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Abstract

An important class of �xed gain recursive estimation processes

can be approximated by random di�erential equations, the right

hand sides of which are L-mixing random �elds. It will be shown that

the solution trajectories of these random di�erential equations follow

the trajectories of the corresponding deterministic di�erential equa-

tion obtained by averaging so that the tracking error is majorated by

an L-mixing process,the moments of which can be estimated. The

result is applied to prove a theorem on the pathwise tracking ability

of a time-varying recursive estimation scheme.
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1 Introduction

The purpose of this work is to present a rigorous mathematical analysis

of a time-varying recursive parameter estimation scheme, that is suitable

for the \identi�cation" of linear stochastic systems. For the time invariant

parameter estimation problem this scheme was proposed in [19] and [4] and

its usefulness was demonstrated in [20], [2] and [3]. An estimation scheme

that is suitable for the tracking of time varying parameters is obtained

using �xed gain instead of decreasing gain, typically 1=n. The �rst steps
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L. GERENCS�ER

towards the analysis of this algorithm were presented in [7], in which some

classical averaging methods were applied (cf. [5]).

Fixed gain recursive estimators for adaptive �ltering were used in [18]

using a weak convergence framework. The main result of that paper is

a characterization of a �xed gain recursive estimator process by a limit

theorem for a sequence of problems with �xed gains which tend to zero.

Another aspect of the same problem, namely the rate of convergence of

the estimator process was recently considered in [13]. Structured problems

of time-varying estimation, i.e. problems where the parameter process is

assumed to be the output of a linear stochastic system of known structure,

were considered in [21]. The nature of time varying estimators was explored

in more detail for o�-line identi�cation using exponential forgetting in [6],

and was further elaborated in [12] and [16].

The major advance of the present paper is that we characterize the

actual estimator process instead of a somewhat arti�cial limiting process;

we give a pathwise characterization of the estimation error rather than an

upper bound for its moments; and �nally, we do not impose any structure

on parameter process.

Fixed gain estimators are of particular interest in at least two impor-

tant problems of the statistical theory of linear stochastic systems: model

selection (cf.[15]) and change point detection (cf.[14]). In both papers a key

role is played by what is called �xed gain predictive stochastic complexity

(cf.[23, 11]).

The �rst and major part of this paper is devoted to the analysis of

what is called the frozen-parameter system. This is a random di�erential

equation, the right hand side of which is a so-called L-mixing random �eld.

We shall develop an averaging principle, which captures the properties of

the tracking error in a fairly precise way. The application of these results

to time-varying recursive estimation will be given in Section 3.

To start the technical discussion we introduce some notations and def-

initions which have been introduced partly in [8]. The set of real numbers

will be denoted by IR, the p-dimensional Euclidean space will be denoted

by IRp and we write IR+ = ft : t � 0g.
Let a probability space (
;F ; P ) be given, let D � IRp be an open

domain and let (xt(�)): 
� IR+ �D ! IRn be a stochastic process. Here

� is considered as a parameter. We say that (xt(�)) is M -bounded if for all

1 � q <1
Mq(x) = sup

t�0

��D

E1=qjxt(�)j
q <1:

Here j�j denotes the Euclidean norm. We shall use the same terminology

if � or t degenerate into a single point. Also we shall use the following

notation: if (xt(�)) is M -bounded, we write (xt(�)) = OM (1). Moreover, if

(ct) is a positive real-valued function, we write xt(�) = OM (ct) if xt(�)=ct =
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FIXED GAIN ESTIMATION

OM (1).

A key tool in the analysis of estimator processes is the concept of L-

mixing which we are now going to introduce. Let (Fs); s � 0 be a family of

monotone increasing �-algebras, and (F+
s ); s � 0 be a family of monotone

decreasing �-algebras. We assume that (F+
s ) is continuous from the right,

i.e. F+
s = �f[0<"F

+
s+"g. Furthermore assume that for all s � 0;Fs and

F+
s are independent. For s < 0 F+

s = F+
0 :

A stochastic process (xt(�)); t � 0 ��D is L-mixing with respect to

(Ft;F
+
t ) uniformly in � if it is (Ft)-progressively measurable, M -bounded

and if we set for 1 � q <1


q(�) = 
q(�; x) = sup
t��

��D

E1=q jxt(�) � E(xt(�)jF
+
t�� )j

q � � 0;

then we have

�q = �q(x) =

Z 1

0


q(�)d� <1:

It can be shown that 
q(�) is measurable and thus the integral makes

sense. If the process does not depend on a parameter, then we de�ne L-

mixing in an obvious way. We shall sometimes use the notations x+t;s(�) =

E(xt(�)jF
+
s ); for s � t and write xt(�) as xt(�) = x+t;s(�) + x0t;s(�).

The above de�nitions extend to discrete-time processes in an obvious

way. LetD � IRp be an open domain and let the stochastic process (xn(�)) :


�ZZ�D ! IRn be a stochastic process. We say that (xn(�)) isM -bounded

if for all 1 � q <1

Mq(x) = sup
n�0

��D

E1=qjxn(�)j
q <1:

Let (Fn); n � 0 be a family of monotone increasing �-algebras, and

(F+
n ); n � 0 be a monotone decreasing family of �-algebras. We assume

that for all n � 0;Fn and F
+
n are independent. For n � 0 we set F+

n = F+
0 .

A stochastic process (xn(�)); n � 0 is L-mixing with respect to (Fn;F
+
n )

uniformly in � if it is (Fn)-progressively measurable, M -bounded and if we

set for 1 � q <1


q(�; x) = 
q(�) = sup
n��

��D

E1=qjxn(�)� E(xn(�)jF
+
n�� )j

q

where � is a positive integer then

�q = �q(x) =

1X
�=1


q(�) <1:

Some of the basic results of the theory of L- mixing processes were

developed in [8], and a summary of them was given in [12].

3



L. GERENCS�ER

To capture the smoothness of a stochastic process (xt(�)) with respect

to � we de�ne

�x=�� = (�x=��)t(�; � + h) = jxt(� + h)� xt(�)j=jhj

for t � 0; � 6= � + h�D: A stochastic process (xt(�)) is M -Lipschitz-

continuous in � if the process �x=�� is M -bounded; i.e. if for all 1 �
q <1; we have

Mq(�x=��) = sup
t�0

� 6=�+h�D

E1=qjxt(� + h)� xt(�)j
q=jhj <1:

We de�ne �q(�x=��) in an analogous way. Finally, we introduce the

notations

M 0
q(x) =Mq(x) +Mq(�x=��) and �0q(x) = �q(x) + �q(�x=��):

Now we start the discussion of the subject matter of this paper. Con-

sider the random di�erential equation

_�t = H(t; �t; !) + �H(t; !) �s = � s � 0 (1:1)

where (H(t; �; !)) is a random �eld de�ned on the probability space (
;F ; P )
for t � 0 and ��D, where D is an open domain in IRp and �H(t; !) is a

perturbation term. De�ne the random �eld �H=�� as above by

�H=��(t; �; � + h; !) = jH(t; � + h; !)�H(t; �; !)j=jhj

for �; � + h�D; h 6= 0. We assume

Condition 1.1 (H(t; �; !)) and (�H=��(t; �; �+h; !)) are continuous in

t and bounded in (t; �; !) and (t; �; � + h; !) respectively, say

jH(t; �; !)j � K and j�H=��(t; �; � + h; !)j � L:

Condition 1.2 The process �H(t; !) is a measurable, bounded process,

satisfying j�H(t; !)j � �K � K.

