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Structured Uncertainty�

Andrey V. Savkiny Ian R. Peterseny

Abstract

This paper considers a problem of absolute stabilization with a

speci�ed level of disturbance attenuation for a class of uncertain sys-

tems in which the uncertainty is structured and satis�es a certain

integral quadratic constraint. The paper shows that an uncertain

system is absolutely stabilizable with a speci�ed level of disturbance

attenuation if and only if there exists a solution to a corresponding

H
1 control problem. The paper also shows that if an uncertain sys-

tem can be absolutely stabilized with a speci�ed level of disturbance

attenuation via nonlinear output feedback control, then it can be ab-

solutely stabilized with a speci�ed level of disturbance attenuation

via linear output feedback control.

Key words: robust H1 control, absolute stabilizability, uncertain systems, in-

tegral quadratic constraint, structured uncertainty, nonlinear control
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1 Introduction

An important idea to emerge in recent years is the connection between the

Riccati equation approach to H1 control and the problem of stabilizing an

uncertain system containing norm bounded uncertainty; e.g., see [1, 2, 3].

In these papers, the notion of stabilizability considered is that of quadratic

stabilizability. This notion can be extended to consider the problem of

robustly stabilizing a system and also giving a speci�ed level of disturbance

attenuation; e.g., see [4].

In contrast to the quadratic stabilizability approach mentioned above,

an alternative approach involves the notion of absolute stabilizability for
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uncertain systems in which the uncertainty satis�es a certain integral quad-

ratic constraint; e.g., see [5, 6, 7]. The advantage of this approach is that it

allows for non-conservative results to be obtained for the case of uncertain

systems with structured uncertainty. Furthermore, using this framework,

it was shown in [5] that if an uncertain system with structured uncertainty

can be absolutely stabilized using nonlinear output feedback control, then it

can also be absolutely stabilized using linear output feedback control. The

main contribution of this paper is to extend the results of [5] to consider

a problem of absolute stabilization with a speci�ed level of disturbance

attenuation. Also, the results of this paper enable some of the strong

assumptions made in [5] to be weakened.

As in [5], a key technical result used in this paper is an extension of

the \S-procedure" result of [8]. An important feature of the nonlinear S-

procedure result of this paper is that the assumptions required are signi�-

cantly weaker than the assumptions required in the nonlinear S-procedure

of [5]. It is this nonlinear S-procedure result which enables us to consider

the problem of absolute stabilization with a speci�ed level of disturbance

attenuation for the case of uncertain systems with structured uncertainty.

Furthermore, this result also allows us to consider the possible use of non-

linear controllers.

The remainder of the paper proceeds as follows. In Section 2, we de-

�ne the class of uncertain systems under consideration. For this class of

uncertain systems, we de�ne our notion of absolute stabilizability with a

speci�ed level of disturbance attenuation. In Section 3, we establish our

technical result concerning the extension of the \S-procedure" result of [8]

to the case of nonlinear systems. Section 4 of the paper presents our main

result which is a necessary and su�cient condition for absolute stabiliz-

ability with a speci�ed level of disturbance attenuation. This condition is

given in terms of the existence of solutions to a pair of parameter dependent

algebraic Riccati equations of the game type.

2 Problem Statement

We consider an output feedback H1 control problem for an uncertain

system of the following form:

_x(t) = Ax(t) +B1w(t) +B2u(t) +

kX
s=1

Ds�s(t);

z(t) = C1x(t) +D12u(t);

�1(t) = K1x(t) +G1u(t);

...
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�k(t) = Kkx(t) +Gku(t);

y(t) = C2x(t) +D21w(t) (2.1)

where x(t) 2 Rn is the state, w(t) 2 Rp is the disturbance input, u(t) 2 Rm

is the control input, z(t) 2 Rq is the error output, �1(t) 2 Rh1 ; : : : ; �k(t) 2
Rhk are the uncertainty outputs, �1(t) 2 Rr1 ; : : : ; �k(t) 2 Rrk are the

uncertainty inputs and y(t) 2 Rl is the measured output. The uncertainty
in this system is described by a set of equations of the form

�1(t) = �1(t; �1(�)jt0)
�2(t) = �2(t; �2(�)jt0)

...

