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Disturbance Decoupling Via Differential Forms*

Viswanath Ramakrishna

Abstract

We formulate and study the question of finding a static feedback
which will cause an affine control system (with some restrictions
on the number of inputs) to leave a given codistribution invariant.
Specifically, our contribution is threefold: i) we show that such a
study has numerous benefits even when the codistribution is nonsin-
gular. For instance, one can recover both the standard results and
results as manifestations of the same phenomenon; ii) for analytic
data and singular codistributions we relate this question to the work
of [[18]]; and iii) in the process of studying the same question for
partially smooth data, we develop a method for solving degenerate,
overdetermined systems of first-order partial differential equations
which is reminiscent of the method of successive integration.
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1 Introduction

A problem that has attracted quite some research in control theory is the
controlled invariance problem. Its standard formulation runs as follows
(see [16, 21] and the references therein): given a nonlinear control system

&= f(z)+ Zgl(x)ul (1.1)

and an involutive distribution (or vector field system) A, find a feedback
control law of the form u = a(x) + #(z)v, where v is the new control, so
that the closed loop system will leave A invariant. A necessary condition
(if the feedback is to be regular) for its solvability is that the so-called weak
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(f, g)-invariance(or local controlled invariance) condition, [F,A] C A+ G
hold. Here F is in any of the one of the vector fields f,g;,¢ =1,...,m and
G is the distribution spanned by the g;,i = 1,...,m. It is also known to
be sufficient under the following regularity conditions: a) A has constant
rank in a neighborhood U of the operating point, and b) the distribution
(G + A)\A has constant rank on U of the operating point. Furthermore,
the feedback a(z) and 3(x) may be found locally (i.e., on some open subset
V C U) by solving the system of equations:

Xia;j(z) :c;(m),i: 1,...,d,57=1,....m

and (on denoting by £;(x) the lth column of 3(z))
Xlﬂl(x) = Cl(m)ﬂl(flf),l = 17 sy d

where X1, ..., X4 form a basis for the distribution A. The ¢! (z)(resp.C;(x))
are smooth functions (resp. matrices of smooth functions) on U concocted
out of the data (see [22]).

A natural problem that arises is the study of the same question with
A replaced by a codistribution Q. (Throughout this paper we will use the
term codistribution to mean the span of a set of one-forms, since this termi-
nology is by now established in the control literature.) Our aim is to show
that an answer to this question has umpteen practical benefits as well. To
begin with, it is known that in most applications of the controlled invari-
ance the point of departure is actually a codistribution which is spanned
by exact differentials of smooth functions obtained directly from the data
of the design problem. The vector field system, A, of the paragraph above
is merely the annihilator of this codistribution. Passage to the annihilator
is indeed one of the main reasons for imposing the regularity conditions
mentioned in the first paragraph. Furthermore, passing to the annihilator
imposes the additional burden of pairing down; i.e, one has to find basis
for the annihilating distribution. This involves solving systems of analytic
equations. We shall see in the balance of the paper that there are innu-
merable other advantages of analysing this problem via differential forms.
One such prominent advantage is the fact that the analysis of singularities
in the controlled invariance problem is rendered very elegant and rather
complete, so much so that our earlier attempt at analysing this issue via
distributions (see [23]) seems innocuous in comparison. We will assume
that () has a basis of exact differentials of functions hj,..., h, which are
real analytic on U—a connected open set of interest in R™ which contains
the reference point (assumed to be the origin in R™), and on which all
the data are defined. For details on when one may take Q to be spanned
by exact differentials see, for instance, [18, 19]. By abuse of language, we
will allude to the h;,i = 1,...,p as the outputs. As we shall show below,
it is more useful to consider these outputs as being more intrinsic to the
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problem than € itself (cf. P2 below). There are two reasons for taking the
h; to be analytic. First, in the application to the disturbance decoupling
problem it is almost necessary to take the actual outputs of the plant to be
analytic (primarily because one cannot guarantee the completeness of the
closed loop vector fields). Since, at least some of the h;,i = 1,...,p are
the actual outputs (in the disturbance decoupling problem) this partially
justifies taking Q to be analytic. Another reason is that we will have to
make certain density arguments and this necessitates analyticity. Finally,
at a later stage in the paper we will need a canonical form for the h; (either
before or after blowing-up). In this paper we will restrict attention to the
case that p > m. Since practically all the techniques in the m > 1 case are
exactly the same as those for m = 1, we will, for the most part, deal only
with the single-input case. The case for multiple inputs will be illustrated
via an example which will clearly reveal the intervening calculations. The
case where m > p is physically the easier situation. We speculate that
this case could also be subsumed by our methods if we employ generalised
inverses.

The first question that one has to address is that of finding the correct
analog of the controlled invariance problem. Below we will list three ver-
sions. There are two motivating factors in arriving at these versions. First,
any generalization must reduce to the standard formulation under the usual
regularity conditions, and second, must lead to a resolution of the distur-
bance decoupling problem (which, in this author’s opinion, is the archtypal
application of the controlled invariance problem). Denoting by F', either of
the closed-loop vector fields, (i.e, either f 4+, gio; or (gB)1,l =1,...,m),
these versions are: find a feedback control law u(t) = a(z(t)) + B(z(t))v(t),
so that:

P1 dLphi(z) = Y1, aii(z)dhyi = 1,...,p for some smooth (resp. an-
alytic) functions a;;(z).

P2a)dLphiAdhiA...Adhy, =0,i=1,...,p;b)dLEh;Adhi A. . .Adh, =
0,i=1,...,p,k=0,1,..; and c) the L%h; are constant on the connected
components of the level sets of the h; forallk =0,1,...and alli =1,...,p.

P3 The Lh; are each some functions, A; g(h1,...,hp) of the outputs.
The regularity of the A;  as a function of its arguments is for the moment
unspecified. It will be clarified below.

Remark 1.1 We have been deliberately vague about the domains of va-
lidity of the statements in P1, P2 and P3. Ideally, we would like these
to hold on all of U. In the discussion which will immediately follow this
remark, we will clarify when this is likely to be true. For instance, if F' and
the h;,i =1,...,p are all globally real analytic (i.e., we have succeeded in
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finding global real analytic feedbacks) we cannot still guarantee that the
conditions which locally ensure the existence of C¥ germs A; r to satisfy
P3 extend to a yield the global real-analyticity of these A; . On the other
hand, the reason for which we are demanding that P3 be true will not re-
quire the global real-analyticity of these A; p. In fact, we could get by with
weaker smoothness assumptions (as will be clarified below), in which case
the chances of the global existence of the A; r’s increase dramatically. The
point of the discussion below would be to argue that part a) of P2 yields
the best possible conclusions and at the same time leads to a tractable
theory of solvability. So, the discussion below will clarify, to the extent
possible, the situations where the global solvability of part a) of P2 will
lead to the global solvability of the other formulations. In seeking global
solvability of these other formulations, we will be willing to sacrifice the
regularity of the various objects involved, so long as they are adequate for
the resolution of the associated control problems.

1.1 Making the case for part a) of P2

Now P1 clearly is the dual of the standard formulations of the controlled
invariance [at least when A can be written as ker (dh;),i = 1,...,p] . It
also implies parts a) and b) of P2. That it implies part a) is trivial. For
part b) we just observe that if P1 is valid, then by taking Lie derivatives
with respect to the vector field F' of the inclusion in P1, we get iteratively:

p
dLyhi(z) =Y afi(z)dhi=1,...,p,k=1,2,...
=1

which, of course, implies part b) of P2.