This condition ensures that (1.1) has a unique solution which can be

continued until �t escapes D. To get an averaging principle for random

di�erential equation we need to assume some kind of mixing property of

the random �eld (H(t; �; !)) .

Condition 1.3 H and �H=�� are L-mixing uniformly in � for ��D and

in �; � + h�D respectively, with respect to a pair of families of �-algebras

(Ft;F
+
t ).
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FIXED GAIN ESTIMATION

An important step in the study of random di�erential equations is the

development of an averaging method. The concrete form of this method

may vary from problem to problem, cf. e.g. the paper of [5] and the refer-

ences therein. A common feature of these methods is that the solution of

the random di�erential equation is compared to the solution of a determin-

istic di�erential equation, the \averaged di�erential equation." However,

instead of exact averaging we consider approximate averaging. Let us con-

sider a decomposition of the expectation of H(t; �t; !) into a dominant and

a residual term as follows:

EH(t; �; !) = G(t; �) + �G(t): (1:2):

Then the ordinary di�erential equation

_yt = G(t; yt) ys = �; s � 0 (1:3)

is the approximate averaged di�erential equation.

Condition 1.4 We assume that G(t; y) is de�ned on IR+ �D; it is con-

tinuous and bounded in (t; y) together with its �rst and second partial

derivatives as indicated below

jG(t; y)j � K; k@G(t; y)=@yk � L k@2G(t; y)=@y2k � L:

Here k � k denotes the operator norm of a matrix.

This condition ensures the existence and uniqueness of the solution of

(1.3), which we denote by y(t; s; �) in some �nite or in�nite time interval.

Further details will be provided in Condition 1.6.

Condition 1.5 The perturbation term �G(t) satis�es j�G(t)j � �K.

Note, that the constants in the upper bounds in Condition 1.4 and 1.5

are identical with the constants in Conditions 1.1 and 1.2. This is no serious

restriction and makes the calculations and the interpretation of the results

easier.

We associate with the di�erential equation (1.3) a 
ow in the phase

space in the usual way: for any � we de�ne �t;s(�) = y(t; s; �): Let D0 � D

be any subset of D such that for some t; s � 0 we have �t;s(�)�D for any

��D0: Then the image of D0 under �t;s will be denoted as �t;s(D0); i.e., we

set

�t;s(D0) = fy : y = y(t; s; �); ��D0g:

Assume now that �t;s(D0) can be de�ned for any t; s � 0.Then we denote

the union of these sets by �(D0); i.e., we set

�(D0) = fy : y = y(t; s; �) for some t � s � 0g:
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The " neighborhood of the setD0 will be denoted by S(D0; ") i.e. S(D0; ") =

f� : j� � zj < " for some z�D0g. The interior of a compact domain D is

denoted by intD:

Condition 1.6 There exist compact domains D� � Dy � D� � D0 � D

such that we have �(D�) � intDy , S(Dy; d) � intD� for some d > 0 and

�(D�) � intD0. (The subscripts indicate the processes, which live in the

corresponding domains.)

It is well-known (cf. [22], Ch. 24 Th. 17, or [17] Ch. V Th. 1.1), that

y(t; s; �) is a continuously di�erentiable function of (t; s; �) and even

(@2=@�2)y(t; s; �) exists and is continuous in (t; s; �). We can therefore

express exponential asymptotical stability of (1.3) in the following way:

Condition 1.7 For some c0 > 0 � > 0 we have for all 0 < s < t; ��D�

k
@y

@�
(t; s; �)k � c0e

��(t�s):

It is no loss of generality to assume that c0 > 1.

Note, that (@=@�)y(t; s; �) = Y (t; s; �) is the solution of the linear dif-

ferential equation

_Y (t; s; �) =
@

@y
G(t; y(t; s; �))Y (t; s; �) Y (s; s; �) = I: (1:4)

It is interesting to note here that exponential asymptotical stability im-

plies under the conditions given above that the second order derivatives

(@2=@�2)y(t; s; �) = (@=@�)Y (t; s; �) also decay exponentially in (t� s) (cf.

Lemma 4.2 of Appendix).

In the formulation of the theorem below we also need the process H

de�ned by

H(t; �; !) = H(t; �; !)� EH(t; �; !):

We shall introduce constants which depend only on the constants appearing

in the conditions above, i.e. K, �K, L, d, c0, and �. These constants will

be called system constants.

Theorem 1.1 Assume that Conditions 1.1-1.7 are satis�ed. Then for

��D�, any initial time s � 0 and su�ciently large d the solution �t is

de�ned for all t � s, �t�D� and j�t�ytj � c0�
�1 �4K. Here d is su�ciently

large, if d > c0�
�1�4K. Moreover setting T = ��1 we have for small �

sup
nT�t�(n+1)T

j�t � ytj � �n
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where (�n) is an L-mixing process with respect to (FnT ;F
+
nT ) and we have

for any 2 < q <1 and r > p

Mq(�) � C��1=2(M 0
qr(H) � �0qr(H))1=2 + C��1�K 1:5

�q(�) � C��1=2(M 0
qr(H)�0qr(H))1=2 + C��1�K + C�0qr(H) 1:6

where C = c2 � exp30c
4
0(1+L��1)(1+K��1); and here c2 depends only on

p; q; r;D� and D:

An important feature of the theorem is that the moments of the tracking

error are directly estimated through systems characteristics. On the other

hand, the tracking error as a stochastic process has also been characterized

to a degree which is quite useful for applications.

It is of interest to check the e�ect of scaling onto the upper bounding

process (�n). Let us consider a family of problems parametrized by �,

where say 0 < � � 1 :

_��t = �(H�(t; ��t ; !) + �H�(t; !)) ��s = �: (1:7)

We shall assume the validity of Conditions 1.1, 1.3, 1.4 and 1.6 uniformly in

�: For the latter condition this means that the domains D� � Dy � D� �
D0 and d are independent of �. The presence of the scaling parameter �

justi�es some modi�cations in connection with Conditions 1.2, 1.5 and 1.7.

Condition 1.20 The process �H�(t; !) is a measurable, bounded process,

satisfying j�H�(t; !)j � � �K; where K is independent of �.

Condition 1.50 The perturbation term �G�(t) satis�es j�G�(t)j � � �K,

where K is independent of �.

Let us associate with (1.7) the family of ordinary di�erential equations

_y�t = �G�(t; y�t ) y�s = �: (1:8)

and let its general solution be y�(t; s; �).

Condition 1.70 For some c0 > 0; � > 0 we have for all 0 < s < t, ��D�,

0 < � � 1 



@y
�

@�
(t; s; �)





 � c0e
���(t�s)

and here c0 and � do not depend on �.

Remark If G�(t; y) does not depend on t, then Condition 1.70 is a direct

consequence of Condition 1.7. On the other hand, for truly time-varying

di�erential equations _y�t = �G(t; y�t ) with �xed G(t; y) on the right hand
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side, Condition 1.70 may not be satis�ed: for small �'s the above di�erential

equation may lose stability. This is why there should be some dependence

between � and G(t; y), which is expressed by the superscript �.

Theorem 1.2 Assume that the Conditions 1.1,1.3,1.4 and 1.6 are satis�ed

uniformly in �,and Conditions 1.2',1.5' and 1.7' are also satis�ed. Then

for ��D�, any initial time s, 0 < � � 1 and for su�ciently large d, ��t is

de�ned for all t � s, ��t �D� and j��t � y�t j � c0�
�14K and we have

j��t � y�t j � ��ct

where (��ct) is an L-mixing process with respect to (Ft;F
+
t ) and for any

q � 1

Mq(�
�
c ) � c�1=2; and �q(�

�
c ) � c��1=2

where the constant c is independent of �.