�k(t) = �k(t; �k(�)jt0) (2.2)

where the following Integral Quadratic Constraint is satis�ed.

De�nition 2.1 (Integral Quadratic Constraint; see [9, 10, 11, 12, 13, 14,
15, 5, 6, 16, 7].) An uncertainty of the form (2.2) is an admissible un-
certainty for the system (2.1) if the following conditions hold: Given any
locally square integrable control input u(�) and locally square integrable dis-
turbance input w(�), and any corresponding solution to the system (2.1),
(2.2), let (0; t

�
) be the interval on which this solution exists. Then there

exist constants d1 � 0; : : : ; dk � 0 and a sequence ftig1i=1 such that ti ! t
�
,

ti � 0 andZ
ti

0

k�s(t)k2dt �
Z

ti

0

k�s(t)k2dt+ ds 8i 8s = 1; : : : ; k: (2.3)

Here k � k denotes the standard Euclidean norm and L2[0;1) denotes the
Hilbert space of square integrable vector valued functions de�ned on [0;1).
Note that ti and t? may be equal to in�nity. The class of all such admissible
uncertainties �(�) = [�1(�); : : : ; �k(�)] is denoted �.

In references [14] and [15], a number of examples are given of physical

systems in which the uncertainty naturally �ts into the above framework.

Also, note that the above uncertainty description allows for uncertainties

in which the uncertainty input �s depends dynamically on the uncertainty

output �s. In this case, the constant ds may be interpreted as a measure

of the size of the initial condition on the uncertainty dynamics.

Also, it is clear that the uncertain system (2.1), (2.3) allows for un-

certainty satisfying a norm bound condition. In this case, the uncertain

system would be described by the state equations

_x(t) = [A+

kX
s=1

Ds�s(t)Ks]x(t) + [B2 +

kX
s=1

Ds�s(t)Gs]u(t) +B1w(t);
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y(t) = C2x(t) +D21w(t); sup k�s(t)k � 1 (2.4)

where �s(t) are the uncertainty matrices (see e.g. [2, 3]). Indeed, let

�s(t) = �s(t)[Ksx(t) +Gsu(t)]. Then the uncertainties �s(�) satisfy condi-
tions (2.3) with ds = 0 and with any ti.

For the uncertain system (2.1), (2.3), we consider a problem of absolute

stabilization with a speci�ed level of disturbance attenuation. The class of

controllers considered are nonlinear output feedback controllers of the form

_xc(t) = �(xc(t); y(t));

u(t) = �(xc(t); y(t)); (2.5)

where �(xc; y) and �(xc; y) are continuous vector functions. Note that the

dimension of the controller state vector xc(t) in (2.5) may be arbitrary.

De�nition 2.2 The uncertain system (2.1), (2.3) is said to be absolutely
stabilizable with disturbance attenuation 
 (via nonlinear output feedback
control) if there exists an output feedback controller (2.5) and constants
c1 > 0 and c2 > 0 such that the following conditions hold:

(i) For any initial condition [x(0); xc(0)], any admissible uncertainty in-
puts �(�) and any disturbance input w(�) 2 L2[0;1), then

[x(�); xc(�); u(�); �1(�); : : : ; �k(�)] 2 L2[0;1)

(hence, t
�
=1 ) and

kx(�)k22 + kxc(�)k22 + ku(�)k22 +
kX

s=1

k�s(�)k22

� c1[kx(0)k2 + kxc(0)k2 + kw(�)k22 +
kX

s=1

ds]: (2.6)

(ii) The following H1 norm bound condition is satis�ed: If x(0) = 0 and
xc(0) = 0, then

J
�
= sup

w(�)2L2[0;1)

sup
�(�)2�

kz(�)k22 � c2
P

k

s=1 ds

kw(�)k22
< 
2: (2.7)

Here, kq(�)k2 denotes the L2[0;1) norm of a function q(�). That is,

kq(�)k22
�
=
R
1

0
kq(t)k2dt.

Observation 2.1 It follows from the above de�nition that if the uncer-

tain system (2.1), (2.3) is absolutely stabilizable with disturbance atten-

uation 
, then the corresponding closed loop system (2.1), (2.3), (2.5)
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with w(�) 2 L2[0;1), has the property that x(t) ! 0 as t ! 1. In-

deed, since [x(�); u(�); �(�); w(�)] 2 L2[0;1), we can conclude from (2.1)

that _x(�) 2 L2[0;1). However, using the fact that x(�) 2 L2[0;1) and

_x(�) 2 L2[0;1), it now follows that x(t)! 0 as t!1.

