRm ; if u = 0

(4.2)

which is clearly upper semicontinuous. Let V̂ be the receding horizon value
function given by (3.14). We know that, under the Assumptions A1-A3, V̂
is continuously di�erentiable. The proposed feedback can now be de�ned
as

(t; x) 7! H(t; x) := h(x) +K(t; x) ; (4.3)

where
K(t; x) := ��(t; x)D(B0(x)5 V̂ (x)) : (4.4)

As a result, (2.3) will take now the form

FH(t; x) = F (x)+B(x)K(t; x)+B(x)(Gm(t; x)+�(t)(Gc �H)(t; x)) ; (4.5)

where F is given by (3.16).
Being clearly upper semicontinuous, (t; x) 7! H(t; x) is a generalized

feedback. Since for any (t; x), its value is either a singleton or a closed ball,
it is a convex, compact valued multifunction. Using the de�nition of Gc,
we can see that �(t)(Gc �H)(t; x) is a closed ball (with radius �(t)�(h(x)�
�(t; x)BRm) or �(t)kh(x)� �(t; x)B0(x)5 V̂ (x)=kB0(x)5 V̂ (x)kk, respec-
tively). Thus the multifunction FH in (2.2), (4.5) is the sum of convex and
compact valued multifunctions; hence it has itself these properties. The
existence of local solutions for (2.2), (4.5) follows now by proposition 1.

Theorem 3 Suppose that Assumptions A1-A4 are valid, 5H is locally Lip-

schitz continuous and system (3.8)-(3.9) is complete. Then system (2.2)-

(2.3) with (4.1)-(4.4) is globally asymptotically stable about the origin.

Proof: We shall use again V̂ as a Lyapunov function. Since it is continu-
ously di�erentiable, we have to investigate

d

dt
V̂ (x(t)) = (5V̂ (x(t)))0 _x(t)

11
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along the solutions of (2.2), (4.5). We have

d

dt
V̂ (x(t)) 2� 5V̂ (x(t)); F (x(t)) +B(x(t))K(t; x(t)) + (4.6)

+B(x(t))[Gm(t; x(t)) + �(t)(Gc � H)(t; x(t))] � :

In the proof of Lemma 2, we have seen that

h5V̂ (x(t)); F (x(t))i � �[Q(x(t)) + R(x(t)))] : (4.7)

By the de�nition of K, we obtain that

� B0(x)5 V̂ (x);K(t; x) �=�
f��(t; x)kB0(x)5 V̂ (x)kg; if B0(x)5 V̂ (x) 6= 0;
f0g; if B0(x)5 V̂ (x) = 0:

(4.8)

On the other hand,

�(t)(Gc � H)(t; x) =(
�(t)kh(x) � �(t; x) B0(x)5V̂ (x)

kB0(x)5V̂ (x)k
kBRm ; if B0(x)5 V̂ (x) 6= 0 ,

�(t)kh(x)kBRm ; if B0(x)5 V̂ (x) = 0:

Therefore, in the case of B0(x)5 V̂ (x) 6= 0,

� B0(x)5 V̂ (x);Gm(t; x) + �(t)(Gc � H)(t; x)�� (4.9)

� [(�(t)(kh(x)k + �(t; x)) + �(Gm(t; x))]kB
0(x)5 V̂ (x)k � [�1; 1]

while in the case of B0(x)5 V̂ (x) = 0,

� B0(x)5 V̂ (x);Gm(t; x) + �(t)(Gc � H)(t; x)�= f0g : (4.10)

Comparing (4.6)-(4.10), the result can be summarized in the inequality

d

dt
V̂ (x(t)) � �[Q(x(t)) +R(h(x(t))] :

Thus the Barbashin-Krasowsky theorem can again be applied to prove the
statement of the theorem.

5 Examples

The stabilizing property of the controllers discussed in Sections 3 and 4
can be illustrated by the following examples.

Example 1 Let us consider the nominal system�
_x1(t)
_x2(t)

�
=

�
�x2(t)
x1(t)

�
+

�
x1(t) �x2(t)
x2(t) x1(t)

��
u1(t)
u2(t)

�
;

12
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and let us choose the functions x ! Q(x) = 2a2(x21 + x22)
2, u ! R(u) =

1
2
u0u, x! g(x) = b(x21 + x22). It can easily be veri�ed that these functions

satisfy Assumption A2, if 0 < a � b. Simulation results are obtained
with parameters a = 0:5, b = 8. The horizon length was T = 0:5. We
notice that the maximal magnitude of the receding horizon controller for
the initial state (5; 4) is 41.14, while that of the controller de�ned by means
of the function g is 328.

Let the uncertainty for this system be given by Gm(t; x) = 20BR2 and
�(t) � 0. A realization of this uncertainty was simulated as the function

20(cos(0:01t(jx1j+ jx2j)); sin(0:01t(jx1j+ jx2j)))
0:

In Fig. 1, curve B is the trajectory obtained by the use of the receding
horizon control law only, while curve A resulted by the controller of Section
4.
Example 2 Consider now the nominal system�

_x1(t)
_x2(t)

�
=

�
x31(t)� x32(t)
x31(t) + x32(t)

�
+

�
x1(t)
x2(t)

�
u(t)

which has a highly unstable free part. We choose x ! Q(x) = x41 + x42,
u ! R(u) = 1

2u
2, x ! g(x) = c(x21 + x22). If c � 1:5, then Assumption

A2 holds true. Simulation results are obtained with parameter c = 5 and
horizon length T = 0:5. If we compare the maximal control magnitudes
again for the initial point (5; 4), we �nd the values 71.64 and 410 for the
receding horizon controller and for the controller de�ned by function g,
respectively.

13
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The uncertainty for this system was taken to be Gm(t; x) = 12BR2 ,
�(t) � 0. A realization of this uncertainty was simulated as the function

12 exp(�0:005t(jx1j+ jx2j)) :

Fig. 2 shows the trajectories resulted from the receding horizon strategy
(trajectory B) and from the control method of Section 4 (trajectory A).

We note that the robustness of the receding horizon controller is indi-
cated by the fact that the function

(t; x)! 10 sin(1 + t(jx1j+ jx2j)) 2 Gm(t; x)

leaves the system controlled by the receding horizon method to be asymp-
totically stable.

For the solution of the two-point boundary value problem necessary in
the calculation of the controllers, the computer program described in [11]
was used.
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