Note that the essential supremum for the absolute value of the deviation

does not decrease with �. Using Theorem 1.2 we can derive the following

result, which gives a pathwise characterization of the process (��t ):

Corollary 1.3 Let (F (�)) be a continuously di�erentiable function of �

de�ned in D. Then we have

lim sup
T!1

1

T

Z T

0

jF (��t )� F (y�t )jdt � c�1=2

with probability 1, where c is a deterministic constant, which is independent

of �.

In the application we present in Section 3 we shall need a discrete

time version of Theorem 1.2. Let us consider a discrete-time random �eld

H�(n; �; !) and a discrete-time random process �H�(n; !):We will consider

processes de�ned by

��(n+ 1) = ��(n) + �(H�((n+ 1); ��(n); !) + �H�((n+ 1); !)): (1:10)

We de�ne a continuous time extension of the correction terms as follows:

set for n � t < n + 1 H�(t; �; !) = H�(n + 1; �; !) and �H�(t; !) =

�H�(n + 1; !): We de�ne Ft = Fn+1, F
+
t = F+

n+1. Let the functions

G�(n; �); �G�(n) satisfy

EH�(n; �; !) = G�(n; �) + �G�(n);

and let G�(t; �) be the the piecewise constant extension of G�(n; �), de�ned

by G�(t; �) = G�(n; �) for n � t < n + 1. We de�ne �G�(t; �) analo-

gously. Then the associated di�erential equation is de�ned as in (1.8).

8



FIXED GAIN ESTIMATION

Theorem 1.4 Assume that H�, �H�, G�, �G� satisfy the conditions of

Theorem 1.2, and ��n is generated by (1.10). Then replacing ��t by ��n the

conclusion of Theorem 1.2 hold.

2 The Proofs

First we prove Theorem 1.1 in several steps.

Step 1 First we show that �t�D� for all t.

Assume s = 0 and apply Lemma 4.1 of the Appendix to express �t�yt:

Note that along the trajectory �t we haveH+�H�G = H�EH+H�G =

H + �H + �G: Thus by Lemma 4.1 we get that as long as �t does not leave

D� we have

�t � yt =

Z t

0

@

@�
y(t; s; �s)(H(s; �s; !) + �H(s; !) + �G(s))ds: (2:1)

Taking into account the stability condition (Condition 1.7) and the inequal-

ities jH j � 2K; j�H j � K; j�Gj � K; we get

j�t � ytj �

Z t

0

c0e
��(t�s) � 4Kds � c0 � 4K��1:

Thus if K is su�ciently small, then j�t � ytj will always be smaller than

the distance between Dy and D
c
�, where D

c
� denotes the complement of the

set D�; hence �t will stay in D� for all t. Thus Step 1 is complete and the

�rst proposition of the theorem is proved.

To prepare Step 2 we need to introduce some notations. Let us sub-

divide the positive real line into intervals of length T . In the interval

(n; (n + 1)T ) we consider the solution trajectory of (1.3) starting from

�(nT ) at time nT , say yt; i.e., yt is de�ned by

_yt = G(t; yt); y(nT ) = �(nT ):

We shall give an estimate of j�t � ytj in nT � t < (n+1)T , which is much

sharper than what we obtained at the beginning of Step 1.

Step 2 We shall prove that for T = ��1 we have

sup
nT�t�(n+1)T

j�t � ytj � c�(��n + ���);

where (��n) is de�ned in terms of the random �eld H = (H(s; y; !)) along

deterministic trajectories as follows:

��n = sup
nT�t�(n+1)T

�"D�

j

Z t

nT

(@=@�)y((n+1)T; s; y(s; nT; �))�H(s; y(s; nT; �); !)dsj

(2:2)
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and ��� is a constant given by

��� = 2c0�
�1 � �K: (2:3)

Furthermore,

c� = exp4c30(1 + L��1)(1 +K��1): (2:4)

c is a system constant.

For the proof we �rst note that Condition 1.6 ensures that yt�D0 for

all t � 0. There is no loss of generality to assume that n = 0, and then we

get from (2.1)

j�t � ytj � j

Z t

0

�
@

@�
y(t; s; ys)

��
H(s; ys; !) + �H(s; !) + �G(s)

�
dsj+

+r1 + r2 + r3 (2:5)

where

r1 = j

Z t

0

(
@

@�
y(t; s; ys)(H(s; �s; !)�H(s; ys; !))dsj

r2 = j

Z t

0

�
@

@�
y(t; s; �s)�

@

@�
y(t; s; ys)

�
H(s; �s; !)dsj

and

r3 = j

Z t

0

�
@

@�
y(t; s; �s)�

@

@�
y(t; s; ys)

�
(�H(s; !) + �G(s))dsj:

Since k(@=@�)y(t; s; �)k � c0, and H is Lipschitz-continuous in � with

Lipschitz-constant, L we get that

r1 �

Z t

0

c0Lj�s � ysjds:

On the other hand, it can be shown (cf. Lemma 4.2 the of Appendix) that

Conditions 1.4 - 1.7 imply

k
@2

@�2
y(t; s; �)k � c30L�

�1;

hence (@=@�)y(t; s; �) is Lipshitz-continuous in � with Lipschitz-constant

c30L�
�1 and we thus get

r2 �

Z t

0

c30L�
�1j�s � ysj2Kds:

Similarly,

r3 �

Z t

0

c30L�
�1j�s � ysj2Kds:

10
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Thus

r1 + r2 + r3 �

TZ
0

(c0L+ c30L�
�14K) � j�s� ysjds = c1

Z T

0

j�s� ysjds (2:6)

with

c1 = c0L+ c30L�
�1 � 4K: (2:7)

Thus we can write (2.5) as

j�t � ytj � j

Z t

0

(
@

@�
y(t; s; ys)

�
H(s; ys; !) + �H(s; !) + �G(s)

�
dsj+

+

Z t

0

c1j�s � ysjds: (2:8)

To estimate the �rst term on the right hand side note that (@=@�)y(t; s; �)

is the solution of the variational equation (1.4). Write Yt = Y (t; 0; �). Thus

the �rst term on the right hand side of (2.8) can be written as

jYtY
�1
T

Z t

0

YTY
�1
s

�
H(s; ys; !) + �H(s; !) + �G(s)

�
dsj: (2:9)

Here kYtk � c0 by Condition 1.7, and kY �1T k � expLT since Y �1t satis�es

the linear di�erential equation

_Y �1t = �
@

@y
G(t; yt) � Y

�1
t Y �1(0) = I;

and here the norm of the coe�cient matrix is bounded by L. (We get the

estimate kY �1T k � expLT writing the above di�erential equation as an

integral equation, using the inequality k(@=@y)G(t; y)k � L and applying

the Bellman-Gronwall-lemma.) Thus

kYtY
�1
T k � c0expLT: (2:10)

Write the integral term in (2.9) as the sum of three integral and take

supremum over 0 � t � T and over the initial condition � = �(0) which en-

ters implicitly through ys: For the �rst integral we get the random variable

de�ned in (2.2) with n = 0.

The contribution of the second and third integrals will be majorated by

Z T

0

c0e
��(T�s)(2�K) � 2c0�

�1 � �K = ���:

11
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Thus the �rst term in (2:8) is majorated by c0expLT � (�
�(0) + ���) and

thus applying the Bellman-Gronwall lemma (cf.(2.6)), we get that

sup
0�t�T

j�t � ytj � c0(��(0) + ���)

with c0 = exp c1T � c0 exp(LT ): We will �nd a simple upper bound for c0 to

see its dependence on the system constants in a more transparent manner.