Now, the reverse implication (viz., P2 a implies P1) does not always
hold. This is precisely the content of the so-called division theorems (see
[7, 18, 19, 26]). They assert, under certain conditions, that the equality
dANdhy A...Ndh, =0, for germs of functions (smooth, real analytic, etc.)
Aand h;,i =1,...,p, implies that dA(z) = 37| a;(x)dh;(z), for germs of
(smooth, real analytic, etc.) functions, a;(z). These “certain conditions”
are on the ideal generated by the h;,¢i = 1,...,p in the ring of (germs) of
C® (resp C*¥) functions. In [19], a global division theorem is also proved
for the C™ case; i.e., if A and the h;,i = 1,...,p are globally defined
C* functions which satisfy the technical hypotheses for a local division
theorem, then the functions a;(xz) may be taken to be globally defined.
Since this argument makes use of partitions of unity, it cannot be expected
to hold in the C* case, in general.

Assuming that the division theorems hold for the h;,i = 1,...,p, then
part c) of P2 follows from part b) of P2. This in turn implies that F
preserves, for small ¢, the level sets of the h;,i = 1,...,p provided the Lie
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series for h;(¢r(t,xo)) converges. It is this convergence of the Lie series
that leads to the resolution of the disturbance decoupling problem. Now if
all the h; are real analytic, then indeed F' preserves the level sets of the h;
for all ¢ for which the quantity h;(¢p (¢, 2¢)) is well defined. If the division
theorems are not valid globally, then these assertions are only valid for
those initial conditions zy in the open set V' where these division theorems
hold. This point is pertinent since, as we stated before, it is unlikely that
they hold globally in the C* case. On the other hand, real analyticity is
typically required for any Lie series argument to be of any validity. In this
regard, we note that if both the h;,i = 1,...,p and F are real analytic on
their common domains, then so are the h;(dr(t,xo)), (see [27]). This issue
makes the solvability of P3 (globally) that much more pertinent.

Indeed, assuming that P3 is globally solvable, let us show that F' pre-
serves the level sets of the h; for all ¢ for which the quantity h;(¢r(t,xo))
is defined (regardless of zj). To see this, consider the initial value problem
for the system of ordinary differential equations

y.i:Ai,F(yly"')yp))i: 1)"'7p

with initial conditions y;(0) = hi(xzo),i = 1,...,p.

It is clear that h;(¢r(t, zo)) satisfies this system. Assuming uniqueness
of solutions yields the desired property. Thus, the only regularity property
that we need impose on the A; r, as functions of the h;,¢ =1,...,pis that
they be regular enough to guarantee uniqueness of the associated IVP.

Now, if part c) of P2 is valid, then the A; p,i =1,...,p certainly exist
as set theoretical objects. The question of when they are C'* is the subject
of the so-called composite differentiable functions theorems, [4, 11, 18, 19].

Let us briefly explain the contents of [4, 11] These papers give suffi-
cient conditions for the global existence of C* A; p, assuming (amongst
other things) the real analyticity of the h;,4 = 1,...,p. Unfortunately, the
sufficient conditions they require are not immediately related to an easily
verifiable condition like part a) of P2. Since we will illustrate how to use
a condition like part a) of P2 to arrive at the sufficient conditions of [11]
in the penultimate section of this paper, we will not dwell on it here.

Remark 1.2

e If Q is nonsingular on U, then P1, P2 and P3 are at least locally
equivalent, even if the h; are only C'* on U.

e In our opinion, P3 (for sufficiently regular A; r) is at the basis of the
appearance of the techniques of the disturbance decoupling problem
in many synthesis problems which are not really related to it.
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It seems reasonable, therefore, to consider these three versions to be equiv-
alent (at least locally) under a fairly wide set of circumstances. However,
as we saw, it is part a) of P2 which is instrumental in leading to P3. It is
also cast in the form of an equality (as opposed to P1—the dual of all the
standard formulation of the controlled invariance problem). On the basis of
the above discussion, we will, therefore, concentrate our efforts on solving
on part a) of P2 in the remainder of this paper.

The balance of the paper is organised as follows. In the next section we
will detail certain results on differential forms which we will need for the
analysis of the problem at hand. This section also contains a theorem of
Malgrange ([18]) which is crucial for the results in this paper. In the third
section we will obtain our analog of the weak (f,g)-invariance criterion.
As the reader will notice, our analog is an equality condition and not an
inclusion condition. In the next section we will illustrate, via the m = 2
case, how several inputs may be handled. Furthermore, in this section we
recover, as examples, the standard results and also the theorem of [8] when
m=1.

The remainder of the paper concentrates on solving the controlled in-
variance problem for systems with partially smooth data when p is just 1.
We will take f to be C'* and h, the sole output, to be C*. This is as weak
as one can relax the smoothness assumptions when p = 1 if the results
are to be of practical relevance. For this reason it is important to note
that after a blow-up, any C* function is a monomial. There is, however,
another reason for our considering only C'"* f. We wish to obtain a result
of the “Formal + Hyperbolic Implies Smooth” genre for certain degenerate
and overdetermined systems of partial differential equations (which arise
in connection with the controlled invariance problem). Monomials provide
outputs which are annihilated by linear hyperbolic (with parameters) vec-
tor fields, thereby providing a relatively simple model for such questions
and at the same time continuing to be of some practical relevance. During
the course of obtaining our result we also develop a procedure for solving
certain first order overdetermined systems of partial differential equations
which degenerate, which is reminiscent of the method of successive inte-
gration. Mathematically speaking, this is the novel feature of this paper.
We hope this method will be of independent interest. Our technique is
partly inspired by Nelson’s spectacular proof of the Sternberg linearization
theorem (see [20]). The contents of this section should really be thought
of as a method of obtaining C'*° solutions to part a) of P2, once a formal
solution is known (with the understanding that the additional hypotheses
needed to make the method work will vary from case to case).
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2 Preliminaries on Differential Forms

We assume that the reader is conversant with the basic facts about the Lie
derivative, the interior product and the exterior derivative (see [1]). Let
a be a k-form and 8 be a [-form. We will allow these forms to have, in
local coordinate charts, coefficients that are meromorphic functions. More
precisely, each of their coefficients can be a quotient of C'* or real-analytic
functions. We will say two such p-forms are equal if their coefficients agree
at every point that the two are well defined. Under this convention all the
standard results relating the exterior, interior and Lie derivatives to wedge
products continue to be valid. We assume that the reader is conversant
with these basic facts (see [1]. We will only record the following not so
well-known, though easily deduced, consequence of Cartan’s magic formula
(LX =doix +ix Od):

Proposition 2.1 [1] Let p be a p-form(with meromorphic coefficients) and
X, Y two smooth vector fields. Then we have:
Lx(iyp) — Ly (ixp) —ix,yip = d(ix (ivp)) — ix (iv (dp)).
Next we turn to the result of Malgrange, alluded to in the introduction.

Theorem 2.1 ([18]) Let hi, ..., h, be germs of p holomorphic functions
at the origin in C™. Let S(dhi,...,dhy) be the germ of the analytic set
where the rank of the codistribution spanned, over the ring of germs of
holomorphic functions, by the dhy,...,dh, is less than p. Assume that
the codimension of S(dhy,...,dhy) is at least 3. Let 6 be the germ of a
holomorphic 1-form which satisfies the condition

d0 ANdhy A ...dhy = 0.
Then there exists a germ of a holomorphic function « at so that
(0 —da) Ndhy A ... ANdh, =0.
It is useful to make the following definition:

Definition 2.1 The real analytic functions h;,t = 1,...,p, defined on
some connected open subset U containing the origin in R™, are good out-
puts if their complezifications, hic,i =1,...,p, have the property that the
set S(2), consisting of points where the holomorphic p-form dh{ A. . ./\dhg
vanishes, has codimension at least three in U, the complezification of the
set U.