3 S-Procedure for Nonlinear Systems

In this section, we present a result which extends the \S-Procedure" of

[8]. The result is closely related to the result presented in [5]. However,

the assumptions required for this result are considerably weaker than the

assumptions required in [5]. The main result of this section applies to a

nonlinear, time-invariant system of the form

_h(t) = �(h(t);  (t)) (3.1)

where h(t) 2 RN is the state and  (t) 2 RM is the input. Associated with
the system (3.1) is the following set of functionals:

f0 (h(�);  (�)) =

Z
1

0

�0(h(t);  (t))dt;

f1 (h(�);  (�)) =

Z
1

0

�1(h(t);  (t))dt;

...

fk (h(�);  (�)) =

Z
1

0

�k(h(t);  (t))dt:

Assumptions The system (3.1) and associated set of functionals satisfy

the following assumptions:

3.1 The functions �(�; �); �0(�; �); : : : ; �k(�; �) are continuous.

3.2 For all  (�) 2 L2[0;1) and all initial conditions h(0) 2 RN , the cor-

responding solution h(�) belongs to L2[0;1) and the corresponding

quantities f0 (h(�);  (�)), f1 (h(�);  (�)), : : :, fk (h(�);  (�)) are �nite.

3.3 Given any " > 0, there exists a constant � > 0 such that the fol-

lowing condition holds: For any input function  0(�) 2 f 0(�) 2
L2[0;1); k 0(�)k22 � �g and any h0 2 fh0 2 RN : kh0k � �g, let
h0(t) denotes the corresponding solution to (3.1) with initial condi-

tion h0(0) = h0. Then jfs (h0(�);  0(�)) j < " for s = 0; 1; : : : ; k.

Note, Assumption 3.3 is a stability type assumption on the system (3.1).
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Notation For the system (3.1) satisfying the above assumptions, we

de�ne 
 � L2[0;1) as follows: 
 is the set of fh(�);  (�)g such that

 (�) 2 L2[0;1) and h(�) is the corresponding solution to (3.1) with ini-

tial condition h(0) = 0.

Theorem 3.1 Consider the system (3.1) and associated functionals and
suppose the Assumptions 3.1 { 3.3 are satis�ed. If f0 (h(�);  (�)) � 0 for
all fh(�);  (�)g 2 
 such that f1 (h(�);  (�)) � 0; : : : ; fk (h(�);  (�)) � 0, then

there exist constants �0 � 0; �1 � 0; : : : ; �k � 0 such that
P

k

s=0 �s > 0 and

�0f0 (h(�);  (�)) � �1f1 (h(�);  (�)) + �2f2 (h(�);  (�)) + � � �+ �kfk (h(�);  (�))
(3.2)

for all fh(�);  (�)g 2 
.

In order to prove this theorem, we will use the following convex analysis

result, the proof of which was given in [5]. However, we �rst introduce some

notation.

Notation Given S � Rn and T � Rn, then S + T := fx+ y : x 2 S; y 2
Tg. Also, cl(S) denotes the closure of the set S.

Lemma 3.1 (See [5] for proof) Consider a set M � Rk+1 with the prop-
erty that a + b 2 cl(M) for all a; b 2 M . If x0 � 0 for all vectors�
x0 � � � xk

�
0 2 M such that x1 � 0; : : : xk � 0, then there exist con-

stants �0 � 0; : : : ; �k � 0 such that
P

k

s=0 �s > 0 and �0x0 � �1x1 + �2x2 +

� � �+ �kxk for all
�
x0 � � � xk

�
0 2M:

Proof of Theorem 3.1: In the order to prove this theorem we establish

the following claim.

Claim: Given any �0 > 0 and any input  0(�) 2 L2[0;1), then there

exists a constant �0 > 0 such that the following condition holds: for any

h0 2 fh0 2 RN : kh0k � �0g, let h1(t) denotes the corresponding solu-

tion to (3.1) with initial condition h1(0) = 0 and let h2(t) denotes the

corresponding solution to (3.1) with initial condition h2(0) = h0. Then

jfs (h1(�);  0(�)) � fs (h2(�);  0(�)) j < �0 for s = 0; 1; : : : ; k.