Using the de�nition of c1 (cf. (2.7)) and the inequality c0 < ec0 ; we get

c0 � exp(c0LT + 4L��1c0
3KT + c0 + LT ):

Now since c0 > 1 we can majorate the expression in the bracket by c30LT +

4Lc30�
�1KT+c30+c30LT: Taking out c

3
0 and substituting T = ��1 it is easy

to see that the last expression is majorated by 4c30(1 + L��1)(1 +K��1)

which is exactly the exponent in c� as given in (2.4). Thus we get

sup
0�t�T

j�t � ytj � c�(�
�
(0) + ���): (2:11)

The general case, i.e. n > 0 is handled the same way; thus Step 2 is

completed.

Step 3 We shall prove that the process (��n) is L�mixing with respect to

(FnT ;F
+
nT ) and for any 2 < q <1, and r > p we get

Mq(�
�) � c3c2T

1=2(M 0
qr(H)�0qr(H))1=2 (2:12)

and

�q(�
�) � c3c2�

0
qr(H) (2:13)

where c2 depends only on q; p; r and the domains D� and D and c3 is

de�ned by

c3 = c40(1 + L��1): (2:14)

First we show that the process us(�) = H(s; y(s; nT; �); !) for nT �
s < (n+1)T is L-mixing with respect to (Fs;F

+
s ), uniformly in � for ��D�

and we have for any 1 � q < 1 Mq(u) � Mq(H); �q(u) � �q(H). To

see this we prove the following more general statement:

Lemma 2.1 Let (v(t; y)) y�D be a stochastic process which is an L-mixing

process uniformly in y with respect to a family of �-algebras (Ft;F
+
t ); t � 0.

Here D � IRp is an open domain. Assume that (yt); t � 0 is a measurable

deterministic function taking values in D. Then the process ut = v(t; yt)

is L-mixing with respect to (Ft;F
+
t ) and we have for any m � 1

Mm(u) �Mm(v) and �m(u) � �m(v):

12
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Proof: The �rst inequality is trivial. To prove the second inequality note

that for t � s > 0 we have

ut �E(utjF
+
s ) = (vt(y)�E(vt(y)jF

+
s ))jy=yt ;

since yt is deterministic. Hence for any q � 1

E1=q jut � E(utjF
+
s )j

1=q = E1=qjvt(y)�E(vt(y)jF
+
s )j

q
y=(yt)

� 
q(t� s; v)

and thus the second inequality follows.

The next lemma shows that L-mixing is preserved under the operations

by which (��n) is generated from H .

Lemma 2.2 Let ut(�); t � 0; ��D be a separable vector-valued stochastic

process such that both u and �u=�� = (ut(�+h)�ut(�))=h are uniformly

L mixing in �; � + h�D, with respect to (Ft;F
+
t ). Assume that Eut(�) = 0

for all t � 0; ��D and let D� � D be a compact domain. For �xed T > 0

we de�ne a discrete time process (u��n ) by

u��n = sup
nT�t<(n+1)T

��D�

Z t

nT

hs(�)us(�)ds;

where hs(�) is a deterministic measurable and bounded matrix-valued func-

tion of (s; �). Let us assume, e.g., that kh(s; �)k � k. Moreover, h(s; �) is

Lipschitz-continuous in �, say kh(s; � + d)� h(s; �)k � ljdj. Then (u��n ) is

L-mixing with respect to (FnT ;F
+
nT ) and for any q > 2 and any r > p; we

have

Mq(u
��) � c2(k + l)T 1=2(M 0

qr
(u) � �0qr (u))

1=2; �q(u
��) � c2(k + l)�0qr (u)

where c2 depends only on q; p; r and the domains D� and D.

Proof: We assume hs(�) = 1. The general case is dealt with similarly.

The inequalities given as Theorems 1.1 and 5.1 imply that

u�n(�) = sup
nT�t<(n+1)T

Z t

nT

us(�)ds

is M -bounded and for q > 2

Mq(u
�(�)) � cqT

1=2M1=2
q (u(�))�1=2q (u(�)):

Let m < n and approximate u�n(�) by

u�+n;m(�) = sup
nT�t<(n+1)T

Z t

nT

u+s;mT (�)ds

13
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where u+s;mT (�) = E(us(�)jF
+
mT ). We have for any �xed ��D

ju�n(�)� u�+n;m(�)j �

Z (n+1)T

nT

jus(�)� u�+s;mT (�)jds

and taking the Lq(
; F; P ) norm of both sides for some q � 1 we get

E1=q ju�n(�) � u�+s;m(�)j
q �

Z (n+1)T

nT


q(s�mT; u(�))ds

=

Z (�+1)T

�T


q(s; u(�))ds;

where u(�) denotes the stochastic process (ut(�)) for �xed �. Fix � = n�m
and take supremum over n for n � � to get


q(�; u
�(�) �

Z (�+1)T

�T


q(s; u(�))ds:

Summation over � from 1 to 1 gives �q(u
�(�)) � 2�q(u(�)):

Now the same argument can be applied for the process (�u�n=��) de-

�ned as follows: (�u�n=��)n(�; � + h) = (u�n(� + h) � u�n(�))=jhj: The ap-
plication of the maximal inequality given in [8] as Theorem 3.4 completes

the proof.

Let us now apply Lemma 2.2 with hs(�) = (@=@�)y((n + 1)T; s; y

(s; nT; �)) and us(�) = H(s; y(s; nT; �); !): We have kh(s; �)k � c0 and

k@hi(s; �)=@�k = k(@2=@�2)yi((n+ 1)T; s; y(s; nT; �)):@y(s; nT; �)=@�k

� Lc30�
�1 � c0:

Thus the constant k + l in Lemma 2:2 now becomes c0 + Lc40�
�1 which is

majorated by c3 and the proposition of this step follows.

In the following step we shall estimate the distance between the piece-

wise continuous trajectory (�yt) constructed above and the solution trajec-

tory of (1:3), which we denote by (yt): For this we consider the di�erence

(�rT � yrT�) and compute how it is propagated by the 
ow corresponding

to (1.3).

Step 4 We have

sup
nT�t<(n+1)T

j�t � ytj � �n (2:15)

where

�n = sup
0�m�n

�
3c0

nX
r=m

e�(n�r)c���r

�
+ 3c0

nX
r=0

e�(n�r)c����: (2:16)

14
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Note that here �n is independent of the initial time s � t and the initial

value �s = ys = ��D�.

To prove the proposition note that we have for nT � t < (n+ 1)T;

yt � yt =

nX
r=1

Z 1

0

@

@�
y(t; rT; z(r; �)) � (�rT � yrT�)d�

where yrT� denotes the left hand-side limit of yt at t = rT , and z(r; �) =

��rT +(1��)yrT� . Using the stability condition imposed onto _y = G(t; y)

and (2.6), we get with T = ��1

jyt � ytj �

nX
r=1

c0e
�(n�r)j�rT � yrT� j � c0

nX
r=1

e�(n�r)c�(��r + ���): (2:17)

Finally, using (2.6) and the inequality j�t � ytj � j�t � ytj + jyt � ytj in
nT � t < (n+ 1)T; we get

sup
nT�t<(n+1)T

j�t � ytj � c0

nX
r=1

e�(n�r)c�(��r�1 + ���) + (��n + ���)

� c0e

nX
r=0

e�(n�r)c�(��r + ���): 2:18

It is easy to see that the same argument applies if the initial time s is

not equal to 0 say mT � s < (m + 1)T . Then the upper bound on the

right hand side of (2.18) has to be modi�ed so that the summation starts at

r = m. Also we majorate c0e by 3c0 and thus the desired result is obtained.