Several remarks are in order regarding Theorem (2.1):

a) Malgrange’s result is a local existence theorem in the holomorphic
category. However, the usual practice of complexification enables us to
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deduce the existence of real valued solutions when the data is real ana-
lytic provided the h;,i = 1,...,p are good outputs. The texts [15, 17]
contain readable expositions of complexification. For explicit statements
in the smooth category on a related problem (see also (c) below) we refer
the reader to [19]. We will not state these results here, since it is not our
purpose to obtain results of the utmost generality on P2. We only wish
to illustrate, via applying Theorem (2.1), the utility of these ideas to non-
linear control problems. We also direct the attention of the reader to the
material in [2] which could be construed as solving the controlled invari-
ance problem for outputs which are multivalued (in the sense of complex
variables). These authors also relate our problem to the 16th problem of
Hilbert.

b) It is important to notice that the form 6 is required to be holomor-
phic. This may, in our applications, be a little excessive. It is this author’s
belief that a result analogous to Theorem (2.1) would hold if only some
components of this form were holomorphic. To be more precise, we con-
jecture that these results would still hold even if only § A dhy A ...dh, is
the germ of a holomorphic form. The main step towards proving such a
theorem would be to extend Saito’s generalisation of the De-Rham division
lemma to partially meromorphic forms, since his generalisation is a crucial
ingredient in the proof of Theorem (2.1), see [26]. We can, however, prove
such a result if the domain over which the data is prescribed has certain
desirable attributes (see Proposition (3.1) later in the paper).

c) Malgrange and Moussu ([18, 19]) study a similar and related prob-
lem. They consider the generalization of the Frobenius’ theorem to the case
when the forms in question have singularities. More precisely, consider a
collection of the germs at 0 of p holomorphic 1-forms w;,7 =1, ..., p which
also satisfy the integrability condition dw; Awi A .. .wp = 0,1 =1,...,p.
Then, under the hypothesis that the codimension of the set where the
codistribution spanned by the w;,7 = 1,...,p has rank less than p is at
least 3, Malgrange shows that there exist germs of holomorphic functions
fisgin,i =1,...,p;k = 1,...,p so that w; = >, gudfii = 1,...,p. Fur-
thermore det(g;;(0)) # 0 and df;(0) = 0 for all i = 1,...,p. Moussu also
proves similar results in the smooth category. The connection between this
result and our problem is the following. Let € be the germ of a holomorphic
1-form satisfying df Adhi A...dh, = 0. Now on the space coordinatized by
the dependent and independent variables (z,a) (with the exterior deriva-
tive on this space denoted by d.) consider the collection of germs of one
form {6 — da,dhs,...,dhy}. Note that d.(6 — da) = df. Therefore the
integrability conditions d.w; A wi A ...wp = 0 follow from the condition
dd Ndhy A ...dh, = 0. Clearly the codimension of the singular set of these
1-forms is the same as the codimension of the singular set of the collection
dhi,...,dh, as a set in the space coordinatized by the z’s alone. Thus
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if this codimension is at least 3, then we can find first integrals for this
system—in particular for § — da. Since the “a” coefficient of this form is
non-zero, we can apply the implicit function theorem to its first integral
to conclude the existence of a solution to (6 —dU) Adhy A ... Adh, = 0.
For a related but different notion of integrability we refer the reader to the
paper [10].

We next discuss two theorems which relate to the contents of the final
three sections of the paper. (It is presumed that the reader is familiar with
the concept of flat functions and Borel’s lemma—see, for instance, [12]).
The first is a result of Glaesser [11] on composed functions.

Theorem 2.2 [11] Consider a p-tuple of real analytic functions hy,. .., hy,
defined on an open neighborhood, U, of the origin in R™, such that:

1. The codistribution spanned by their differentials has maximal rank p
on an open dense subset of U.

2. The map h = (h1,...,hp) from U to RP is semi-proper; i.e., it satis-
fies: a) its image is closed; and b) for every compact subset K in its
range there is a compact subset, L, of U so that K = h(L).

Let A € C*(U) be such that it satisfies the “appartenance biponctuelle”
condition; i.e., for every set, S, consisting of two points in U there exists a
C® function Fg on U such that the function A — Fg o h is a flat function
on S. Then, there exists a C* function F satisfying A = F o h on all of
U.

Remark 2.1

e We can dispense with first hypothesis, namely the density of the set
of regular points, if U is connected and if dhi A...Adhy, is non-zero at
at least one point of U - something which we will assume from
this point onwards. This follows from the the real analyticity of
the map h.

¢ All proper maps are semi-proper. So are monomials I, 2%, p; > 0,
even if some of the p; are zero.

Remark 2.2 Asis pointed out in the “remarque” at the end of Section 2 of
[11] one can replace the “appartenance biponctuelle” condition for the set
{z,y} by the verification of the existence of functions F, and F,, smooth
in neighborhoods of h(x) and h(y) respectively, so that A — F, o h (resp
A —F,oh)is a flat function on {z} (resp. {y}), if h(z) # h(y). One may
not be able to do this if h(x) = h(y), because one cannot guarantee that
F, = F, (See, in this regard the discussion on Page 143, and also section 4
of [3]). In our situation, however, this is not a problem because we will use
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a condition of the type dA A dh = 0 to obtain these functions Fj, F,,. We
will do this by first setting up an explicit formal power series solution and
then invoking Borel’s lemma. If h, = hy, it will be obvious that the formal
powers series (this will be a formal power series in the indeterminate h)
which solves dA A dh = 0 about z will be identical to the one about the
point y.

We end this section with the following version of Hironaka’s resolution
of singularities theorem (see [5]).

Theorem 2.3 ([5], Corollary 4.9) Let M be a real analytic manifold. Let
h be a real analytic function on M, which is not identically zero on any
component of M. Then there is a real analytic manifold N and a proper,
surjective real analytic map ™ : N — M so that: a) h o7 is locally normal
crossings on N; i.e., about each point p € N, there is a coordinate system
(Up,1,...,25) so that on Up, how is of the form t(x)II}, x}*, where the
ni,i = 1,...,n are all non-negative integers and t(zx) is real-analytic and
non-vanishing on all of Up; and b) 7 is a real-analytic diffeomorphism on
an open dense subset of N.

In [28] a simultaneous desingularization theorem is proved for a finite
collection of real-analytic functions.

Remark 2.3 The version of Theorem (2.3) we will use will have M re-
placed by an open neighborhood of the origin in R™. Furthermore we, will
take the origin to be a critical point of the function h, since otherwise one
does not need to blow up to get a locally normal crossings model. Also
we may take 7 to be a real analytic diffeomorphism on an open dense sub-
set whose complement contains 7—*(0). For a further simplification in the
statement see Theorem (7.1) later.

Remark 2.4 The factor t(z) in Th (2.3) can be taken to be 1, as was
pointed out to us by Prof. H. Sussmann. As ought to be clear, we may
assume that ¢(z) > 0 for our purposes. If it is not, we will work with —dh.
Indeed, if we keep in mind that the purpose of using Th (2.3) is to pull
dh back via 7* and then work with the total differential of a simpler C*¥
function, we see that:

7 (—dh) == —d(hom) = d(—h o).