Indeed, let �0 > 0 be some constant and let � be the constant from

Assumption 3.3 corresponding to " = �0

4
. According to Assumption 3.2,

[h1(�);  0(�)] 2 L2[0;1) and, therefore, there exists a T > 0 such that

kh1(T )k � �

2
and

R
1

T
k 0(t)k2dt � �. Assumption 3.1 implies that there

exists a constant �0 > 0 such that for all kh0k < �0, the solution h2(�) of
the system (3.1) with input  0(�) and initial condition h2(0) = h0 satis�es

condition Z
T

0

j�s(h1(t);  0(t))� �s(h2(t);  0(t))jdt <
�0

2
(3.3)
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for all s and

kh2(T )� h1(T )k <
�

2
: (3.4)

Since kh1(T )k � �

2
, we have from (3.4) that kh2(T )k � �. Furthermore,

Assumption 3.3 and time invariance of the system (3.1) imply thatZ
1

T

j�s(h1(t);  0(t))� �s(h2(t);  0(t))jdt �
Z

1

T

(j�s(h1(t);  0(t))j + j�s(h2(t);  0(t))j)dt �
�0

4
+
�0

4
=
�0

2
:

From this and the inequality (3.3) the claim follows immediately.

Now suppose f0 (h(�);  (�)) � 0 for all fh(�);  (�)g 2 
 such that

f1 (h(�);  (�)) � 0; : : : ; fk (h(�);  (�)) � 0

and let

M :=
n�

f0 (h(�);  (�)) : : : fk (h(�);  (�))
�
0 2 Rk+1 : fh(�);  (�)g 2 


o
:

It follows from the assumption on the set 
 that x0 � 0 for all vectors�
x0 � � � xk

�
0 2M such that x1 � 0; : : : ; xk � 0. Let fha(�);  a(�)g 2 


and fhb(�);  b(�)g 2 
 be given. Since ha(�) 2 L2[0;1), then there exists

a sequence fTig1i=1 such that Ti > 0 for all i, Ti ! 1 and ha(Ti) ! 0 as

i ! 1. Now consider the corresponding sequence fhi(�);  i(�)g1i=1 � 
,

where

 i(t) =

�
 a(t) t 2 [0; Ti);

 b(t� Ti) t � Ti:

We will establish that fs(hi(�);  i(�))! fs(ha(�);  a(�))+fs(hb(�);  b(�)) as
i ! 1 for s = 0; 1; : : : ; k. Indeed, let s 2 f0; 1; : : : ; kg be given and �x

i. Now suppose ~hi
b
(�) is the solution to (3.1) with input  (�) =  b(�) and

initial condition ~hi
b
(0) = ha(Ti). It follows from the time invariance of the

system (3.1) that hi(t) � ~hi
b
(t� Ti). Hence,

fs(hi(�);  i(�)) =

Z
1

0

�s(hi(t);  i(t))dt

=

Z
Ti

0

�s(ha(t);  a(t))dt +

Z
1

Ti

�s(hi(t);  b(t� Ti))dt

=

Z
Ti

0

�s(ha(t);  a(t))dt + fs(~h
i

b
(�);  b(�)):

Using the fact that ha(Ti)! 0, the above claim implies fs(~h
i

b
(t);  b(t))!

fs(hb(�);  b(�)) as i ! 1. Also,
R
Ti

0
�s(ha(t);  a(t))dt ! fs(ha(�);  a(�)).

Hence,

fs(hi(�);  i(�))! fs(ha(�);  a(�)) + fs(hb(�);  b(�)):
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From the above, it follows that the setM has the property that a+ b 2
cl(M) for all a; b 2M . Hence, Lemma 3.1 implies that there exist constants

�0 � 0; : : : ; �1 � 0 such that
P

k

s=0 �s > 0 and �0x0 � �1x1 + � � �+ �kxk for

all
�
x0 � � � xk

�
0 2M: That is, condition (3.2) is satis�ed. 2

4 The Main Results

In this section, we present the main result of this paper which establishes

a necessary and su�cient condition for the uncertain system (2.1), (2.3) to

be absolutely stabilizable with a speci�ed level of disturbance attenuation.