Step 5 It will now be shown that the process (�n) is L-mixing with respect

to (FnT ;F
+
nT ) and we have

Mq(�) � c4(Mq(�
�) + ���); �q(�) � c4(Mq(�

�) + ���)+ c4�q(�
�) (2:19)

where

c4 = 24c0c
�: (2:20)

Lemma 2.3 Let (un); n = 0; 1 � � � be an L-mixing process with respect to

a pair of families of �-algebras (Fn;F
+
n ). De�ne the process (vn) by

vn = sup
0�m�n

nX
r=m

�n�rur

15
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with j�j < 1. Then (vn) is L-mixing with respect to (Fn;F
+
n ) and we have

for q � 1

Mq(v) � (1� �)�1Mq(u); �q(v) � 2(1� �)�2Mq(u) + 2(1� �)�1�q(u):

(2:21)

Proof: We have

jvnj �

nX
r=0

�n�rjurj

from which the �rst part of (2.21) follows by the triangle inequality for the

Lq(
;F ; P ) norm. Let now � be a �xed positive integer and approximate

vn by

v�n;n�� = sup
n���m�n

nX
r=m

�n�ru+r;n��

where u+r;n�� = E(urjF
+
n�� ). Then obviously v�n;n�� is F+

n�� measurable.

Furthermore, it is easy to see that

jvn � v�n;n�� j �

n���1X
r=0

�n�rjurj+

nX
r=n��

�n�rju0r;n�� j

where u0r;n�� = ur�u
+
r;n�� . Taking the Lq(
;F ; P ) norm of the right hand

side, we get

E1=q jvn � v�n;n�� j
q � �n�rMq(u) + (r � 
q)(�)

� (1� �)�1��+1Mq(u) + (r � 
q)(�)

where � denotes discrete time convolution which now is applied to the series

r = (���1)1�=1 and (
q(�; u))
1
�=1. Applying Lemma 2.1 of [8] gives


q(�; v) � 2(1� �)�1��+1Mq(u) + 2(r � 
)(�):

Let us perform summation over � form 1 to 1. The contribution of the

�rst term on the right hand side is 2(1� �)�2�Mq(u) � 2(1� �)�2Mq(u).

For the second term we apply the inequality

1X
�=1

(r � 
q)(�) �

1X
�=1

(���1) �

1X
�=1


q(�; u) = (1� �)�1�q(u):

Thus the proof of the lemma is complete.

Apply the lemma above with the process u1r = 3c0c
���r and the de-

terministic process u2r = 3c0c
����r which appear on the de�nition of �n in

(2.16) and with � = e�1: Then (1 � �)�1 � (1 � 1=2)�1 = 2; hence the

largest constant multiplier in (2.21), which is 2(1 � �)�2 is majorated by

16
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8. Since (u2r) is deterministic, we have �(u2) = 0. Thus we immediately

get the proposition of Step 5.

To complete the proof of Theorem 1.1 we have to put the estimates to-

gether. For the sake of convenience we summarize the relevant inequalities

(2.15), (2.19), (2.12), (2.13) and (2.3), which connect the various processes

that we considered and (2.20), (2.4), and (2.14), which de�ne the various

constants:

sup
nT�t<(n+1)T

j�t � ytj � �n

Mq(�) � c4(Mq(�
�) + ���); �q(�) � c4(Mq(�

�) + ���) + c4�q(�
�);

Mq(�
�) � c3c2T

1=2(M 0
qr(H)�0qr(H))1=2; �q(�

�) � c3c2�
0
qr(H):

��� = 2c0�
�1 � �K:

For the constants we have

c4 = 24c0c
�; c� = exp4c30(1 + L��1)(1 +K��1) c3 = c40(1 + L��1)

and c2 depends only on q; p; r and the domains D� and D. Combining the

above inequalities we get for q > 2,

Mq(�) � c4c3c2T
1=2(M 0

qr(H) � �0qr(H))1=2 + c4 � (2c0�
�1 � �K);

�q(�) � c4c3c2T
1=2(M 0

qr(H) � �0qr(H))1=2

+c4 � (2c0�
�1 � �K) + c4c3c2�

0
qr(H):

We give a simple upper bound for c4c3c2. Using the inequality c < ec

with c = 24c0 and the de�nition of c�; we get

c4 � exp24c0�exp 4c
3
0(1+L�

�1)(1+K��1) = exp28c40(1+L�
�1)(1+K��1):

Taking into account the de�nition of c3; we �nd that c3 � exp c40(1 +

L��1)(1+K��1) and thus c4c3 � exp30c40(1+L��1)(1+K��1); which if

multiplied by c2 is exactly the constant appearing in the theorem. Finally,

to majorate the expression c4 � (2c0�
�1 � �K); we use the inequality

2c0 � exp 2c0 � exp 2c40(1 + L��1)(1 +K��1);

which if multiplied by the upper bound given for c4 above and assuming

c2 � 1 gives that c4 �2c0 � C; where C is the constant given in the theorem.

Thus the proof of Theorem 1:1 is complete.

Proof of Theorem 1.2: Theorem 1.2 follows from Theorem 1.1. Con-

ditions 1.2',1.5' and 1.7' imply that the right hand sides of (1.5) and (1.6)

are majorated by C�1=2. Indeed, in the present case, H becomes �H
�
, �

17
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becomes �� and �K becomes �2�K: From the above scaling property it

follows that C is independent of the parameter �: Applying Theorem 1.1

with T = (��)�1; we get that

sup
nT�t�(n+1)T

j��t � y�t j � ��n:

Now if the piecewise constant extension of (��n) is denoted by (��ct), i.e.

��ct = �n for n � t < n+1; then (��ct) is L-mixing with respect to (Ft;F
+
t ).

Obviously, we have Mq(�
�
c ) =Mq(�

�) � c�1=2. Furthermore,

�q(�
�
c ) � 2T�q(�

�) = 2(��)�1�q(�
�) (2:23)

by Lemma 2.2 in [8], and the right hand side is majorated by 2��1c��1=2;

thus Theorem 1.2 follows.

Proof of Corollary 1.3: First note that the process jF (��t ) � F (y�t )j is
L�mixing. Furthermore, since F is continuously di�erentiable in D and

��t ; y
�
t �D�, we have jF (��t ) � F (y�t )jdt � cj��t � y�t j � c�1=2 with some

c > 0, and hence EjF (��t )�F (y�t )j � c�1=2. Applying a strong law of large

numbers given as Corollary 1.3 in [8], we get the proposition.

Proof of Theorem 1.4: Let ��t denote the piecewise linear extension of

�n, de�ned for n � t < n + 1 by ��t = (1 � (t � n))��n + (t � n)��n+1 for

n � t < n+ 1. Then we can write

_��t = �(H�(t; ��t ; !)+�H
�(t; !))+�(H�(n+1; ��n; !)�H

�(t; ��t ; !)): (2:24)

Introduce the notation

�H�
0 (t; !) = (H�(n+ 1; ��(n); !)�H�(n+ 1; ��(t); !)

and

�H�
1 (t; !) = �H�(t; !) + �H�

0 (t; !):

Then (2.24) can be written as

_��t = �(H�(t; ��t ; !) + �H�
1 (t; !)): (2:25)

By the conditions of Theorem 1.4, all conditions of Theorem 1.2 except

Condition 1.20 are satis�ed for (2.25). To verify this condition, note that

by Condition 1.1, j��t � ��nj � �K, and thus j�H�
1 (t; !)j � �KL, and the

validity of Condition 1.20 follows.