So, now assuming n; > 0 without loss of generality, we make a change of
coordinates according to:

1)[]1 :t%(m)xlﬂljk :xkak‘:27"')n'

This is a real analytic change of coordinates, which renders ¢(z) = 1 in the
new set of coordinates.

10
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We mention, in passing, that resolution of singularities was suggested as
a tool for problems in geometric control in [6]. The approach taken there,
however, differs from that in this paper significantly.

3 The Analog of the Weak (f, g)-Invariance Condition

In this section, we will obtain a necessary condition for the solvability of P2.
We will assume that (after a preliminary feedback has been applied) dLyh; A
dhi A...ANdhy, =0,i =1,...,p. We will not carry out the construction
of such a feedback here, in order to keep the length of this paper within
reasonable limits. We just remark that construction of 3 is usually easier
and typically goes through under weaker regularity hypotheses than those
for a (see [25]).

Consider, therefore, the problem of finding «(z) so that dLgh; A dhqy A
...N\dhy, =0,i=1,...,p, where F(z) = f(z)+g(z)a(zr). Thelast equation
reads as:

(dLsh; + adLyh; + Lyhida) Adhy A ... Adhy = 0,i =1,...,p,
which yields:
(dehl + Lghida) ANdhi A... A dhp =0=1,...,p. (31)

If we formally divide by Lyh; we have the following problem to solve:
P: Find a smooth function a(z) in a neighborhood of the operating
point (assumed to be the origin) so that :

(—deh’ —da)ANdhy Adhy ... ANdh,.=0i=1,...,p (3.2)
Lyh;
For P to make sense we have to make some smoothness assumptions on the
forms 0; = — dLLgfhiz" ,i =1,...,p. There are either of two conditions which
we will impose from this point onwards:
S1 At least one of the forms 6;,i = 1,...,p are smooth in a neighbor-

hood U of the operating point.
S2 The forms 6; A dh; A ... ANdhp,i =1,...,p are smooth on a neigh-
borhood U of the operating point.

Remark 3.1 There is a disparity of sorts between S1 and S2 in that
we require only one of the forms in the former to satisfy the prescribed
condition whereas in the latter all the forms have to satisfy the imposed
condition. As the reader will notice, later we only require S2 for the results
to go through. S1 will serve only the purposes of a comparison, to be
made in the sequel, with the standard formulation. On the other hand, in
the light of (3.4) below, we could even afford to demand that S2 be only

11
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satisfied a priori by one of the forms, 8;, since it will then be satisfied by
the rest as well.

We seek a on a neighborhood V' C U. Note that as long as a exists
on this subset V', P2 will have a solution on V. Indeed, the only points
where the 8;,2 =1, ..., p could conceivably fail to be smooth are the points
where Lyh; = 0,4 = 1,...,p. But if o exists at these points, then the
equation in P2 holds there. Indeed, under either S1 or S2 we must have
dLshiAdhy .. .ANdh, = 0,i=1,...,pat points where Lgh; =0,i=1,...,p.

If we take the exterior derivative of both sides of (3.2), we arrive at the
following necessary condition for the solvability of the above problem:

d9; Adhy ... Ndh, =0,i=1,...,p. (3.3)

However a more careful analysis shows that there is a stronger condition
which implies (3.3), and which is also necessary for the solvability of the
problem P. Indeed, if there exists an a(z) which solves P, then we neces-
sarily have (81 —60;) Adhy ... Adh, =0fori=1,...,p. If now in addition
(3.3) is satisfied a priori only for i = 1, then exterior differentiation of the
preceding equality shows that (3.3) holds for the remaining indices as well.
Furthermore, it is easy to see that if this condition holds and P is solvable
for just i = 1, then its solution o solves the remaining equations in P as
well. We, therefore, take these two conditions as our analogue of the weak
(f, g)-invariance condition, viz:

d9y Adhy...Ndh, = 0
(01—0i)/\dh1.../\dhp - O,izl,...,p. (34)

Remark 3.2

a) If one writes out every component of the equality expressed by P, then
an overdetermined system of partial differential equations for the unknown
« is obtained. The important thing to observe about this system is that it
is obtained without having to pair down from € (cf. section 1). Once  is
given, these equations are extremely simple to describe.

b) The necessary conditions (3.4) are equalities and not inclusion con-
ditions.

c) When p =1 (3.4) always holds. The first equality holds due to the
assumption dL,h A dh = 0, and the second for trivial reasons.

Next we will relate P to an equivalent problem which uses the set of
vector fields which annihilate each of the dh;,i = 1,...,p. We assume
such a distribution exists for the moment. If such a distribution exists only
locally, then the results below are valid only on its domain of existence.
If it does not exist at all, then this circle of ideas is irrelevant. So, let
Xi,i € I (where I is some indexing set) be the collection of all vector fields

12
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which satisfy Lx,h; = ix,dh; = 0,4 € I,j = 1,...,p. If A denotes this
collection, then it is certainly involutive. We further assume that A has
mazimal rank p on a dense subset of U. Denote by ¢; the smooth functions
defined as ix,6; (the smoothness follows from S2 and the formula for the
interior product of a vector field and a wedge product). We claim that the
solution, if one exists, to the overdetermined system of partial differential
equations:

Xia=cj,i €1 (3.5)

is the desired feedback.
Indeed, a solution to (3.5) satisfies

ix, (61 —d(a)) = 0,i € I.

This follows from Cartan’s magic formula. Now the h;,l = 1,...,p being
analytic, 2 has maximal rank equal to p on a dense set in U. Therefore,
the distribution spanned by the X; has maximal rank equal to n —p on a
dense subset. This implies that & — de is in the span of the dh;,i =1,...,p
(possibly with meromorphic coefficients) on this dense subset. Hence its
wedge product with dhy A ... A dh;, equals 0 on the same dense set. But
the wedge product being 0 on a dense subset implies its being 0 on all of
U since it is, after all, a system of equalities amongst everywhere defined
continuous functions.

Remark 3.3 Observe that the second condition in (3.4) also yields the
equality:
iXin = iXiOk,i S I,j,k =1,...,p.

This follows from taking the interior product of both sides of the second
equation in (3.4) with respect to the X;,i € I. In the context of (3.5)
this means that there is no ambiguity in choosing h; in writing down the
system of partial differential equations (3.5). Any other choice of output
would yield exactly the same set of equations.

Next, we will show that the first equation of (3.4), provides the in-
tegrability conditions for the overdetermined system of partial differential
equations (3.5). For purposes of brevity let us denote, by o, the p-form
dhi A ... A dhy. Let us apply Proposition (2.1) to the p + 1-form 6; A 0.
Doing so yields, as a first step:

(LXkCl — LXle - Z'[X,“Xl]el)tf = d[(iinXlﬁl) A 0') - iinXl(dt‘)l A (T).

In arriving at the left hand side we have made use of Leibnitz formulae
for the interior product and the fact that all the X;,¢ € I annihilate the
dhj,j =1,...,p. The second term on the right hand side of the equation

13
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above vanishes on account of (3.4). The first term also equals 0, since
ix,ix,(¢) = 0 for any 1-form, . Thus we get:

kacl - LXle - ’L.[Xk’Xl]al =0, k,lel

on the dense subset where o # 0, and hence everywhere. These are indeed
the integrability conditions for the system (3.5).