This condition is given in terms of the existence of solutions to a pair of

parameter dependent algebraic Riccati equations. The Riccati equations

under consideration are de�ned as follows:

Let �1 > 0, : : :, �k > 0 be given constants and consider the algebraic Riccati

equations

(A�B2E
�1
1 D̂0

12Ĉ1)
0X +X(A�B2E

�1
1 D̂0

12Ĉ1)

+ X(B̂1B̂
0

1 � B2E
�1
1 B0

2)X + Ĉ 0

1(I � D̂12E
�1
1 D̂0

12)Ĉ1 = 0; (4.1)

(A� B̂1D̂
0

21E
�1
2 C2)Y + Y (A� B̂1D̂

0

21E
�1
2 C2)

0

+ Y (Ĉ 0

1Ĉ1 � C 0

2E
�1
2 C2)Y + B̂1(I � D̂0

12E
�1
2 D̂21)B̂

0

1 = 0 (4.2)

where

Ĉ1 =

2
6664

C1p
�1K1

...p
�kKk

3
7775 ; D̂12 =

2
6664

D12p
�1G1

...p
�kGk

3
7775 ;

D̂21 =
�

�1D21 0 : : : 0

�
;

E1 = D̂0

12D̂12;E2 = D̂21D̂
0

21;

B̂1 =
�

�1B1

p
�1
�1
D1 : : :

p
�k
�1
Dk

�
:

(4.3)

Assumptions The uncertain system (2.1), (2.3) will be required to sat-

isfy the following additional assumptions:

4.1 The pair (A;C1) is observable.

4.2 E1 > 0:

4.3 The pair (A;B1) is controllable.
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4.4 E2 > 0:

Theorem 4.1 Consider the uncertain system (2.1), (2.3) and suppose that
Assumptions 4.1-4.4 are satis�ed. Then the following statements are equiv-
alent:

(i) The uncertain system (2.1),(2.3) is absolutely stabilizable with distur-
bance attenuation 
 via the nonlinear output feedback control (2.5).

(ii) There exist constants �1 > 0; : : : ; �k > 0 such that the Riccati equa-
tions (4.1) and (4.2) have solutions X > 0 and Y > 0 and such that
the spectral radius of their product satis�es �(XY ) < 1.

If condition (ii) holds, then the uncertain system (2.1), (2.3) is abso-
lutely stabilizable with disturbance attenuation 
 via a linear controller of
the form

_xc(t) = Acxc(t) +Bcy(t);

u(t) = Ccxc(t) (4.4)

where

Ac = A+B2Cc �BcC2 + (B̂1 �BcD̂21)B̂
0

1X

Bc = (I � Y X)�1(Y C 0

2 + B̂1D̂
0

21)E
�1
2

Cc = �E�1
1 (B0

2X + D̂0

12Ĉ1): (4.5)

Proof: (i)) (ii) Consider the set 
 of vector functions

�(�) = [x(�); xc(�); �(�); w(�)]

in L2[0;1) connected by (2.1), (2.5) and the initial condition [x(0); xc(0)] =

0. Condition (2.7) implies that there exists a constant �1 > 0 such that J <


2�2�1. Let �2 = min[(2c1k)
�1; �1(2c2k(c1+1))�1; �1(2(c1+1))�1], where

c1 and c2 are the constants from De�nition 2.2. Consider the functionals

f0; f1; : : : ; fk from 
 to R where

f0(�(�)) = �(kz(�)k22 � 
2kw(�)k22 + �2k�(�)k2);
f1(�(�)) = k�1(�)k22 � k�1(�)k22 + �2k�(�)k2;

...

fk(�(�)) = k�k(�)k22 � k�k(�)k22 + �2k�(�)k2: (4.6)

Here k�(�)k2 = kx(�)k22 + kxc(�)k22 + k�(�)k22 + kw(�)k22. We will prove that

f0(�(�)) � 0 for all �(�) 2 
 such that fs(�(�)) � 0 for s = 1; : : : ; k. Indeed,

if fs(�(�)) � 0 for s = 1; : : : ; k, then the vector function �(�) satis�es the

9
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constraints (2.3) with ds = �2k�(�)k22 and ti = 1. Hence, condition (i) of

De�nition 2.2 implies that k�(�)k2 � (c1 + 1)kw(�)k22 + c1k�2k�(�)k2. Since
�2 � (2c1k)

�1, then

k�(�)k2 � 2(c1 + 1)kw(�)k22: (4.7)

Condition (ii) of De�nition 2.2 implies that �(kz(�)k22�(
2�2�1)kw(�)k22)+
c2k�2k�(�)k2 � 0 for all �(�) 2 
 such that fs(�(�)) � 0 for s = 1; : : : ; k.