3 A Time Varying Estimation Scheme

In this section we consider the general estimation scheme proposed in [19]

and [4]. It has been shown in [20] that this general scheme is suitable for
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the description of a large class of recursive identi�cation methods and also

some special adaptive control methods, such as the �Astr�om{Wittenmark

self-tuning regulator (cf. [1]). Because of its wide applicability and its

mathematical elegance, this scheme deserves some attention.

Here we consider only one of the possible variants of this general es-

timation scheme. For this we consider the following parameter-dependent

state space equation in which the parameters are a true system-parameter

�� and a probe parameter �:

xn+1(�; �
�) = A(�; ��)xn(�; �

�) +B(�; ��)en (3:1)

with �; ���D � IRp, xn(�)�IR
m, where D is a bounded open domain. The

initial condition for this equation is 0, i.e., we set x0(�) = 0.

Condition 3.1 It is assumed that A(�; ��) is uniformly stable for (�; ��)�

D � D; i.e. kAn(�; ��)k � can; with some c > 0 and 0 < a < 1, for all

(�; ��)�D. Moreover the matrix-valued functions (A(�; ��)) and (B(�; ��))

and their derivatives are bounded for (�; ��)�D �D.

In many important applications the true system parameter and the

probe value may have di�erent values, di�erent dimensions and di�erent

interpretations. For instance, in system identi�cation the model class we

choose may be simpler; i.e., we may misspecify our model. Then the true

system parameter is di�erent from the true parameter of the model. Or the

probe values may be directly related to a controller, so again, the value for

the �rst parameter is related to the true system parameter in an indirect

manner. However, such extensions pose no technical di�culties to modify

the derivations below.

The driving noise process may consist of components of the system

noise, the observation noise and in the case of adaptive control of a dither,

which we inject into the system. There are various standard assumptions

of the noise process. Here we adopt one, which has been found particularly

convenient for deriving strong results.

Condition 3.2 The driving noise process (en); n � 0 is a second order

stationary process which is L-mixing with respect to a pair of families of

�-algebras (Fn;F
+
n ). Moreover, assume that the input noise process is

bounded, say jenj � �.

To determine �� we consider certain cross-covariances of the compo-

nents of xn(�; �
�). For this purpose let Q be a p-dimensional, vector-valued

quadratic function of the state vector xn, and de�ne

G(�; ��) = lim
n!1

EQ(xn(�; �
�)):

The function G(�; ��) is a well-de�ned function of (�; ��), and it is bounded

together with all its derivatives. The covariances are selected so that the
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nonlinear algebraic equation

G(�; ��) = 0 (3:2)

is solved by ��:

Also it is assumed that each component of Q(xn(�; �
�)) is empirically

computable. Thus in principle each component ofG(�; ��) can be computed

for any �xed �, although for the exact value to obtain an in�nite number

of observations is needed. A major problem of the theory of stochastic

systems is the determination of �� from empirical data. This is achieved

in the time invariant case by the general recursive estimation scheme given

in [19] and [4]. The time-varying estimation problem is the subject of this

section and the general scheme will be given below in (3.7) and (3.8).

A simple method of describing a time-varying problem is to replace the

system parameter �� in (3.1) by a time-varying parameter ��n. Thus we get

the following state space equation:

xn+1(�) = A(�; ��n)xn(�; �
�
n) +B(�; ��n)en (3:3)

with initial condition x0(�) = 0. An important restriction is, though, that

the system is slowly changing, which will be expressed by the following

condition.

Condition 3.3 We assume that ��n�D
�
� , where D

�
� is a compact subset of

D and
_S
�
= sup

n�0
j��n+1 � ��nj <1:

The quantity _S is called the rate of change.

The above description of slowly time-varying systems is a special case

of a more general de�nition in [25]. Time varying systems with rapid

changes and structural constraints are considered in [24]. The purpose of

this section is to present the design and analysis of a time-varying estima-

tion scheme and establish a relationship between the tracking error and the

rate of change.

First we consider a time-invariant ordinary di�erential equation associ-

ated with our estimation problem. We assume the validity of the following

condition:

Condition 3.4 We assume that (3.2) has a unique solution � = �� with

respect to � in the domain D, and the Jacobian matrix G�(�
�; ��) is non-

singular and stable. The solution of the ordinary di�erential equation

_yt = G(yt; �
�) y(0) = � (3:4)

belongs to a compact domain D0 whenever ��D� where D� is a compact

domain such that D� � D. Moreover, the di�erential equation (3.4) is
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globally asymptotically stable in �� whenever ���D�
� and y0�D�, where D

�
�

is the compact domain introduced in Condition 3.3.

It is easy to see using standard compactness arguments that Condition

3.4 implies the validity of Condition 1.7 uniformly in �� for ���D�
� . More

exactly let the general solution of (3.4) be denoted by y(t; s; �; ��). Then





@y@� (t; s; �; ��)




 � c0e

��(t�s)

and here c0 and � do not depend on ��.

Obviously, if we multiply the right hand side of (3.4) by a �xed positive

gain, say �, i.e., and if we consider the di�erential equation

_yt = �G(yt; �
�) y(0) = �;

then the solution trajectories get scaled but remain unchanged otherwise.

Denoting the solutions by y�(t; s; �; ��); we get





@y
�

@�
(t; s; �; ��)





 � c0e
���(t�s):

A conceptual algorithm for estimating ��n is given by the recursion

��n+1 = ��n + �Q(xn+1(�
�
n)): (3:5):

The practical problem with this conceptual algorithm is that the correc-

tion term Q(xn+1(�
�
n)) is not given by an explicit expression and is not

computable recursively. In the �nal step of the construction this de�ciency

is removed as follows: let an initial value ��0 �D� be given, where D� is a

compact domain such that D� � D. Furthermore let an initial auxiliary

state vector x0 be given,which is assumed to be an F0-measurable, bounded

random variable. Generate a sequence of state vectors xn for 1 � n � n0
by the equation (cf. (3.3))

xn+1 = A(��0 ; �
�
n)xn(�

�
0 ; �

�
n) +B(��0 ; �

�
n)en: (3:6)

The purpose of this initial phase is to get a good approximation of xn(�
�
0 )

for the initial time n = n0. Then for n � n0 generate the auxiliary state

vector xn and the estimator ��n of ��n recursively by the following equations:

xn+1 = A(��n; �
�
n)xn +B(��n; �

�
n)en (3:7)

��n+1 = ��n + �Q(xn+1): (3:8)

In the theorem and below we will say that c is a system constant, if it

depends only on the apriori constants and the domains given above, but it
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is independent of the sequence (��n). Thus particular system constants are

independent of _S or �:

Theorem 3.1 Assume that Conditions 3.1-3.4 are satis�ed and let the

compact domains D� � Dy � D� � D0 � D be such that they satisfy

Condition 1.6 with respect to (3.4) for all ���D��. Let ��0 �D�. If _S=� is

su�ciently small, d is su�ciently large, and n0 is su�ciently large, then

��n will not leave D� and we have

j��n � y�nj � ��n

where (��n) is an L-mixing process such that for any q � 1 we have

Mq(�
�) � c�1=2 and �q(�

�) � c��1=2;

where c is a system constant.

This theorem combined with the �rst part of Theorem A below gives a

decomposition of an upper bound of the tracking error into a random and

a deterministic component plus a negligible term.

Corollary 3.2 Under the conditions of Theorem 3.1 we have

j��n � ��nj � ��n + c _S=�+ c0e���n

where the process (��n) is identical with the one given in the quoted theorem

and c; c0 are system constants.