We now have all the tools we need to prove a slightly improved version
of Theorem (2.1).

Proposition 3.1 Let hy,...,h, be p real analytic functions defined on a
connected open subset U of R™ whose complexification, U, is a Stein
manifold in C™. Let S(dha,...,dhy) be the analytic set where the rank of
the codistribution spanned, over the ring of germs of holomorphic functions,
by the complezifications of the dhy,...,dh, is less than p. Assume that the
codimension of S(dhy,...,dh,) in U is at least 3. Let @ be a real analytic
1-form which satisfies the condition

d0 Ndhy A ...dhy, = 0.
Then there exists a real analytic function o defined on all of U so that
(0 —da) ANdha A ... Adh, = 0.

Proof: The linearity of the question allows us to complexify. Let us denote
by O the set U\ S(Q2) and cover it by open subsets O;,i € I, over which the
systems (3.5) corresponding to the data at hand are solvable (with solutions
denoted by «;). Now since the h;,l = 1,...,p and their complexifications
hlc,l = 1,...,p are globally defined, we have the following equality on
Oij =0;N Oji
d(e; — o) Ndh§ A ... AdRS =0

for each pair of indices ¢,j € I for which O;; is non-empty. By the non-
singularity of the complexification of €2 on O, we conclude that for such

indices we have
; —aj = t;;(hY h¢
a; —aj = ti(hy,. .., p)

for some function ¢;; which is holomorphic on O;;. Since on triple overlaps
a; —aj+a;—ap+ap—a; =0,

the identity t;; +¢;1 +tx; = 0 follows. Now on the complements of analytic
subsets of Stein spaces which have codimension at least 3, Cousin’s Problem
A is solvable ([14], p. 138). We deduce that there exist functions ¢; which
are holomorphic on the O; for ¢ € I such that ¢;; =t; — ¢t;.

14
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Furthermore, an examination of the proof on page 132 of [14] reveals
that the ¢; are functions of h{’,...,hS. Indeed, the functions ¢; are con-
structed in page 132 of [14] out of the Taylor series expansions of the
functions t;;. Since the t;; are dependent only on h;,¢ =1,...,p, and on O
the map h¢ = (h{, ..., hg) has full rank, it is easy to see that the functions
t; are also functions only of h.

Now, defining «; as a; — t;, we see that the a; patch up to yield a
function which is holomorphic on all of O and also satisfies (8¢ — da) A
dh{ A ... A dhg = 0 on the subset O. Since the complement of O is an
at least codimension 3 subset in U®, the holomorphic function constructed
above can be extended holomorphically to all of U® to yield a function,
again denoted by «, which by density satisfies the equation (8¢ — da) A
dh{ A ... AdhS§ =0 on UY. This last extension result may be found in
standard several complex variables texts (e.g., [14]). This completes the
proof of the proposition.

We make the following remarks regarding Proposition (3.1):

e R" itself satisfies the requirement on U.

e The proof above contains a global result which depends on two cru-
cial assumptions : a) the analyticity of the data at hand; b) the fact
that the h;,7s = 1,...,p are globally defined. Whilst a) could perhaps
be circumvented under special circumstances for C* data ( e.g., the
extension past the singularities could fail without additional hypothe-
ses), b) cannot. It is here that the global results of [9] are beyond
the scope of our techniques. On the other hand, it is reasonable to
assume the global existence of the h;,i = 1,...,p in applications.

e We still believe that this version is valid for germs of the h;,i =
1,...,p; i.e., we need not assume that U is Stein—the method of
the proof used here will, of course, not work in this case.

e In [18] Malgrange proves the solvability (in the holomorphic category)
even if CodS(Q) = 2 provided 6 satisfies S1, and P is known to be
formally solvable. We cannot improve this result to the case that only
6 A dh® is holomorphic (at least via the techniques of Proposition
(3.1) ), since we do not know if Cousin’s Problem A is solvable on
domains which are the complements of codimension 2 subsets of Stein
manifolds.

The global problem considered in Proposition (3.1) is called a Cousin
A problem in the several complex variables literature (see, for instance,
[14]). The paper [[2]] also proves a “local implies global” result by solving
a Cousin A problem. However, the hypotheses and the conclusions are
different from ours.
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Example A - The Nonsingular Case: We first treat the results from
the standard formulation of the controlled invariance problem. Recall the
regularity assumptions from the introductory section regarding the distri-
butions A and G. Since m = 1, the second regularity condition translates
to GNA =0;ie, Lyh; #0,i=1,...,p. Let 2 be the annihilator of A. By
the Frobenius theorem we may assume that there exists a local coordinate
system in which h;(z) = z;,4 = 1,...,p. Since Lyh; # 0,i = 1,...,p the
corresponding 6;,7 = 1,..., p satisfy the assumption S1. The assumptions
G N A =0 is thus the strongest requirement in order that S1 be valid. We
assume that (3.4) holds. Clearly, then P is solvable. If the reader wishes
he may appeal to (3.5) to see this.

Example B: In this example we will show that one can recover the
results of ([8]) on the solvability of the controlled invariance problem in
the presence of singularities in the inputs. Of course, [[8]] obtains results
even when m # 1. The most general result of this type can be found in
[13]. More precisely, the situation considered is that of a smooth nonlinear
control system, and an involutive, nonsingular distribution A which the
authors seek to render controlled invariant locally via feedback. They make
the following assumption:

[, Xi] = Vi + ¢l (2)gla)yi = 1,...,n — p. (3.6)
Here p is the codimension of A and the V;,7 =1,...,n — p are vector fields
which take values in A, and most importantly the ¢;(z),i = 1,...,n —p

are C* functions on U. They do not make the standard assumption that
G N A = 0. Under the assumption (3.6), they demonstrate the existence
of a smooth feedback a(z) which causes the closed loop vector field f(x)+
a(z)g(x) to leave A invariant. We will now recover their result using the
formalism of this section.

To that end, let 2 be the annihilator of A. Since A is nonsingular and
involutive, we may assume that there exists a system of coordinates under
which the h; = z;,¢ = 1,...,p. In the same coordinates the coordinate
vector fields %,j =p+1,...,n constitute, visibly, a basis for A. Denote
by fi,gi,t = 1,...,n the components of f and g respectively in these
coordinates. We then have:

n 0f
;=5 drji=1,...,p.

(3

=1

Using the formula [X,Y] = (DX).Y — (DY).X for the Lie bracket of two
vector fields X and Y to express (3.6) in coordinates shows that ix, 8; =
), k=p+1,....n, I = 1,....p. Thus we see that (3.6) yields, in
addition to the integrability conditions for (3.5), the fact that the 0;,i =
1,...,p satisfy S2. Thus the system of partial differential equations, (3.5),
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corresponding to this situation can indeed be solved. This yields the desired
conclusion.

Before proceeding to the case of a singular Q, we wish to illustrate by
means of two examples that it is possible that both S1 holds and fails, and
yet in both situations P is solvable.

Example C: Let h(x) = z12923, © € R®. Let the control vector field be
g(z) = +(z1,32,23)" and the drift vector field, f(z) equal (z3z23,0,0)".
Then L,h = h, so that dL,h A dh = 0. However, dLyh A dh # 0. In
fact, Lyh = h2z3, so that dLyh = 2hz3dh + h®dzs. Therefore, 6; =
—(x3dh + hdzs), which equals —d(hx3). Hence, S1 is valid. Trivially, (3.4)
holds, and a solution to P is a(z) = —hxs.