Since �2 � �1(2c2k(c1+1))�1 and �2 � �1(2(c1+1))�1, inequality (4.7) im-

plies that �1kw(�)k22 � c2k�2k�(�)k2 and �1kw(�)k22 � �2k�(�)k2. Therefore,

f0(�(�)) = �(kz(�)k22 � 
2kw(�)k22 + �2k�(�)k2)

� �
�
kz(�)k22 � 
2kw(�)k22 + �2k�(�)k2 + �1kw(�)k22
�c2k�2k�(�)k2 + �1kw(�)k22 � �2k�(�)k2

�

= �(kz(�)k22 � (
2 � 2�1)kw(�)k22) + c2k�2k�(�)k2

� 0:

Now the closed loop system (2.1), (2.5) can be rewritten as the system

(3.1) where h(�) = [x(�); xc(�)] and  (�) = [�1(�); : : : ; �k(�); w(�)]. Using the
continuity of the coe�cients in the controller (2.5)), it follows immediately

that the closed loop system satis�es Assumption 3.1. Furthermore, given

any  (�) = [�1(�); : : : ; �k(�); w(�)] 2 L2[0;1), it follows that the uncertainty

inputs [�1(�); : : : ; �k(�)] satisfy the constraints (2.3) with ds = k�s(�)k22 and
ti =1. Hence, condition (i) of De�nition 2.2 implies that Assumption 3.2

is satis�ed. Also, given any  (�) = [�1(�); : : : ; �k(�); w(�)] 2 L2[0;1) such

that k (�)k22 � �, then the constraints (2.3) are satis�ed with ds � �. Thus,

condition (i) of De�nition 2.2 also implies that Assumption 3.3 is satis�ed.

We can now apply Theorem 3.1 to the above closed loop system. Using

this theorem, it follows that there exist constants �0 � 0; �1 � 0; : : : ; �k � 0

such that
P

k

s=0 �s > 0 and the inequality (3.2) is satis�ed for all �(�) 2 
.

Now we prove that �s > 0 for all s = 0; 1; : : : ; k. Condition (3.2) for the

functionals (4.6) implies that

�0(kz(�)k22 � 
2kw(�)k22) +
kX

s=1

�s(k�s(�)k22 � k�s(�)k22)

� ��0(
kX

s=1

k�s(�)k22 + kw(�)k22) (4.8)

where �0 = �2
P

k

s=0 �s > 0. If �j = 0 for some j = 1; : : : ; k then we can

take w(�) � 0; �s(�) � 0 for all s 6= j and �j(�) 6= 0. Then, the inequality

(4.8) is not satis�ed, because the left side of (4.8) is non-negative and the

right side of (4.8) is negative. (Analogously, if �0 = 0, we can take w(�) 6= 0

10
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and �(�) � 0.) Therefore, �s > 0 for s = 0; 1; : : : ; k. In this case, we can

take in (4.8) �0 = 1.

Consider the following linear system

_x(t) = Ax(t) + B̂1ŵ(t) +B2u(t);

ẑ(t) = Ĉ1x(t) + D̂12u(t);

y(t) = C2x(t) + D̂21ŵ(t) (4.9)

where

ŵ(�) = [
w(�);p�1�1(�); : : : ;
p
�k�k(�)];

ẑ(�) = [z(�);p�1�1(�); : : : ;
p
�k�k(�)]

and the matrix coe�cients B̂1; Ĉ1; D̂12 and D̂21 are de�ned by (4.3). In

this system, ŵ is the disturbance input and ẑ is the controlled output.