The right hand side will be temporally denoted by ��n. Obviously, the

process (��n) is L-mixing and �q(�
�) = �q(�) for every q � 1: On the other

hand, we have Mq(�
�) � c(�1=2 + _S=�) with some system constant c. Now

it is easy to see that this upper bound will be minimized for � = (2 _S)2=3.

Substituting this optimizing value into the formulas of Theorem 3.1, we

arrive at the following corollary:

Corollary 3.3 Under the conditions of Theorem 3.1 choose � so that we

have c1 _S
2=3 � � � c2 _S

2=3 where c1; c2 are positive system constants. Then

j��n � ��nj � ��n + c0e���n

where (��n) is an L-mixing process such that for any q � 1 we have

Mq(�
�) � c _S1=3 and �q(�

�) � c _S�1=3;

where c is a system constant.

Finally we get an analogy with Corollary 1.3 the following proposition:
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Corollary 3.4 Let (F (�)) be a continuously di�erentiable function of �

de�ned in D: Then under the conditions of Corollary 3.3 we have

lim sup
N!1

1

N

NX
0

jF (��n)� F (��n)j � c _S1=3

with probability 1, where c is a system constant.

Proof of Theorem 3.1: Let us introduce the notations:

H(n; �; !) = Q(xn(�))

�H(n+ 1; !) = Q(xn+1)�Q(xn+1(�
�
n)): (3:9)

Then we can write (3.8) as

��n+1 = ��n + �Q(xn+1(�
�
n)) + ��H(n+ 1):

We shall verify that H and �H satisfy the conditions of Section 1.

Lemma 3.3 If _S is su�ciently small, then the random �elds H =

(H(n; �; !)) and �H=�� = ((H(n; �+h; !)�H(n; �; !))=jhj) are bounded
and

jH(n; �)j � c�2; j�H=��(n; � + h; �)j � c�2;

where c is a system constant. Thus the random �eld H satis�es Condition

1.1 uniformly in (��n).

Proof: It is well-known that if _S is su�ciently small, say _S � _S0; then

the time-varying linear system (3:3) is exponentially stable in the following

sense: we have for 0 � n � m and

	(n;m) =

nY
i=m

A(�; ��n)

the inequality

k	(n;m)k � ca(n�m) (3:10)

with some 0 < a < 1 and c > 0.

Since the input process (en) is bounded in absolute value by �, it follows

that jxn(�)j � c�, where c is a system's constant. Since Q is quadratic, we

get the �rst claim of the lemma.

On the other hand, the process @x=@� = x� satis�es the di�erence

equation

x�;n+1(�) = A(�; ��n)x�;n(�) +A�(�; �
�
n)xn(�) +B�(�; �

�
n)en (3:11)
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in which the second and third terms on the right-hand side are to be con-

sidered as input processes. Since they are bounded in absolute value by

C�; it follows that jx�n(�)j � c� where c is a system's constant. Now

�H=��(n; � + h; �) =

Z 1

0

Qx(xn(�(�))d� � x(�(�))

where �(�) = � + � � h: Since x�n(�) is bounded in absolute value by C�

uniformly in � and Qx(x) grows linearly in x, the second estimation of the

lemma follows.

The veri�cation of Condition 1.20, which is the least obvious task, is left

to the end of the section.

Lemma 3.4 If _S is su�ciently small, then the random �elds H =

(H(n; �; !)) and �H=�� = ((H(n; �+h; !)�H(n; �; !))=jhj) are L-mixing

with respect to (Fn;F
+
n ), uniformly in ��D� and �; � + h�D�, respectively.

Thus the random �eld H satis�es Condition 1.3.

Proof: We have seen in the proof of the previous lemma that the time vary-

ing system (3.3) is exponentially stable, if _S is su�ciently small. Therefore

Lemma 2.4 in [8] implies that the random �eld (xn(�)) is L-mixing and

it is easy to see that (xn(�)) is L-mixing uniformly in � for ��D�. The

argument for the random �eld �x=�� is analogous.

Let us now consider the random �eld H(n; �) = Q(xn(�)): The prop-

erties of xn(�) that were derived above are inherited by H(n; �) since Q

is quadratic (cf. the remark after De�nition 1.3); i.e., H and �H=�� are

L-mixing, and thus the lemma has been proved.

Let us de�ne

G(n+ 1; �) = G(�; ��n):

Then the piecewise constant extension of G(n + 1; �) can be written as

Gc(t; �) = G(n+ 1; �) = G(�; ��n) for n � t < n+ 1.

It is easy to see that Condition 1.4 is satis�ed with K = c�2 and

L = c�2, where c is a system's constant. We proceed to verify Condition

1.50. We note that

�G(n) = EH(n; �; !)�G(n; �) = EH(n; �; !)�G(�; ��n�1):

Lemma 3.5 If _S is su�ciently small, then we have for su�ciently large

n0
j�G(n)j = jEH(n; �; !)�G(�; ��n�1)j � c _S�2

where c is a system constant. Thus, if _S=� is bounded, then Condition 1.5'

is satis�ed.
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Proof: Note that the process xn+1(�; �
�
n) satis�es the following di�erence

equation :

xn+1(�; �
�
n) = A(�; ��n)xn(�; �

�
n�1)+

+B(�; ��n)en +A(�; ��n) � (xn(�; �
�
n)� xn(�; �

�
n�1)): 3:12

Let us denote the second term on the right hand side of (3.12) by rn; i.e.

set rn = A(�; ��n) � (xn(�; �
�
n)�xn(�; �

�
n�1): Then we have jrnj � c _S� where

c is a system constant.

Subtract (3.12) from (3.3). Then the term B(�; ��n)en falls out and

introduces the process �xn
�
= xn(�)�xn(�; �

�
n�1): We see that this process

satis�es the simple di�erence equation

�xn+1 = A(�; ��n)�xn + rn: (3:13)

Now if _S � _S0 then the time-varying linear system (3:13) is exponentially

stable, hence a trivial input-output estimate gives j�xn+1j � c _S� for su�-

ciently large n0. Now

jQ(xn(�))�Q(xn(�; �
�
n�1))j = j

Z 1

0

Qx(x(�)) � �xnd�j (3:14)

where x(�) = xn(�) + �(xn(�; �
�
n�1) � xn(�)). Since Q is quadratic and

jxn(�)j and jxn(�; �
�
n�1)j are bounded by C�, we get

Z 1

0

Qx(x(�)) � �xnd� � C _S�2:

Using the trivial inequality jE� � E�j � Ej� � �j for the random variables

inside the absolute value sign of the left hand side of (3.14) and noting that

EQ(xn(�; �
�
n�1)) = G(�; ��n�1) + can�, where c; a are system constants, the

proposition of the lemma follows.

The associated ordinary di�erential equation is de�ned as follows:

_y�t = �G(y�t ; �
�
t ) (3:15)

where ��t = ��n for n � t < n+1 and � is a �xed, small positive gain. De�ne

the initial conditions for (3.15) as y�s = ��D�, and let the general solution

of (3.15) be denoted by y�(t; s; �).

The following theorem has been proved in [9]:

Theorem A Assume that the di�erential equation (3.4) satis�es Condi-

tions 3.4. For any parameter process (��n) satisfying Condition 3.3 choose

� so that _S=� is su�ciently small. Then the solution of (3.15) is de�ned

for all t � s , and

jy�(t; s; �)� y�(t; s; �; ��t )j � c _S=�:
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Moreover, (3.15) is exponentially stable: for any 0 < �0 < � there exist

system constants c; c0, such that if _S=� � c then we have

k
@

@�
y�(t; s; �)k � c0e���

0(t�s) (3:16)

uniformly in � for ��D�.