Now consider, the same data except for the drift, f(z), which is now
given by the vector field (z2z2, 23, z3)!. Now, the differential form #; equals
—[(4zs + z Y )dry + (42 + 25 )d2s + (Q(H“m%“)dmg] Clearly, S1 does not
hold. However, 81 A dh is smooth as can be easily seen. Hence, S2 is valid.
In addition, (3.4) holds and a solution, a(z), to P is —2z;xs.

We now analyse the singular case under the assumption of real analyt-
icity of all data.

The Analytic Case: We now allow {2 to become singular. Let us
make the following assumptions about the data of the problem:

1. The 1-forms 6; Adhi A ... Adhyp,i = 1,...,p are real-analytic on a
connected open subset U of R™.

2. The h;,1 =1,...,p are all good outputs on a connected open subset
U whose complexification is a Stein manifold.

3. Equation (3.4) is satisfied by the data of the problem.

We then have:

Proposition 3.2 Under the above assumptions there exists a real analytic
feedback a(x) on U under which the closed loop system corresponding to
the control system (1.1) leaves Q controlled invariant.

Proof: The result is a consequence of Proposition (3.1) and complexifica-
tion. Of course, if U’s complexification is not a Stein manifold, then we
can prove the local existence of such a feedback if the 6;,i = 1,...,p are
themselves real analytic.

4 The Case of Multiple Inputs

We will briefly illustrate how all of the foregoing analysis can be extended
to the case of multiple inputs if p > m. We will display the intervening
calculations for the case p =3, m = 2.
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We form m x CZ, one forms in the following fashion. We first take hq
and hs together and go through the steps in the single-input case. More
precisely, we define a pair of one forms:

(0:2,052)" = A=Y (x)(—dLshy, —dLhs)'" (4.1)

where, the matrix A(x) has for its ijth element the quantity Ly, h;,i,j =
1,2.

By considering hs, hs together we form, likewise, a second pair of one
forms denoted (672, 03%)!". Similarly we form a pair of one forms (63!, 631).
Of course, all these forms will typically be meromorphic. We can demand
that they either satisfy S1 or S2. The «; can then be found by solving,
say,

(0;> —da;) Adhy A ... Adh, =0,i=1,2. (4.2)

The version of the equations (3.4) now become:

doj* Ndhy ... ANdh, = 0
07> =60y ANdhy...Ndh, = 0,1=1,2 (4.3)

for each index rs from the set {(23),(31)}.
We may now apply the reasoning of the previous sections to the above
system of equations - see [25] for the exact technical hypotheses needed.

5 Outline for Partially Smooth Data

In this section we will outline the structure of the proof of the solvability
of P (when p =1) when f and g are only C*, so that § = 6, A dh; is just
C*>. We take h = hy to be a good output defined on an open subset U
of R™ with a Stein complexification U®. The solution to P will then be
carried out in the following steps:

Step 1: Since 6 satisfies S2 and h is a good output there exists a formal
solution to P about each point of U. After choosing a operating point, call
this formal solution 7. By Remark (2.4) h is locally normal crossings.
Consider the effect of the map 7* on the equation (6 — dvy) A dh = 0.
Denoting, by abuse of notation, 7*(6), also by 6 we see that we have a
formal solution to the equation (6 —da) A d(II_, z¥*) = 0 about each point
of N. For use in the last section, we denote by 8, the object # —d(7), where
7 is the smooth function whose Taylor jet is the series v. Thus, 8 A dh has
all its components flat at the origin.

Step 2: In the next section we will construct a C'*° solution to the
equation (8 — da) A d(IT?_, z¥*) = 0. We need only consider the case where
the functions ¢’ in the system (3.5) corresponding to this data all vanish
to infinite order at the origin. However, we will also briefly examine the
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formal solvability of these equations because we need a slightly stronger
property than the vanishing to infinite order at the origin of the ¢’.

Remark 5.1 We leave it to the reader to verify the fact that we may take
the p; all to be relatively prime. Clearly if Step 2 can be executed in this
case, then so can it in the general case.

As a matter of fact, we will need the p; to be relatively prime only for
the next step. More precisely, we will need it to be able to conclude the
“appartenance biponctuelle” condition of Theorem (2.2) from a condition
like dAAdh = 0, where A is a C* function obtained from the C'* functions
of Step 2.

Step 3: The smooth solution obtained in the step above will have to
be blown down. We will carry this out in the last section.

6 Successive Integration and the Monomial Case

Let h = I ;2. Assume that the first r of the p;’s are not zero and the
remaining are. One has to then solve the following system of equations:

Oa Oa

Xla:pll'la—l_l—]hxla—ml :Cl:ixla,ZZQ,...,r (6.1)
along with
g—;:cl:ixlﬁ,l:r—kl,...,n. (6.2)

This follows either from writing down directly the equations (3.2), or by
using the equations (3.5) and noticing that the X; form a basis for the
vector fields which annihilate dH. We first claim that we may suppose
that » = n. This is a special case of the following theorem(see [24]):

Theorem 6.1 Suppose that (6.1) has a C™ solution when one sets
(Trg1y--52n) = (0,...,0). Then the entire system of equations (6.1) and
(6.2) also has a C™ solution. Furthermore, if the ¢ vanish to infinite order
at the origin, and the solution to the corresponding (6.1) with (Tyy1,-..,%y)
= (0,...,0) also is flat at the origin, then so does the solution to the com-
plete system (6.1) and (6.2).

Therefore, from this point onwards, we shall concentrate our energies on
(6.1) with r = n.

In the subsections which follow, we will construct the solution to the
system (3.5), corresponding to H, as the sum of three smooth functions
U(x), V(z) and W(z).
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6.1 Construction of U(x)

We define U(z) to be the C*® function whose Taylor jet equals the formal
power series solution to (6.1) (with r = n). The formal solvability, of
course, follows from the hypotheses that 6 satisfies the condition S1 and
Theorem (2.1). The existence of U(z) then follows from Borel’s lemma.
Let m = (m1,...,my) be a multi-index of non-negative integers. As-
sociate to the vector field X;,i = 1,...,n and every multi-index m the
quantity P{(m),i = 1,...,n defined to be the sum pym; — pym;. It is
easily seen that if A(zy,...,2,) = >, Anx™ is any formal power series
then
XiA(x) = AP (m)a™. (6.3)
m

The reader should use this fact and the formal solvability of (6.1) to set
up a tangible formal power series solution. We will not carry out the details
here for reasons of brevity. Doing so, however, is very useful to understand
the motivation behind the steps of the remaining two subsections. Notice
that the formal power series solution obtained this way will differ from
any other formal solution only by a formal first integral of all the X;,7 =
2,...,n. One can use (6.3) and the last observation to ascertain:

Remark 6.1 Let us denote by d* the functions ¢! — X;U,i = 2,...,n.
Then it is easy to see from the structure of the formal power series solution
that the d* vanish to infinite order with respect to (x1,%;),i = 2,...,n at
(1,z;) = (0,0). This will be of importance in the subsequent subsection.

6.2 Construction of the function V()

For later use we observe that the flows of the vector fields X;,i =2,...,n
denoted ¢;(t,z),i = 1,...,n, consist of diffeomorphisms (denoted ¢i) de-
fined for all ¢.

We first form the auxiliary system of equations

Xow=d,i=2,...,n (6.4)

for the unknown function v.

Let us first observe that the integrability conditions for the system (6.4),
namely Xd' = X;d*,k,1 = 2,...,n, follow from those for the system (6.1).
The function V(z) will now be concocted out of the sum of n — 1 integrals
Ii,i = 2,...,11.