The inequality (4.8) with �0 = 1 may be rewritten as

kẑ(�)k22 � kŵ(�)k22 � ��0kŵ(�)k22: (4.10)

That is,

Ĵ
�
= sup

ŵ(�)2L2[0;1);x(0)=0;xc(0)=0

kẑ(�)k22
kŵ(�)k22

< 1: (4.11)

Therefore, the controller (2.5) with the initial condition xc(0) = 0 solves a

standard output feedback H1 control problem for the system (4.9). Hence,

condition (ii) of the theorem follows directly using Theorems 5.5 and 5.6

of [17]. This completes the proof of this part of the theorem.

(ii) ) (i) It is a standard result from H1 control theory that if con-

dition (ii) holds then the linear controller (4.4) solves a standard output

feedback H1 control problem de�ned by the system system (4.9) and H1

cost bound (4.11); e.g., see [17, 18]. Furthermore, condition (4.11) im-

plies that there exists a constant �0 > 0 such that the inequality (4.10)

is satis�ed for all the solutions of the closed loop system (4.9), (4.4) with

ŵ(�) 2 L2[0;1) and the initial condition [x(0); xc(0)] = 0.

Now the closed loop uncertain system de�ned by (2.1) and (4.4) may

be rewritten as
_h(t) = Ph(t) +Qŵ(t); (4.12)

where

h =

�
x

xc

�
; P =

�
A Cc

BcC2 Ac

�
; Q =

�
B̂1

D̂12

�
:

Since the controller (4.4) solves the H1 control problem described above,

the matrix P is stable. Furthermore, condition (2.3) implies that any

disturbance input w(�) 2 L2[0;1) and admissible uncertainty inputs

�1(�); : : : ; �k(�) satisfy the following integral quadratic constraint:

11
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There exists a constant d � 0 and a sequence ftig1i=1 such that ti ! t
�

(where [0; t
�
) is the interval of existence for the corresponding solution)

and Z
ti

0

kŵ(t)k2dt �
Z

ti

0

kTh(t)k2dt+ d 8i (4.13)

where

T =
�
Ĉ1 D̂12Cc

�
:

Moreover, the constant d is given by

d = 
2kw(�)k22 +
kX

s=1

�sds:

However, since ẑ = Th, condition (4.10) and stability of the matrix P

imply that there exists a constant � > 0 such that

Z
1

0

(kTh(t)k2 � kŵ(t)k2)dt � ��
Z

1

0

(kh(t)k2 + kŵ(t)k2)dt (4.14)

for all [h(�); ŵ(�)] 2 L2[0;1) connected by (4.12) with h(0) = 0. Using

Theorem 1 of [11], condition (4.14) and the stability of the matrix P imply

absolute stability of the uncertain system (4.12), (4.13). Thus, there exists

a constant c0 > 0 such that for any initial condition [x(0); xc(0)] and any

uncertainty ŵ(�) described by (4.13), then [x(�); xc(�); ŵ(�)] 2 L2[0;1) and

Z
1

0

(kx(t)k2+ kxc(t)k2 + kŵ(t)k2)dt � c0[kx(0)k2+ kxc(0)k2+ d]: (4.15)

Since u(t) = Ccxc(t) in controller (4.4),

ŵ(�) = [
w(�);p�1�1(�); : : : ;
p
�k�k(�)]

and d = 
2kw(�)k22+
P

k

s=1 �sds, condition (i) of De�nition 2.2 follows from

the inequality (4.15).

We now establish condition (ii) of De�nition 2.2. We have estab-

lished that condition (4.10) is satis�ed for all the solutions of the closed

loop system (2.1), (4.4) with zero initial condition. This may be rewrit-

ten as condition (4.8) with �0 = 1. Furthermore, all solutions to the

closed loop system (2.1), (4.4) from L2[0;1) satisfy condition (2.3) with

ds = max[0;�(kzs(�)k22 � k�s(�)k22)] and ti =1. Therefore, it follows from

(4.8) that condition (2.7) holds with c1 = max[�1; : : : ; �k]. This completes

the proof of the theorem. 2

The following corollary is an immediate consequence of the above theo-

rem and the remarks following the de�nition of the uncertain system (2.1),

(2.3).

12
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Corollary 4.1 The uncertain system with norm bounded uncertainties,
(2.4) will be absolutely stabilizable with disturbance attenuation 
 via the
linear controller (4.4),(4.5) if condition (ii) of Theorem 4.1 is satis�ed.
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