Since jy�(t; s; �; ��t ) � ��t j � ce���(t�s) where c is independent of �,

it follows that y�(t; s; �) tracks ��t with an error not exceeding in absolute

value c _S=�+ ce���(t�s).

The above theorem also implies the validity of Condition 1.70. Fur-

thermore, using this theorem it is easy to see that if we are given a set

of domains D� � Dy � D� � D0 � D which satisfy Condition 1.6 in re-

lation of the di�erential equation (3.4) for all ���D�� ; then Condition 1.6

is satis�ed with the same domains in relation to (3.15) whenever _S=� is

su�ciently small.

Finally, we turn to the veri�cation of Condition 1.20. Note that we had

by (3.9) �H(n+ 1) = Q(xn+1)�Q(xn+1(�
�
n)). We have to prove

j�H(n)j � � �K (3:17)

whereK is independent of (��n) and �. For this purpose we prove a stronger

statement in the proof of which the interaction of the dynamics of xn and

��n is more explicitly analyzed.

Let the largest system constant above be c. Choose a system constant

c03 and n0 so that

c(1� a)�1� <
1

2
c03� and caN+1jx0j <

1

2
c03�

hold. De�ne c3 = c(c03)
2. Furthermore, choose a system constant c4 and

n0 so that

c(1� a)�1c� � c3�
2� <

1

2
c4�� and can0 jx0j <

1

2
c4��

hold.

Lemma 3.6 Under the conditions of Theorem 3.1 we have for su�ciently

small _S� and _S=� and the system constants above c3 and c4:

i. The sequence of estimators ��n de�ned by (3.8) will be in D� for n �
n0.

ii. We have j��n � ��n�1j � c3�
2� � _S0 for all n � n0.
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iii. jxn � xn(�
�
n�1)j � c4�� for n � n0.

Obviously iii. implies the validity of Condition 1.20 since by (3.9)

j�H(n)j � c�jxn � xn(�
�
n�1)j � c0�c4��:

Proof: We use induction on n. For n = n0; i. and ii. are obviously satis�ed.

To verify iii. note that in the �rst phase of the algorithm, xn and xn(�
�
0 )

are generated by the same linear system except that the initial condition at

n = 0 is di�erent. Therefore, taking into account (3.10) (with � = ��0 ) we

get that jxn � xn(�
�
0 )j � canjx0j. Thus since can0 jx0j � c4�� large, then

iii. is satis�ed.

Assume that the propositions are true for n � N . To prove the validity

of iii. for n = N + 1 we �rst note that if both ��n and ��n belong to D� and

they are slowly time varying, then the time varying linear system (3.7) is

exponentially stable. To quantify this we assume that _S0 is chosen so that

if j��n � ��n�1j �
_S0 and j�

�
n � ��n�1j �

_S0; then we have for 0 � n � m and

	(n;m) =

nY
i=m

A(��n; �
�
n)

the inequality

k	(n;m)k � ca(n�m) (3:18)

with some system constants 0 < a < 1 and c > 0: Under the inductive

hypothesis (3.18) is valid for n0 � n � N .

Consider the state vectors xn+1 generated by (3.7) and the state vectors

x�n+1(�) with � = �n generated by the \frozen parameter" system (3.3).

Subtracting (3.3) from (3.7) we get

xn+1 � xn+1(�
�
n) = A(��n; �

�
n)(xn � xn(�

�
n�1))�

�A(��n; �
�
n)(xn(�

�
n)� xn(�

�
n�1)): 3:19

This is a di�erence equation for the variable (xn � xn(�
�
n�1)) with initial

condition x0 at n = 0. Let us interpret (3.19) as a linear system the input

process of which is A(��n; �
�
n)(xn(�

�
n) � xn(�

�
n�1)). Since by the proof of

Lemma 3.3 jx�n(�)j � c�, uniformly in � for ��D�, we have for n � N

jxn(�
�
n)� xn(�

�
n�1)j � c�j��n � ��n�1j � c� � c3�

2�

where c is a system constant. Solving (3.19) by a discrete time Cauchy-

formula for (xn+1 � xn+1(�
�
n)) and using part i. and ii. of the inductive

hypothesis we get for n = N + 1

jxN+1 � xN+1(�
�
N )j � c(1� a)�1c� � c3�

2�+ caN+1jx0j � c4��:
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Thus the validity of iii. for n = N + 1 has been established.

To prove the validity of ii. for n = N + 1 note that the the validity of

(i) and (ii) for n � N implies the exponential stability of the time varying

system (3.7) and hence jxN+1j � caN+1jx0j+ c(1� a)�1� � c03�. Thus we

have for N � n0

j��N+1 � ��N j � j�Q(xN+1)j � �cjxN+1j
2 � c(c03�)

2� = c3�
2�: (3:20)

Hence ii. is satis�ed for n = N + 1.

Finally, to prove i. for n = N+1 note that jH(n; �; !)j � c�2 by Lemma

3.3 and the established validity of iii. for n � N + 1 implies j�H(n)j �
c�2� � c�2 for n � N + 1. Now the �rst part of Theorem 1.4 applied for

a �nite horizontal implies that j��n � y�nj � c0�
�14 � c�2 for n � N + 1 and

therefore if d is su�ciently large then ��N+1�D�, and thus the proof of the

lemma is complete.

4 Appendix: Two Analytical Lemmas

Lemma 4.1 (cf. [5]) Let (G(t; y)) be a function satisfying Condition

1.6 and let yt the solution of (1.2). Further, let (xt) be a continuously

di�erentiable curve such that xs = ys = �. Then for t > s

xt � yt =

Z t

s

@

@�
y(t; r; xr)( _xr �G(t; xr)dr: (4:1)

Proof: Consider the function

zr = y(t; r; xr):

Obviously the left hand side of (4.1) can be written as zt � zs. Write

zt � zs =

Z t

s

z0rdr =

Z t

s

(
@

@r
y(t; r; xr) +

+
@

@�
y(t; r; xr) _xr)dr:

Taking into account the equality

@

@r
y(t; r; xr) = �

@

@�
y(t; r; xr) �G(t; xr)

(which simply follows from the identity y(t; r; yr) = yt = const. with

respect to r after di�erentiation) we get the lemma.
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Let

Y (t; s; �) =
@

@�
y(t; s; �):

We have the following lemma:

Lemma 4.2 Under Conditions 1.4 - 1.7 we have

k
@

@�
Y (t; s; �)k � Lc30�

�1e��(t�s):

Proof: We have

@

@t
Y (t; s; �) = Gx(t; y(t; s; �))Y (t; s; �); Y (s; s; �) = I: (4:2)

Since Gxx(t; x) = (@2=@x2)G(t; x) and (@=@�)y(t; s; �) exist and are contin-

uous in (t; x) and (t; �) respectively, we conclude that Y�(t; s; �) =

(@=@�)Y (t; s; �) exists and is a continuous function of (t; �). To get Y�(t; s; �)

we can di�erentiate (4.2) formally and obtain

@

@t
Y�(t; s; �) = Gxx(t; y(t; s; �))Y (t; s; �)Y (t; s; �) +

+Gx(t; y(t; s; �))Y�(t; s; �) Y�(s; s; �) = 0:

Since the operator norm of the �rst term is majorated by Lc20e
�2�(t�s)

and since the time varying linear di�erential equation with transition ma-

trix Gx(t; y) is exponentially stable as indicated by Condition 1.7, we get

from the identity

Z t

0

e��(t�r)e�2�rdr = e��t
Z t

0

e��rdr < ��1e��t

the desired upper bound.
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