Let I, = — [;* d*(¢7(z))dt. I, is well defined if 2y = 0. Indeed, since
d? vanishes at the origin, we have the estimate:

| @) <K || (6.5)
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and since x; = 0 this, in turn, implies that for 1 =0
| I |< KL/ e Pt x| dt (6.6)
0

where L is another constant. The latter estimate shows that I» is well
defined if 2; = 0. Furthermore, since d?> vanishes to infinite order with
respect to (1, x2) whenever (z1,22) = (0,0) we have estimates similar to
(6.5) for derivatives of all possible orders of d>. These yield estimates simi-
lar to (6.6) and justify differentiation under the integral sign, and thereby,
shows that I, is actually a C'*° function.

We will next show that I, actually satisfies XoI> = d? on the hyperplane
{z1 = 0}. We have XpIr = — [ Xod?(¢7(x)dt. (Notice that we have
already justified differentiation under the integral sign.) We will now use
the following facts (see [1]):

Proposition 6.1

1. For any diffeomorphism ¢, any smooth vector field Y and any smooth
function y we have:

¢"Lxy(z) = Lip)x (¢ y(z)). (6.7)
2. Let X,Y be two smooth vector fields with respective(local) flows ¢;
and ;. Then [X,Y]=0iff a) o;Y =Y and b) ;X = X.

3. Let X be a vector field and ¢¢ be its (local) flow. Let y be a smooth
function. Then:

9 (919) = 67 Lxy(z). (63

Applying (6.7) to each of the diffeomorphisms ¢?, along with Proposi-
tion (6.1), we get:

ol == [ (@) (Lt
0

Upon using the formula (6.8), we now get

> d
Xolp = — d—((j)?)*dz(a:)dt.
0 t
This finally yields Xols = d?(x) — Limy—oo(¢7)*d*(x). Since 1 = 0,
this limit tends to d?(0,0,z3,...,2,), which equals 0, since d? vanishes
whenever (z1,22) = (0,0). Thus Iy indeed satisfies the equation Xov = d?

on {z; = 0}.
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Next, let us compute X3lr. We get Xsl, = — [[* X3d*(¢7 (x)dt. The
integrability condition X3d? = X»d>, therefore yields:

X3I2 = —/ X2d3(¢§(l’)dt
0

Keeping in mind the fact that [X5, X3] = 0, we get upon using Proposition
(6.1):
X3I2 = dB(I') — Lth—»oo((i)%)*dB(m)

Once again, since z; = 0, the limit in the last equation equals
d®(0,0,x3,...,1,). Therefore we have to amend I by another function
so that on {1 = 0} we have X315 = d*(x).

To that end, we define I3 as — [ d*(0,0,e P*'w3, 4,...,2,)dt. Once
again, since d® vanishes to infinite order with respect to (x1,73) when
(z1,23) = (0,0), estimates similar to (6.5) and (6.6) show that the integral
I3 is a C* function of all its variables. Clearly, the arguments above also
show that X3I3 = d3(0,0,x3,...,2,). Therefore, X3(I> + I3) = d*(x) on
{z1 = 0}. Furthermore, since the definition of I3 does not involve x1 or
To, we have XoI3 = 0, and hence Xo(I + I3) = d*(x) on {z; = 0}.

Let us now evaluate X4(I> + I3). We get, using the commutativity of
X4 with X2 and X3Z

Xy(L +1I3) = dY=z)—d*0,0,23,24,...,2,)+ d*0,0,...,2,)
—d*(0,0,0,z4,...,x,) = d*(z) — d*(0,0,0,z4,...,2,).

If we define I as — fooo d*(0,0,0,e~Pitz,, ..., x,)dt, we see, using the same
yoga once again, that X4I, = d*(0,0,0,z4,...,2,). Thus, Xy(lr + I3 +
I;) = d*(x) on {z1 = 0} and, since the definition of I, does not involve any
of the variables, the z1,x, x5, I4 is a C'* first integral of both X5 and X3.
Therefore, X;(Is + I3 + Iy) = d'(x),i = 2,3,4 on {z; = 0}. Iterating this
argument we arrive at the conclusion that Iy defined as Iy + Is + ... + I,
where I,, = — [[7d™(0,0,...,0,e" Pz, )dt satisfies X;0 = d',i = 2,...,n
on {z; =0}.

Now by a generalization of Borel’s lemma (Lemma 2.5, p. 98 of [12])

there exists a C*° function V(x) dependent on the variables (z1,...,2,)
such that:
o Vv I
B oapr ! (@) = Inlo)
for all multi-indices m = (my,...,m,) on the set {x; = 0}. Here, | m |=
S, m;, and
glml—mi

m = 0.
Oxy? .. .0z
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If we now define E*(z) to be d'(x) — X;V(x) fori =2,...,n, then it
is clear that the functions E'(x),i = 2,...,n vanish to infinite order on
{1’1 = 0}

6.3 Construction of the function W (z)

We first form another system of partial differential equations, associated to
the problem:

Xow = Ei(z),i=2,...,n. (6.9)
The integrability conditions for the system (6.9) are Xje! = X;e* k1 =
2,...,n, and their validity is an immediate consequence of the integrability

conditions for (6.4). We will now construct a solution W(z) to (6.9) as

a certain integral I. I is defined to be fi)oo E?(¢2(z))dt. Deferring the
issues of the convergence of this integral and the validity of differentiation
under the integral sign for the moment, let us verify that I formally solves
Xov = E*(z). We get:

0
Xol = / XoE?(¢7 (x))dt. (6.10)
—00
In exact analogy with the techniques of the previous subsection we get:
XoI = E*(z) — B*(Limy_. @7 (x)).

However, as t — —oo the flow of X, approaches the hyperplane {z; = 0}.
Thus the limit in the previous equation is actually 0( since E? vanishes on
that hyperplane). Thus I formally satisfies Xow = E?(z). Furthermore, I
also formally satisfies the remaining equations in the system (6.9). Indeed,

0
XiI:/ XGE?(¢2 (x))dt,i =2,...,n
—00

and this equals LOOO X5 EH(¢?(x))dt,i = 2,...,n and this, of course, equals

Ei(z) — EY(Limi— —od?(z)),i = 2,...,n. Therefore, as a consequence of
all the E? i = 2,...,n vanishing on {z; = 0}, I satisfies X;w = Ei(x),i =
2,...,m.

Finally, the convergence and smoothness of the integral I follows from
the facts: a) on the hyperplane {z; = 0} E%i =2,...,d vanish to infinite
order so that we have an estimate | Ei(z) |< C;(dist(z, {z; = 0}))",i =
2,...,d for all positive integers n and for some positive constants C;,i =
2,...,d and b) the estimate dist(¢o(t,z),{z1 = 0}) < e~ Ntdist(z, {z; =
0}) for some positive constant N. Here, of course, dist(,) stands for the
(squared) distance of the first entry from the set in the second entry. Once
again, these estimates provide the desired conclusion (for instance by using
the same arguments to show that, say, I» was smooth).
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Remark 6.2 The results of this section should be viewed as a “Formal +
Hyperbolic Implies C'*” result for systems of the type (3.5). Of course, the
X;,i=2,...,d are not quite hyperbolic, so in some ways we have obtained
a stronger result. However, we ought to remember that the commutativity
of the fields X;,i = 2,...,d played a crucial role.

7 Blowing Down the Solution

Since it is only the origin and its vicinity that we are really interested in,
we can use b) of Th (2.3) to arrive at the following statement:

Theorem 7.1 Let h be a real-analytic function on a neighborhood U of
the origin in R™. Then there is an open subset V. C U and a proper real-
analytic map m : N — V, where N is a real-analytic manifold, which is a
diffeomorphism outside of the set H=1(0) and, in addition, has the property
that h is locally a monomial. In other words, about each point p in N there
are local coordinates (x1,. .., zy,) in which the map H is of the form I}, z¥*
for certain non-negative integers p;,i =1,...,n.

Now Step 3 will be executed in the following steps:

e Each point p € 77'(0) has a neighborhood U, in N in which H
is a monomial. We take a finite subcovering (using the fact that
7 1(0) is a compact set—owing to the properness of the map =),
say Uy,...,Uy, and cover a neighborhood of 7~1(0). Without loss
of generality, we may take these U;,i = 1,...,N to be connected
open sets (otherwise we work with their connected components). In
each of these, the system (7*6 — da) A dH = 0 admits a solution,
a;,i =1,...,N, which is furthermore flat on the subset U; N 7~1(0).
This, of course, follows from the previous section.

e Thus whenever ¢ and j(i,j = 1,...,N) satisfy U; N U; # @, we
obviously have d(o; — oj) AdH = 0. Now H, being a monomial, is
semiproper. Furthermore, since both © and h are real-analytic, so is
H. Now the relation d(a; — ;) A dH = 0 implies that about each
point p € U; NUj, (o; — «j) is a formal power series in the variable
H. This can be seen, keeping in mind Remark (5.1), by setting up
a formal power series solution to the system of partial differential
equations X;(a; — ;) = 0,1 =1,..., K, where the X;,{ =1,... | K
are vector fields which annihilate d(h o 7) as in the previous section.
By Borel’s lemma, therefore, there exists a smooth function H,, near
each point p € U; N U; satisfying: o; — a;j — Hp o H is defined in a
neighborhood of the point p and is flat at the point p. Now, given
any two point set {z,y} in U; N U; we appeal to Remark (2.2) to
construct a smooth function B so that (o; — aj — B o H) is defined
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on all of U; N U; and is flat on the set {z,y}. Thus the function
also satisfies the “appartenance biponctuelle” criterion of Th (2.2).
Therefore, we can conclude the existence of a function h;; which is
smooth on U; N U; which satisfies o; — aj = h;j o H on U; N Uj.
Furthermore, it should be clear that the h;; are all flat on the subset
U; N Uj N 7T_1(0).

It is obvious that these locally defined functions h;; satisfy the iden-
tities hi; 4+ hjr + hg; = 0 (on all triple intersections). We would like
to conclude the existence of functions, h;, which are smooth in U;
and also flat on the subset U; N 7=1(0) so that h;; = h; — hj on
the subset U; N U;. We would also like the functions h; to be func-
tions of only H. Why this extra property is needed will become clear
presently. Normally, the existence of such h; (without the above ad-
ditional property) would follow from the solvability of a Cousin A
problem—which, fact in turn, follows from the fact the sheaf of C'*°
functions is actually a fine sheaf (see, for instance, Ch 5 of [29]). Let
us directly illustrate this so that it becomes clear what is needed in
addition.

We set X = UN,U;. We then chose a smooth partition of unity
si(x),l = 1,...,N subordinate to the U;,l = 1,...,N. We now
define the function h; with domain U;,2 =1,..., N by

hi(z) =) si(z)ha(x).

l

Clearly the h;(z),i =1,..., N are C* and flat on U; N 7~1(0). Now
we write, for every x € U, N Uy (for any two fixed indices a, b), the
equations hgp = hge — hpe,c = 1,..., N. We next multiply both sides
of the last equality by the s.,c =1,..., N and then sum over c. This
yields the conclusion.

The problem with the above construction is that the functions s;
of the partition of unity cannot be written as functions of H. To
circumvent this problem, we denote by V; the complement of the set
U; N 771(0) in U;. We may assume, without any loss of generality,
that all these open sets V; are connected (otherwise we carry out
the step below with their connected components). Clearly, H is a
submersion on the V;,i = 1,...,N. Therefore, the image of the
open sets V; under H, denoted W; are open sets in R. Clearly, the
functions h;j,4,5 =1,..., N on X give rise to well defined functions
rij,%,J = 1,...,%, which are smooth on the the open sets W; N W;.
They also satisfy the identities 745 +7p.+7c¢ = 0 on the corresponding
triple overlaps. Thus we can find r,, smooth on W,,a = 1,..., N
which satisty r, — ry = rqp on W, N W,.
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Finally, we define h; : U; — R,i = 1,...,N by letting i) h; equal
r; 0o H on Vy; ii) and by letting it and all its derivatives be identically
0 on U; N7 1(0). Clearly the h;, so defined, is C* on U and flat
on U; N7 1(0). The h;,i = 1,...,N thus constructed have all the
desired properties.

e Now, let us define a function « on X, according to o = a; — h; on U;.
Clearly, these local pieces patch together on the overlaps U; N U; to
yield a smooth function on the neighborhood X which is flat on the
subset 771(0). Furthermore, the function « satisfies: a) it is constant
on 7 1(0), so that it can be blown-down, and b) (7% — da) AdH = 0
on X. Therefore, the function x = @ o 7! is well-defined, smooth in
a neighborhood of 0 € V, is flat at 0 and satisfies (6 — dk) A dh = 0.
Hence, k + 7 is the solution to (6 — da) A dh = 0 (where 7 is as in
Section 5).

This completes the blowing down process.

Remark 7.1 We see, by bearing in mind Remark (6.2), that we can prove
the (local) smooth solvability of P even if CodS(dh®) = 2, provided @ is
C* and we know, beforehand, the formal solvability of P.

8 Conclusion

In this paper we introduced the study of controlled invariance for single—
input systems, with differential forms as the starting point. In addition to
the natural “functorial” appeal of this problem, several practical benefits
are briefly recapitulated here:

1. The partial differential equations for the feedback can be written
down from the data at hand, obviating thereby, the need to pair
down to the annihilating distribution.

2. The necessary condition for the solvability of this problem is an equal-
ity condition and not an inclusion condition. Likewise, several other
conditions regarding symmetry aspects (to mention just one) can
be expressed as equality conditions. These are not discussed in the
present paper.

3. It is possible to analyse regularity conditions in the codistributions
and the control vector fields simultaneously. It also makes it possible
to visualize what one might mean by a singularity in the controlled
invariance problem. We also note in passing that the methods of this
paper can be extended to cover the case where the disturbance signal
is also available for measurement and thereby to some aspects of the
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model matching problem. It is also possible, via the same techniques,
to analyze the noninteracting control problem in the presence of sin-
gularities in the decoupling matrix (details may be found in [25]).

There is at least one problem which deserves further research, viz.,
generalizing these results to the case when m > p. Finally, it would be
interesting to obtain global results in the presence of singularities. The
formulation of the controlled invariance problem in this paper has the ad-
vantage that it renders possible the formulation of global questions in terms
of cohomological data. Whilst this does not simplify global questions sub-
stantially, it has the psychological value of being similar to questions of
the same genre in other disciplines. It would be interesting to examine the
relation of the formalism here, with regard to global results, to the results
of the excellent paper [9]. Loosely speaking, the motivation behind the
suggested problem is that if a singularity does not cause problems locally,
then it is not likely to do so globally either.
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